
1

Texture Mapping and 
Programmable 

Graphics Hardware

Rick Skarbez, Instructor

COMP 575

October 16, 2007

Announcements

• Programming Assignment 2 (3D 
graphics in OpenGL) is out

• Due Thursday, October 25 by 11:59pm

• Programming Assignment 3 
(Rasterization) is out

• Due Thursday, November 1 by 11:59pm

• Discussed programming assignments 2 
& 3

• Presented the concept of Binary Space 
Partition (BSP) Trees

• Described how they can be used to 

implement a painter’s algorithm

• Began our discussion of texture 
mapping

Last Time Today

• More mapping

• Finish up Texture Mapping

• Bump Maps

• Displacement Maps

• Discussion of programmable graphics hardware

• Discussion of class project

BSP Trees

• Based on the concept of binary space 
partitioning

• A plane divides space into two half-spaces; 

all objects can be classified as being on one 

side or the other

• A preprocessing step builds a BSP tree 
that can be used for any viewpoint

• However, assumes that the geometry does 

not change

Fuchs, Kedem, & Naylor; SIGGRAPH 1980

BSP Tree Illustration

• Let’s see an example (in 2D, not 3D)

• Here, a line divides the plane into two half-

planes

Space BSP Tree

A A

X

CB C

X

BY

D

E E

Y

D



2

BSP Tree Review
• Use implicit planes to carve up space 

(and the geometry in it) into distinct 
subspaces

• One BSP tree can be used for any

viewpoint

• Can be used to implement a painter’s 
algorithm

• Or to speed up a raytracer... 

• We’ll be seeing this again

• Any questions?

Texturing Example

Before Texturing After Texturing

Texture Mapping

• Texture mapping allows us to render 
surfaces with very complex appearance

• How it works:

• Store the appearance as a function or image

• Take a picture

• Map it onto a surface made up of simple 

polygons

• Paste the picture on an object

Mapping Example

Sampling Issues
• So we can define the mapping, and it 

works fine

• As long as the size of the rendered image is 

approximately the same size as the texture 

source

• What if the textured polygon renders 
much smaller in the final image 
than the original texture?

• How about much bigger?

Mip-mapping to the 
Rescue

• Mip-mapping is a technique that creates 
multiple resolutions of an image

• i.e. Takes a 512x512 image and filters it to 

create 256x256, 128x128, 64x64, ..., 1x1 

versions of it

• Then, when you’re looking up your 
texture coordinates, it uses the most 
appropriate mip-map level

• Or, more likely, interpolates between the two 

closest



3

Mip-mapping 
Example

Original 

Texture

Lower Resolution 

Versions

Original Images from David Luebke @ 

UVa

Assigning Texture 
Coordinates

• We generally want an even sharing of 
texels (pixels in the texture) across all 
triangles

• But what about this case?

• Want to texture the teapot:

Do we want this? Or this?

Planar Mapping

• Just use the texture to fill all of space

• Same color for all z-values

• (u, v) = (x, y)

Cylindrical Mapping
• “Wrap” the texture around your object

• Like a coffee can

• Same color for all pixels with the same 
angle

• u = θ / 2π
v = y

Spherical Mapping
• “Wrap” the texture around your object

• Like a globe

• Same color for all pixels with the same 
angle

• u = ϕ / 2π
v = (π - θ) / π

Spherical Mapping 
Example



4

Cube Mapping• Not quite the same as the others

• Uses multiple textures (6, to be specific)

• Maps each texture to one face of a 
cube surrounding the object to be 
textured

• Then applies a planar mapping to each face

Environment Maps
• Cube mapping is commonly used to 

implement environment maps

• This allows us to “hack”
reflection/refraction

• Render the scene from the center of the cube 

in each face direction

• Store each of these results into a texture

• Then render the scene from the actual 

viewpoint, applying the environment textures

Environment 
Mapping Example

Solid Textures

• We’ve talked a lot about 2D (image) 
textures

• Essentially taking a picture and pasting it on 

a surface

• No reason a texture HAS to be 2D, 
though

• Can have 1D textures (not that interesting)

• Can have 3D textures

3D Textures
• Actually, very easy to render with

• Much simpler than 2D textures

• However, much more difficult to 
generate

Relevant OpenGL 
Functions

•glTexImage2D

•glEnable(GL_TEXTURE_2D)

•glTexParameter

•glBindTexture

•gluBuild2DMipmaps

•glTexEnv

•glHint(GL_PERSPECTIVE_CORRECTION, 
GL_NICEST)

•glTexCoord2df(s,t)



5

Texture Mapping 
Review• Texture mapping is a relatively simple 

way to add a lot of visual complexity to 
a scene

• Without increasing its geometric complexity

• Use mip-mapping to alleviate sampling 
problems

• There are infinitely many possible 
mappings

• Usually want to use the most “similar” one

• Texturing a plane? Use planar

• Texturing a sphere? Use spherical

Other Mapping 
Techniques

• So, now we know some things about 
texture mapping

• Allows us to change the color of simple 

geometry

• But color isn’t the only property a point 
can have

• Normals

• Bump mapping

• Location

• Displacement Mapping

Bump Mapping

• How do we get this?

• The underlying model is just a sphere

Bump Mapping

• Requires per-pixel (Phong) shading

• Just interpolating from the vertex 
normals gives a smooth-looking surface

• Bump mapping uses a “texture” to 
define how much to perturb the normal 
at that point

• Results in a “bumpy” surface

Bump Mapping

Rendered
Sphere

Bump Map Bump Mapped
Sphere• At each point on the surface:

• Do a look-up into the bump map “texture”

• Perturb the normal slightly based on the 
“color”

• Note that “colors” are actually just 3- or 4-

vectors

Note: Silhouette

doesn’t change

Images from Wikipedia

More Bump Mapping 
Examples



6

Displacement 
Mapping

• Bump mapping adds realism, but it only 
changes the appearance of the object

• We can do one better, and actually 
change the geometry of the object

• This is displacement mapping

Displacement 
Mapping

• Displacement mapping shifts all points 
on the surface in or out along their 
normal vectors

• Assuming a displacement texture d,

p’ = p + d(p) * n

• Note that this actually changes the 
vertices, so it needs to happen in 
geometry processing

Displacement 
Mapping

Bump Mapping Displacement Mapping

What does this buy us over bump mapping?

Movie Break!
Red’s Dream

Pixar, 1987

Available online:

http://www.metacafe.com/watch/47464/pixar_reds_dream/

Motivating 
Programmable 

Graphics Hardware• Note that neither of these techniques 
can be implemented using the fixed-
function pipeline that we’ve talked about 
so far

• Bump mapping needs to delay lighting 

calculations until fragment processing

• Displacement mapping needs to be able to 

do a lookup and edit vertices in the 

geometry step

Programmable 
Graphics Hardware

• Most recent graphics cards are 
programmable

• Not quite like a CPU for various reasons

• On most hardware:

• Replace the vertex processing stage with a 

programmable vertex shader

• Replace the fragment processing stage with a 

programmable fragment (or pixel) shader

• Some things are still fixed-function, like 

rasterization



7

Shader Programs

• Vertex shader programs

• Run on each vertex, independently

• Output vertex properties (coordinates, 

texture coordinates, normal, color, etc.)

• Fragment shader programs

• Run on each fragment, independently

• Output the color of the fragment

• Can also kill a fragment

Programming 
Shaders

• Still a somewhat painful process

• Somewhere between C and assembly in 

terms of difficulty

• Cg is a bit lower level

• GLSL is more like C

• Thankfully, most shader programs are 
short

Shading Languages

Cg GLSL

Cg

• I can talk a little bit about Cg

• It’s actually both a language and a 
runtime environment

• Compiles your code down to machine 

language for your specific hardware

• Can compile on the fly or ahead of time

• Why choose one or the other?

Cg Vertex Program 
Example

Cg Fragment 
Program Example



8

Programmable 
Hardware Review

• Most modern graphics hardware is 
programmable

• Can write your own vertex processing 
and fragment processing

• There are several languages for shader 
programming, including Cg and GLSL

• Any questions?

Schedule for the Rest 
of the Semester

• Programming Assignment 2 due 10/25

• Programming Assignment 3 due 11/1

• These already out

• Assignment 3 due 11/8

• Final Project Proposal due 11/8

Schedule for the Rest 
of the Semester

• Programming Assignment 4 due 
approx. 11/20

• Raytracing

• Final Exam -- Friday 12/14 @ 4:00pm

• Final Project due approx. 12/6

• Can be flexible with this

Final Project
• Pretty much open-ended

• Can work on whatever you think is 

interesting

• Should be roughly 1.5-2.5x a regular 

assignment

• Proposal due 11/8

• You must meet with me before then to 

discuss your project

• The “proposal” is a short (< 1 page) 

document that summarizes your project

Final Project “Topics”
• Make a game

• Something more graphically advanced than 

assignments 1 or 2

• Implement some advanced OpenGL 
techniques

• Shadows, environment mapping, etc.

• Implement something interesting with 
programmable shading

• Displacement mapping, toon shading, etc.

Final Project “Topics”

• Add some advanced features to the 
raytracer

• Depth-of-field, soft shadows, caustics, etc.

• These will become clear later

• Implement a full rasterizer

• Extend your rasterizer from assignment 3 to 

do lighting, texture mapping, etc.



9

Final Project “Topics”
• Implement some advanced UI 

• Use a webcam, joystick, Xbox controller, 

etc. to do something interesting

• Implement some functional/analytic 
graphics

• Bezier curves, splines, etc.

• Fractals

• Implement some image processing 
tools

• i.e. Photoshop

Final Project “Topics”

• Generate some sufficiently advanced 
animation sequence

• Implement some high-dynamic range 
tone-mapping techniques

• If any of this (or anything else) interests 
you, and we haven’t yet covered it in 
class, contact me and I’ll point you to 
some info

Next Time

• Enjoy your fall break!

• When we come back, it’s on to 

raytracing


