Movie:
One Man Band

Pixar, 2005

Programming 4 Tips
and Advanced Ray
Tracing

Rick Skarbez, Instructor
COMP 575
November 8, 2007

Announcements

® Programming Assignment 4 (Ray
tracer) is out, due Tuesday 11/20 by
11:59pm

® If you haven't met with me yet to
discuss your final project, you should
really do that as soon as possible

Programming
Assignment 4

® Build a ray tracer
® Components:
® Handle file output
® You will be storing your images to disk
® Generate ray casted images

® Generate ray traced images

Ray Caster Overview

Linked List of Objects Linked List of Materialg

Test For
Closest

Material #1

Materal #2
Generates

For Each

Pixel Shade()

Linked List of Lights

llluminated 7
By ¥ Anbient 71

Shade()

Material #2

\Qxel Color Closest Object & 'Surface Material

o o g ow

Ray Tracer Overview

Linked List of Objects Linked List of Materials
Test For

Material #1

Vol
Generates

For Each

Pixel
Linked List of Lights

) ”'“’“E‘;;"“ed Ambient 41
|

Maoterial fi2

L ! ¢ }
Qxel Color Closest Object & Surface Material Bt

\‘!==—.“

What | will give you

® FSF image format specification
® FSF Viewer

® Matrix / Vector / Ray classes

® _ray file format specification

® Some sample .ray files
® All available on the website

Expected Raytracing

reflect.ray

I'd like to put your
mind at ease...

® | know some (alright, probably all) of
you are worried about this assignment

® | am now going to try to convince you not to
worry as much

Why this assignment
shouldn’t scare you

® Unlike OpenGL,
® Don't have to handle user input

® Don't have to have a moving camera or
moving objects

® Don'’t have to manage graphics state

® All computation is just on the CPU

Why this assignment
shouldn’t scare you

® Unlike previous assignments, this one
(for better or worse) is pretty
straightforward
® Just getting the ray tracer working is already
good for full credit
® Don't need to do a bunch of different
programs

® Test cases are readily available

Why this assignment
shouldn’t scare you

® Ray tracing is really a very simple
algorithm

® If you don’t worry much about performance
(which you don’t have to), it might be the
shortest program you write all semester

® Let's go to the board

Code for you

® Now on the website:
® 4x4 matrix class
® matrix44.h and matrix44.cpp

® 4-vector class (for homogeneous points and
vectors)

® vector3D.h and vector3D.cpp
® Ray class
® ray3D.h and ray3D.cpp

Deep Breaths...

® | hope everyone is feeling a little bit
better

® Are there any more questions?

Last Time

® Presented programming assignment 4
® Already talked a bunch about that

® Talked about instantiating objects and
implementing transforms in a ray tracer

® Talked about the “re-intersection
problem”, and how to avoid it

Transforming Rays

® Instead of transforming objects, we will
apply the inverse transforms to our rays

® Why?

® We can write really really fast code
to intersect rays only with canonical
objects without worrying about
size, shape, location, etc.

® We have a standard process

® Transform rays
® Intersect with canonical unit objects

Inverse Transforms

For all of our transforms, changing their direction
generates the inverse matrix

[Translate(z,y,)| = Translate(—z, —y, —2)
111
)

vz
[Rotaie(8))] - Rotate(—6)

[Scale(z,y,2)] " = Scale(

This conveniently saves us the trouble (and cost)
of implementing matrix inversion

Inverting Composed
Transforms

® Answer: Yes!

® Lucky for us,
(ABC)'=c'B'A]|

® Note that the order of transforms gets
reversed

® Now the operator that gets applied first is the
leftmost

Transforming Rays

® The point of origin is a point, so it gets
transformed as a homogeneous point

® The direction is a vector, so it gets
transformed as a vector

Ray equivalent to the transform
M being applied to the world:
) =8 +tVv r(t) = M'S + tM'V

Untransformed ray:

UDjeCI ImerseClorls
with Transformed

® Once the ray med, just
intersect it with youy canonical objects
as normal

® The resulting t value can be plugged
into the original untransformed ray to
find the point of intersection in world
space

Caution: Do not normalize the vector in the ray
after transformation r’, or else values of t will ndt
be comparable to each other

YOU aidri t redlly tirik
it would be that

® That gets uﬁ‘ra&y ray to the eye

® But that isn't the only thing we need for
shading

® What about the normal vector?

® Normals do not remain “normal” after
transformation MN

v

Finding the New
Normal Vector

® So, in the end, the new normal vector is
given by
®* N=M")N
® Since we already know how to compute
the inverse of the transform matrix

® All that is left to do is transpose it!

Futdartyg e Al TOycitlict.

Applying Ray
® For eacmiﬁmiwmtsn

® Apply the inverse of any object transforms to
the ray

® Intersect the resulting ray with the canonical
object

® |f there is a valid intersection

® Plug t into the original ray equation to get the
location of the intersection in world space

® Get the correct normal as shown on the last
slide

Re-Intersection
[llustration

A ray tracer without any re-intersection handling

Why does this
® Short answbr%@r@r@aﬂp%cision issues

® Sequences of floating point multiplies
(accumulated in our transforms) result in small
inaccuracies

® It is essentially random whether a ray from
any given point will work correctly (because
the point is at t=0 or just behind it) or fail
(because the point is at t>0)

® Note that this is a problem for shadow
rays too

Re-Intersection
Solutions

® Solution #1

® Simply do not allow intersections for values of t
<¢€

® Where ¢ is a very small number, like .0001
® Solution #2

® When a new ray is generated, offset it's origin
point by € in the direction of the surface normal

Today

® Talking about advanced ray tracing
techniques

® Acceleration data structures
® To improve performance
® Distributed ray tracing techniques

® To achieve some neat visual effects

Must go faster...

® So what we’ve done so far works
® We can render any scene just fine

® At least, any scene that doesn't use
additional effects

® Butit's really, really slow:
® Loop
® For each pixel
® For each object
® For each light
® Reflection/refraction/shadows make it even
worse

Must go faster...

® Can't do anything about looping over
each pixel

® That we're stuck with

® But looping over every object and every
light?

® There we have some options

Reducing
Intersections

® Note that this is also the biggest “bang
for your buck” in terms of performance

® Computing ray intersections is slow
® 2 main ways
® Use bounding volumes

® Use a spatial data structure

Bounding Volumes
® Here's the idea:

® Some shapes are harder to intersect with than
others

® Consider a box vs. a complex polygonal model

® So, for every object, find the smallest simple
object that encloses it

® Test for intersection against the simple object

® If there is one, only then do you test the original
object

Bounding Volumes

bounding
sphere

axis-aligned
bounding box

[

non-aligned
bounding box

’/} arbitrary convex region
(bounding half -spaces)

Spatial Data
Structures
® We already talked about binary space
partitioning (BSP) trees

® We said we'd come back to them

® Now we are

® Not the only option, though
® Grids

® Adaptive (quad/octrees) or non-adaptive

Bounding Volumes

® What makes a good bounding volume?
® Conservative
® No false negatives
® Tight to the object
® No false positives
® Fast to compute intersections with
® Often a tradeoff between the two

® Spheres or axis-aligned bounding boxes
(AABBs) are good places to start

Spatial Data
Structures

® The idea is that we only need to test if a
ray hits an object if the ray passes
through the region of space that the
object is in

® If aray is going left, and the object is on the
right, there is no need to test for intersection

Regular Grids

® Simplest structure
® Just divide space into a regular grid
® Say, 1-unit axis aligned cubes

® Only need to test against any objects inside
a region if the ray hits it

® Only need to test farther regions if no
intersection in nearer regions

® Can use 3D line drawing algorithms for fast
cell traversal

Regular Grids

p A
w./ <

Regular Grids

Adaptive Grids

® Several ways to do it
® We'll talk about quadtrees / octrees

® Quadtrees are 2D, octrees are 3D

Octrees

® Start out with a very coarse regular grid

® Subdivide only in areas where there is
geometry

® If there is a primitive inside a grid cell, split
that grid cell into 8 equal cells

Repeat until you've reached some
maximum split depth, or a cell only
contains a single primitive

Octree (well, really
Quadtree) example

X

Remember this
example?

® Let's see an example (in 2D, not 3D)

® Here, a line divides the plane into two half-
planes

Space BSP Tree

X X
-B-A C V®©
E | © ®

BSP Trees

® Can create a BSP tree for your scene

® Then only have to test against objects
that are on the “right” side of a split
plane

Accelerating Lighting
® The previous structures reduce ray
intersections
® Can we improve lighting, too?
® Surel!

® One way: Do a pre-pass that determines if a
light is visible from an object (or region of
space...), and cache that information

® Then only need to test against potentially
visible lights

Acceleration Review

® We're stuck looping over each pixel
® But we can:
® Test against fewer and/or simpler objects
® Bounding volumes
® Spatial data structures
® Test against fewer lights

® Do a potential visibility pre-pass

Stochastic Ray
Tracing

® Cook argues that classical ray tracing
(i.e. everything we’ve done so far) only
represents sharp phenomena

® Unrealistic sharp shadows, infinite depth of
focus, etc.

® How can we do better?

Distributed Ray
Lracing

® So what are some of the effects we can
expect this way?

® Antialiasing
® Distribute rays across each pixel
® Glossy reflections

® Distribute multiple reflection rays instead
of just one

Stochastic Ray
Tracin

® So what are some of thgeffects we can
expect this way? (cont’d)
® Soft shadows

® Distribute multiple rays to an area light
source

® Depth of field

® Distribute rays across a lens
¢ Motion blur

® Distribute rays over time

Glossy Reflections

® Shooting a single reflection ray
simulates perfect reflection

® i.e. amirror

® Many real surfaces a
reflective, but not
mirror-like

® i.e. many metals

® This is called gloss

Glossy Reflections

® To get glossy reflections, don't just
shoot one ray
® Shoot multiple rays, and perturb them

slightly
® This simulates taking the integral over a
solid angle
Mirror Glossy

Glossy Reflection
Examples

Translucency

® Translucency is sort of the dual of
glossy reflection

® Instead of distributing rays around the
reflection ray, distribute them around the

refracted ray

Transparent Translucent

Translucency
Examples

Soft Shadows

® In most graphics applications (and in
our ray tracer so far), we’'ve assumed
point light sources

® In the real world, light
have area

® This leads to soft
shadows in the real
world, which we can’t
yet simulate in our ra
tracer

Soft Shadows

® To get soft shadows, don’t just shoot one
ray

® Shoot multiple rays distributed across the
surface of the light

® Sum their contributions to find the amount of
shadow -

Hard Shadows Soft Shadows

Soft Shadow

Examp

Depth of Field

® Qur ray tracer up to this point simulates
a pinhole camera

® Real world cameras have lens
differing aperture sizes,
differing exposure times, etc. §

® We're going to focus (no pun |
intended) on depth of field

Depth of Field

® To get depth of field, generate multiple
rays for each pixel

® Distribute them across the surface of the lens

e <e

Perfect Focus Depth of Focus

10

Motion Blur

® Motion blur in the real world happens
when objects are moving while the
camera shutter is open

® Effectively, the same point on the object is
seen along multiple ra
the camera

Motion Blur

® To get motion blur, you need to distribute
your rays over time

® As an object moves, it will get hit by different
camera rays

® Moving objects get averaged with the
environment

® What happens to stationary objects?

® Additional rays can still be used for
antialiasing, depth of field effects, etc.

Motion Blur
ples

Next Time

® Leaving the world of standard ray
tracing

® Introducing radiosity

11

