
1

Now Playing:

Go into the Water

Dethklok

from Dethalbum

Released September 25, 2007

Movie:
One Man Band

Pixar, 2005

Programming 4 Tips 
and Advanced Ray 

Tracing

Rick Skarbez, Instructor

COMP 575

November 8, 2007

Announcements

• Programming Assignment 4 (Ray 
tracer) is out, due Tuesday 11/20 by 
11:59pm

• If you haven’t met with me yet to 
discuss your final project, you should 
really do that as soon as possible

Programming 
Assignment 4

• Build a ray tracer

• Components:

• Handle file output

• You will be storing your images to disk

• Generate ray casted images

• Generate ray traced images

Ray Caster Overview

For Each
Pixel

Camera Ray

Generates

Linked List of Objects

Sphere

Plane

Etc.

App
Camera 
Matrix

Test For
Closest

Sphere

Closest Object

Linked List of Materials

Material #1

Material #2

Linked List of Lights

Ambient #1

Point #1

Point #2

Shade()

Material #2
Shade()

Surface Material

Illuminated
By

Pixel Color



2

Ray Tracer Overview

For Each
Pixel

Camera Ray

Generates

Linked List of Objects

Sphere

Plane

Etc.

App Camera 
Matrix

Test For
Closest

Sphere

Closest Object

Linked List of Materials

Material #1

Material #2

Linked List of Lights

Ambient #1

Point #1

Point #2

Shade()

Material #2
Shade()

Surface Material

Illuminated
By

Pixel Color

Cast More
Rays

Transform
Ray

What I will give you

• FSF image format specification

• FSF Viewer

• Matrix / Vector / Ray classes

• .ray file format specification

• Some sample .ray files

• All available on the website

Expected Raytracing 
Results

reflect.ray

I’d like to put your 
mind at ease...

• I know some (alright, probably all) of 
you are worried about this assignment

• I am now going to try to convince you not to 

worry as much

Why this assignment 
shouldn’t scare you

• Unlike OpenGL,

• Don’t have to handle user input

• Don’t have to have a moving camera or 

moving objects

• Don’t have to manage graphics state

• All computation is just on the CPU

Why this assignment 
shouldn’t scare you

• Unlike previous assignments, this one 
(for better or worse) is pretty 
straightforward

• Just getting the ray tracer working is already 

good for full credit

• Don’t need to do a bunch of different 

programs

• Test cases are readily available



3

Why this assignment 
shouldn’t scare you

• Ray tracing is really a very simple 
algorithm

• If you don’t worry much about performance 

(which you don’t have to), it might be the 

shortest program you write all semester

• Let’s go to the board

Code for you
• Now on the website:

• 4x4 matrix class 

• matrix44.h and matrix44.cpp

• 4-vector class (for homogeneous points and 

vectors)

• vector3D.h and vector3D.cpp

• Ray class

• ray3D.h and ray3D.cpp

Deep Breaths...

• I hope everyone is feeling a little bit 
better

• Are there any more questions?

Last Time

• Presented programming assignment 4

• Already talked a bunch about that

• Talked about instantiating objects and 
implementing transforms in a ray tracer

• Talked about the “re-intersection 
problem”, and how to avoid it

Transforming Rays

• Instead of transforming objects, we will 
apply the inverse transforms to our rays

• Why?

• We can write really really fast code 

to intersect rays only with canonical 

objects without worrying about 

size, shape, location, etc.

• We have a standard process

• Transform rays

• Intersect with canonical unit objects

(0,0,0)

Inverse Transforms

For all of our transforms, changing their direction

generates the inverse matrix

This conveniently saves us the trouble (and cost) 

of implementing matrix inversion



4

Inverting Composed 
Transforms

• Answer: Yes!

• Lucky for us, 

• Note that the order of transforms gets 
reversed

• Now the operator that gets applied first is the 

leftmost

Transforming Rays

• The point of origin is a point, so it gets 
transformed as a homogeneous point

• The direction is a vector, so it gets 
transformed as a vector

Untransformed ray:
Ray equivalent to the transform

M being applied to the world:

r(t) = S + tV r’(t) = M-1S + tM-1V

Object Intersections 
with Transformed 

Rays• Once the ray is transformed, just 
intersect it with your canonical objects 
as normal

• The resulting t value can be plugged 
into the original untransformed ray to 
find the point of intersection in world 
space 

Caution: Do not normalize the vector in the ray

after transformation r’, or else values of t will not
be comparable to each other

You didn’t really think 
it would be that 

easy...• That gets us the new ray to the eye

• But that isn’t the only thing we need for 

shading

• What about the normal vector?

• Normals do not remain “normal” after 
transformation

Finding the New 
Normal Vector

• So, in the end, the new normal vector is 
given by

• N’ = (M-1)TN

• Since we already know how to compute 
the inverse of the transform matrix

• All that is left to do is transpose it!

Putting it All Together:
Applying Ray 
Transforms• For each ray-object intersection

• Apply the inverse of any object transforms to 

the ray

• Intersect the resulting ray with the canonical 

object

• If there is a valid intersection

• Plug t into the original ray equation to get the 

location of the intersection in world space

• Get the correct normal as shown on the last 

slide



5

Re-Intersection 
Illustration

A ray tracer without any re-intersection handling

Why does this 
happen?• Short answer: numerical precision issues

• Sequences of floating point multiplies 

(accumulated in our transforms) result in small 

inaccuracies

• It is essentially random whether a ray from 

any given point will work correctly (because 

the point is at t=0 or just behind it) or fail 

(because the point is at t>0)

• Note that this is a problem for shadow 
rays too

Re-Intersection 
Solutions

• Solution #1

• Simply do not allow intersections for values of t 

< ε

• Where ε is a very small number, like .0001

• Solution #2

• When a new ray is generated, offset it’s origin 

point by ε in the direction of the surface normal

Today

• Talking about advanced ray tracing 
techniques

• Acceleration data structures

• To improve performance

• Distributed ray tracing techniques

• To achieve some neat visual effects

Must go faster...
• So what we’ve done so far works

• We can render any scene just fine

• At least, any scene that doesn’t use 

additional effects

• But it’s really, really slow:

• Loop

• For each pixel

• For each object

• For each light

• Reflection/refraction/shadows make it even 
worse

Must go faster...

• Can’t do anything about looping over 
each pixel

• That we’re stuck with

• But looping over every object and every 
light?

• There we have some options



6

Reducing 
Intersections

• Note that this is also the biggest “bang 
for your buck” in terms of performance

• Computing ray intersections is slow

• 2 main ways

• Use bounding volumes

• Use a spatial data structure

Bounding Volumes
• Here’s the idea:

• Some shapes are harder to intersect with than 

others

• Consider a box vs. a complex polygonal model

• So, for every object, find the smallest simple 

object that encloses it

• Test for intersection against the simple object

• If there is one, only then do you test the original 

object

Bounding Volumes Bounding Volumes
• What makes a good bounding volume?

• Conservative

• No false negatives

• Tight to the object

• No false positives

• Fast to compute intersections with

• Often a tradeoff between the two

• Spheres or axis-aligned bounding boxes 

(AABBs) are good places to start

Spatial Data 
Structures

• We already talked about binary space 
partitioning (BSP) trees

• We said we’d come back to them

• Now we are

• Not the only option, though

• Grids

• Adaptive (quad/octrees) or non-adaptive

Spatial Data 
Structures

• The idea is that we only need to test if a 
ray hits an object if the ray passes 
through the region of space that the 
object is in

• If a ray is going left, and the object is on the 

right, there is no need to test for intersection



7

Regular Grids
• Simplest structure

• Just divide space into a regular grid

• Say, 1-unit axis aligned cubes

• Only need to test against any objects inside 

a region if the ray hits it

• Only need to test farther regions if no 

intersection in nearer regions

• Can use 3D line drawing algorithms for fast 

cell traversal

Regular Grids

Regular Grids Adaptive Grids

• Several ways to do it

• We’ll talk about quadtrees / octrees

• Quadtrees are 2D, octrees are 3D

Octrees

• Start out with a very coarse regular grid

• Subdivide only in areas where there is 

geometry

• If there is a primitive inside a grid cell, split 

that grid cell into 8 equal cells

• Repeat until you’ve reached some 

maximum split depth, or a cell only 

contains a single primitive

Octree (well, really 
Quadtree) example



8

Remember this 
example?

• Let’s see an example (in 2D, not 3D)

• Here, a line divides the plane into two half-

planes

Space BSP Tree

A A

X

CB C

X

BY

D

E E

Y

D

BSP Trees

• Can create a BSP tree for your scene

• Then only have to test against objects 
that are on the “right” side of a split 
plane

Accelerating Lighting
• The previous structures reduce ray 

intersections

• Can we improve lighting, too?

• Sure!

• One way: Do a pre-pass that determines if a 

light is visible from an object (or region of 

space...), and cache that information

• Then only need to test against potentially 

visible lights

Acceleration Review

• We’re stuck looping over each pixel

• But we can:

• Test against fewer and/or simpler objects

• Bounding volumes

• Spatial data structures

• Test against fewer lights

• Do a potential visibility pre-pass

Stochastic Ray 
Tracing

• Cook argues that classical ray tracing 
(i.e. everything we’ve done so far) only 
represents sharp phenomena

• Unrealistic sharp shadows, infinite depth of 

focus, etc.

• How can we do better?

Distributed Ray 
Tracing

• So what are some of the effects we can 
expect this way?

• Antialiasing

• Distribute rays across each pixel

• Glossy reflections

• Distribute multiple reflection rays instead 

of just one

Cook et al., 1984



9

Stochastic Ray 
Tracing

• So what are some of the effects we can 
expect this way? (cont’d)

• Soft shadows

• Distribute multiple rays to an area light 

source

• Depth of field

• Distribute rays across a lens

• Motion blur

• Distribute rays over time

Glossy Reflections

• Shooting a single reflection ray 
simulates perfect reflection

• i.e. a mirror

• Many real surfaces are 
reflective, but not 
mirror-like

• i.e. many metals

• This is called gloss

Glossy Reflections
• To get glossy reflections, don’t just 

shoot one ray

• Shoot multiple rays, and perturb them 

slightly

• This simulates taking the integral over a 

solid angle

Mirror Glossy

Glossy Reflection 
Examples

Translucency

• Translucency is sort of the dual of 
glossy reflection

• Instead of distributing rays around the 

reflection ray, distribute them around the 

refracted ray

Transparent Translucent

Translucency 
Examples



10

Soft Shadows

• In most graphics applications (and in 
our ray tracer so far), we’ve assumed 
point light sources

• In the real world, lights 

have area

• This leads to soft 

shadows in the real 

world, which we can’t 

yet simulate in our ray 

tracer Soft ShadowsHard Shadows

Soft Shadows
• To get soft shadows, don’t just shoot one 

ray

• Shoot multiple rays distributed across the 

surface of the light

• Sum their contributions to find the amount of 

shadow

Soft Shadow 
Examples Depth of Field

• Our ray tracer up to this point simulates 
a pinhole camera

• Real world cameras have lenses,

differing aperture sizes, 

differing exposure times, etc.

• We’re going to focus (no pun 

intended) on depth of field 

Depth of Field

• To get depth of field, generate multiple 
rays for each pixel

• Distribute them across the surface of the lens

Perfect Focus Depth of Focus

Depth of Field 
Examples



11

Motion Blur

• Motion blur in the real world happens 
when objects are moving while the 
camera shutter is open

• Effectively, the same point on the object is 

seen along multiple rays from

the camera

Motion Blur
• To get motion blur, you need to distribute 

your rays over time

• As an object moves, it will get hit by different 

camera rays

• Moving objects get averaged with the 

environment

• What happens to stationary objects?

• Additional rays can still be used for 

antialiasing, depth of field effects, etc.

Motion Blur 
Examples

Next Time

• Leaving the world of standard ray 
tracing

• Introducing radiosity


