
1

Now Playing:

15 Step

Radiohead

from In Rainbows

Released October 10, 2007

Texture Mapping
and

BSP Trees

Rick Skarbez, Instructor

COMP 575

October 11, 2007

Assignment 1 Back

• Mostly did very well:

• Note that the “null” scale factor (that is, the

scale factor that doesn’t change a dimension)

is 1

• So, to scale in x and y (but not z)

glScale(2.0, 3.0, 1.0)

• NOT

glScale(2.0, 3.0, 0.0)

• Doing the P-matrix problem on the board

Announcements

• Programming Assignment 2 (3D
graphics in OpenGL) is out

• Due Thursday, October 25 by 11:59pm

• Programming Assignment 3
(Rasterization) is out

• Due Thursday, November 1 by 11:59pm

• Concluded our discussion of line-
antialiasing

• Ratio method

• Presented some methods for polygon
rasterization

• Scan-line drawing

• Flood Fill

Last Time

• Discussed hidden surface removal

• Backface Culling

• Depth Culling

• Z-Buffering

• Painter’s Algorithms

Last Time

2

Today

• Discussing Binary Space Partition
(BSP) Trees

• Texture Mapping in Theory and
Practice

Polygon Drawing

• After clipping, we know that the entire
polygon is inside the viewing region

• Makes the problem easier

• Need to determine which pixels are
inside the polygon, and color those

• Find edges, and fill in between them

• Edges - Connected line segments

• How to fill?

Scan-Line Polygons

• Algorithm:

1. Mark local minima and maxima

2. Mark all distinct y values on edges

3. For each scan line:

1. Create pairs of edge pixels (going from

left to right)

2. Fill in between pairs

Scan-Line Polygon
Example

Polygon
Vertices

Maxima /
Minima

Edge
Pixels

Scan
Line Fill

Flood Fill

• Algorithm:

1. Draw all edges into some buffer

2. Choose some “seed” position inside the

area to be filled

3. As long as you can

1. “Flood out” from seed or colored pixels

• 4-Fill, 8-Fill

Flood Fill Example

• 4-fill: Edge
Pixels

Seed

Filled
Pixels

3

Backface Culling

• Where?

• Object space

• When?

• After transformation but before clipping

• What?

• If normal • toViewer < 0, discard face

• That is, if the polygon face is facing away

from the viewer, throw it out

Backface Culling

• So what does this buy us?

• Up to 50% fewer polygons to clip/rasterize

• Is this all we have to do?

• No.

• Can still have 2 (or more) front faces that

map to the same screen pixel

• Which actually gets drawn?

Depth Culling

• Can happen here (fragment processing)

• z-buffering

• Can happen before rasterization

• Painter’s algorithm

Z-Buffering

• Where?

• Fragment space

• When?

• Immediately after rasterization

• How?

• Basically, remember how far away polygons

are, and only keep the ones that are in front

Z-Buffering• Need to maintain z for all fragments

• Why we project to a volume instead of a

plane

• Maintain a separate depth buffer, the
same size and resolution of the color
buffer

• Initialize this buffer to z=-1.1 (all z is in [-1,

1])

• As each fragment comes down the
pipe, test fragment.z > depth[s][t]

• If true, the fragment is in front of whatever

was there before, so set color[s][t]=frag.color

and depth[s][t]=frag.z

Z-Buffering Example

z = -0.7

z = 0

z = 0.5

z = -1.1

z = -1.1

z = 0

z = -1.1

z = 0

z = 0.5 z = -1.1

z = -0.7

z = 0

z = 0.5

NOTE: Can draw
these shapes
in any order

4

Painter’s Algorithm

• Really a class of algorithms

• Somehow sort the objects by distance from

the viewer

• Draw objects in order from farthest to

nearest

• The entire object

• Nearer objects will “overwrite” farther ones

Painter’s Example

z = -0.7

z = 0

z = 0.5

Sort by depth:
Green rect
Red circle

Blue tri

0

z = 0

Spatial Data
Structures

• When we talked about using a painter’s
algorithm for rendering, we talked about
needing to sort the scene geometry

• The algorithm we presented is simple
and works

• However, it is only valid for a single

viewpoint

• We can do better

BSP Trees

• Based on the concept of binary space
partitioning

• A plane divides space into two half-spaces;

all objects can be classified as being on one

side or the other

• A preprocessing step builds a BSP tree
that can be used for any viewpoint

• However, assumes that the geometry does

not change

Fuchs, Kedem, & Naylor; SIGGRAPH 1980

BSP Tree Illustration

• Let’s see an example (in 2D, not 3D)

• Here, a line divides the plane into two half-

planes

Space BSP Tree

A A

X

CB C

X

BY

D

E E

Y

D

Line/Plane Definitions
• We want to define the partitioning

lines/planes in a way such that it is easy
to test which side an object is on

• Recall the implicit plane definition
f(x,y,z) = ax + by + cz + d = 0

• Implicit surface definitions have exactly

this property

• For all points on the plane, f(p) = 0

• For all points on one side, f(p) > 0

• For all points on the other side, f(p) < 0

5

The Desired Output

• A set of implicit planes that partition the
space in such a way that every object in
one subspace is entirely on one side of
every object in every other subspace

The Algorithm

• So, here’s how you do it (at a very high
level):

1. Choose a partition plane

2. Partition the set of polygons with respect to

this plane

• Now have 2 sets of polygons

3. Recurse on each of the new sets

Choosing the Plane
• There are many ways to choose

• Best depends on the application

• One way is just to choose a polygon
from the input set to define a plane

• Randomly?

• Attempt to balance the number of polys on
either side?

• In general, preferred characteristics are
a more balanced tree and/or fewer
polygon splits

Partitioning the
Polygons• Test each vertex of the poly against the

plane

• If all negative, place in negative subtree

• If all positive, place in positive subtree

• If some positive and some negative, need to

split the polygon into smaller polygons that are

entirely on one side of the plane

Why Does a BSP
Work for Any
Viewpoint?• Consider a very simple example:

f()

S1 S2

f(p) < 0 f(p) > 0

When the viewer
is here...

v

f(v) > 0, so objects with f(p) > 0
must be nearer to the viewer

So, draw region S1, then region S2

But when the
viewer is here...

v

f(v) < 0, so objects with f(p) < 0
must be nearer to the viewer

So, draw region S2, then region S1

BSP Tree Review
• Use implicit planes to carve up space

(and the geometry in it) into distinct
subspaces

• One BSP tree can be used for any

viewpoint

• Can be used to implement a painter’s
algorithm

• Or to speed up a raytracer...

• We’ll be seeing this again

• Any questions?

6

The World is a
Complicated Place

• So far, we know how to render Gouraud
shaded polygons

• Not too shabby

• Sadly, the world doesn’t cooperate by
only having simple smooth-shaded
surfaces:

• Now, maybe we could simulate these
materials/objects with simple primitives

• Thousands?

• Millions?

• ...This may not be such a good idea

• Luckily, we can take advantage of a
technique called texture mapping

The World is a
Complicated Place

Texturing Example

Before Texturing After Texturing

Texture Mapping

• Texture mapping allows us to render
surfaces with very complex appearance

• How it works:

• Store the appearance as a function or image

• Take a picture

• Map it onto a surface made up of simple

polygons

• Paste the picture on an object

Texture Mapping
• So, assume we have an image, stored

in a buffer in our code

• unsigned char img[256][256][3], for example

• How do we map that image onto a
triangle?

• HINT: Done after rasterization

• Why?

• Image → World?

• World → Image?

How to Map
• We generally map the world (that is, the

geometry) into the image

• Image is defined in (u, v) coordinate frame

• u, v ∈ [0, 1]

• Each vertex in your geometry is associated
with a texture coordinate (uv, vv)

• What to do at interior points?

• Interpolate u and v (using barycentric

coordinates)

7

Mapping Example Sampling Issues
• So we can define the mapping, and it

works fine

• As long as the size of the rendered image is

approximately the same size as the texture

source

• What if the textured polygon renders
much smaller in the final image
than the original texture?

• How about much bigger?

Mip-mapping to the
Rescue

• Mip-mapping is a technique that creates
multiple resolutions of an image

• i.e. Takes a 512x512 image and filters it to

create 256x256, 128x128, 64x64, ..., 1x1

versions of it

• Then, when you’re looking up your
texture coordinates, it uses the most
appropriate mip-map level

• Or, more likely, interpolates between the two

closest

Mip-mapping
Example

Direct
Texture
Mappin

g

Linear
Interpolatio

n

Mip-
Mappin

g

Mip-
Mapping

+
Interpolation

Assigning Texture
Coordinates

• As we’ve seen, if you have a square
texture, and are mapping it to 2
triangles forming a square, this is very
straight-forward

• This is not usually the case

• Different mappings give different effects

(0, 0)

(0.5, 1)

(1, 0) (0, 0)

(0, 1)

(1, 0) (0, 0)

(0, 1)

(1, 0)

(1, 1)

Next Time

• More mapping

• Finish up Texture Mapping

• Bump Maps

• Displacement Maps

• Discussion of programmable graphics
hardware

• Discussion of class project

