Vertex Processing:
Clipping

:4!
™
i[j

,g
@
|

S

Rick Skarbez, Instructor
COMP 575
October 2, 2007

Some slides and images courtesy Jeremy Wendt (2005)

Announcements

® Assignment 2 is out today

® Due next Tuesday by the end of class

Last Time

® Reviewed the OpenGL pipeline

® Discussed classical viewing and
presented a taxonomy of different views

® Talked about how projections and
viewport transforms are used in
OpenGL

Today

® Discuss clipping
® Points
® Lines

® Polygons

Rendering Pipeline

® OpenGL rendering works like an
assembly line

® Each stage of the pipeline performs a
distinct function on the data flowing by

® Each stage is applied to every vertex to
determine its contribution to output pixels

G t P
eometry . ___Fkragmen .
(Vertices) - - ixels

Vertex Processing

Vert_ices

e

L

Determining What'’s
in the Viewport

® Not all primitives map to inside the

viewport

® Some are entirely outside
® Need to cull

® Some are partially inside and partially
outside
® Need to clip

® There must be NO DIFFERENCE to the
final rendered image

Why Clip?

® Rasterization is very expensive

® Approximately linear with number of
fragments created

® Math and logic per pixel

® |f we only rasterize what is actually
viewable, we can save a lot

® A few operations now can save many later

Clipping Primitives

® Different primitives can be handled in
different ways

® Points
® Lines
® Polygons

Point Clipping

® This one is easy

® How to determine if a point (x, y, z) is in
the viewing volume (Xnear, Ynear, Znear),
(Xfar, Yrar, Zfar)?
® Who wants to tell me how?

® if ((X > Xiar Il X < Xnear) ||
(y > Yfar 1l y< Ynear) [l
(Z >z ll z < Znear))
cull the point
else
keep it

Line Clipping

® What happens when a line passes out
of the viewing volume/plane?

® Part is visible, part is not
® Need to find the entry/exit points, and
shorten the line

® The shortened line is what gets passed to
rasterization

Line Clipping
* Lets do 2@ Mple
(x1, y1)
CNX', y) ?7?2?
® What do we know? Al D
® Similar triangles :

®* A/B=C/D —_— X2, Y2)
® B=(x2-x1) B

® A=(y2-y1)

b C=(y1'Ymax)
= D-BC/A
= (x,y) = (xi - D,

AL

® Clip a line against 1
edge of the viewport

Line Clipping
® The other cases are handled similarly
® The algorithm extends easily to 3D

® The problem?

® Too expensive! (these numbers are for 2D)
® 3 floating point subtracts
® 2 floating point multiplies
® 1 floating point divide
® 4 times! (once for each edge)
® We need to do better

Cohen-Sutherland
Line Clipping

® Split plane into 9 1001 | 1000 1010
regions N B

® Assign each a 4-bit ta
'9 ttag 0001 I

0010

atag 0101 | 0100|0100

® (above, below, right, left)

® Assign each endpoint

Cohen-Sutherland
® AIgorithm:Line Cl|pp|ng

1. if (tagi == tagz == 0000) |
accept the line 1001

2. if ((tagt & tagz) !=0) =y
reject the line |

0001

0101 I 0100 |0110

w

. Clip the line against an
edge (where both bits R
are nonzero)

4. Assign the new vertex a
4-bit value

5. Return to 1

N.B.: & is the bitwise
AND operator

1000 1010

0010

Cohen-Sutherland

Example
® What are the vertex codes for these
lines?
H

/ /
/ A/c//

Cohen-Sutherland
Line Clipping

® Lets us eliminate many edge clips early
® Extends easily to 3D

® 27 regions

® 6 bits
® Similar triangles still works in 3D

® Just have to do it for 2 sets of similar
triangles

Liang-Barsky
* ConsicJErIt eepaanle!lQ:Qelﬂi%n of a

line:

® X =Xt + UAX

® y=yi+uay

® AX=(x2-X1), Ay = (y2-y1),0< (U, v) €1

® What if we could find the range for u and v
in which both x and y are inside the
viewport?

Liang-Barsky
Line Clipping

® Mathematically, this means
® Xmin £ X1 + UAX < Xmax
® Ymin S Y1 + UAY < Ymax

® Rearranging, we get

® _UAX < (X1 - Xmin)
® UAX £ (Xmax - X1)
® -VAy < (Y1 - Ymin)
® VAy < (ymax - y1)
® Ingeneral: u* pk< gk

Liang-Barsky
Line Clipping

® Cases:
1. pk=0
® Line is parallel to boundaries
® If for the same k, gk < 0, reject
® Else, accept
2. k<0
¢ Line starts outside this boundary
® rk=0k/ Pk
* uy = max(0, r, u1)

Liang-Barsky
Line Clipping

® Cases: (cont'd)
3. pk>0
¢ Line starts outside this boundary
® rk=0k/ Pk
* uz2=min(1, r, U2)
4. If u1 > ug, the line is completely outside

Liang-Barsky
Line Clipping

® Also extends to 3D
® Just add equations for z = z1 + UAz
= > more p’s and g’s

Liang-Barsky
Line Clipping
® In most cases, Liang-Barsky is slightly
more efficient

® According to the Hearn-Baker textbook
® Avoids multiple shortenings of line segments

® However, Cohen-Sutherland is much
easier to understand (I think)

® Animportant issue if you're actually
implementing

Nicholl-Lee-Nicholl
Line Clipping

® This is a theoretically optimal clipping
algorithm (at least in 2D)

® However, it only works well in 2D
® More complicated than the others

® Just do an overview here

\ T,
Case 3, TR Pre= LR
1 N AN
\ ~ N

Nicholl-Lee-Nicholl
® Partition thL-(Ua@ Cllpplng Case1

based on the first point

(p1):)
® Case 1: p1 inside region R

® Case 2: p1 across edge L.

p(‘é_sg 3: p1 across corner
R Case 2, ‘T -

~-<.

VLBY TB . s LB
\ N

\ ~

Nicholl-Lee-Nicholl
Line Clippin

® Can use symmetry to handle all other
cases

® “Algorithm” (really just a sketch):

® Find slopes of the line and the 4 region
bounding lines

® Determine what region pz is in
® If not in a labeled region, discard

® If in a labeled region, clip against the
indicated sides

A Note on
® Why arﬁ ggéﬁltmgqnﬁggIQers of

clipping?
® Why do you learn multiple sorts?

® Fasltest can be harder to understand /
implement

® Best! ¥0r thegeneral case may not be for the
Speciic cas

® Bubble sort is really great on mostly sorted
lists
® “History repeats itself’

® You may need to use a similar algorithm
for sométhing else; grab the closest match

Polygon
Inside/Outside

® Polygons have a distinct inside and
outside

® How do you tell, just from a list of
vertices/edges?

® Even/odd

® Winding number

Forygon
Inside/Outside:

® Count gg‘!@ﬂ.[g Odd

® |f the number is even, that area is outside

® |f odd, it is inside

2 2
0
4
2
2

Polygon
Inside/Outside:
* eEWirckmnen Nstordaer

direction by walking around the edges
in some pre-defined order

® OpenGL walks counter-clockwise

® Count right->left edge crossings and
left->right edge crossings

® If equal, the point is outside

Polygon Clipping

® Polygons are just composed of lines.
Why do we need to treat them

differently?
NOTE:
® Need to keep track of what is inside
Lines Polygons/

y—vi, TP-"D

Polygon Clipping

® Many tricky bits
® Maintaining inside/outside
® Introduces variable number of vertices

® Need to handle screen corners correctly

SUTNerand-
Hodgeman Polygon

® Simplify vi Ti) (ih
® Clip the enct-l"rje pgiéon vgn one edge
® Clip the output polygon against the next
edge

® Repeat for all edges

® Extends easily to 3D (6 edges instead
of 4)

® Can create intermediate vertices that
get thrown out later

Suterana-
Hodgeman Polygon
® Example 1C|Ipp|ng

g = -

gl |

1

1

1

1

1

In->In In -> Out Out -> Out

Save ending vertex Save new clip vertex Save nothing

Out -> In
Save new clip vertex
and ending vertex

Sutherand-
Hodgeman

. Lalygon Clipping

Clp = Clp Clip
Right Bottom Top

Weiler-Atherton
Polygon Clipping

® When using Sutherland-Hodgeman,
concavities can end up linked

Remember :'
this? " -_

® A different clipping algorithm, the
Weiler-Atherton algorithm, creates
separate polygons

Weiler-Atherton
Polygon Clipping

® Example:
=1 11— =51
|
1
1
1 1
1 1
- . Follow clip edge until
Out > In In->In In -> Out (a) new crossing found

Add clip vertex
Add end vertex

Add clip vertex

Add end vertex Cache old direction

(b) reach vertex already
added

Weiler-Atherton
Polygon Clipping

® Example (cont'd):

Continue from
cached vertex and
direction

Out-> In In -> Out
Add clip vertex Add clip vertex

Add end vertex Cache old direction added

Follow clip edge until
(a) new crossing found
(b) reach vertex already

Weiler-Atherton
Polygon Clipping

® Example (cont'd):

[~

Final Result:
i 2 unconnected
casr?:(;l?/:i;;ognd Nothing added
Finished polygons

direction

Weiler-Atherton
Polygon Clipping

® Difficulties:

What if the polygon recrosses
an edge?

® How big should your cache be?

polygons
® Not 1in, 1 out

[—— ="

Geometry step must be able to create new

Done with Clipping
® Point Clipping (really just culling)

® Easy, just do inequalities
® Line Clipping

® Cohen-Sutherland

® Liang-Barsky

¢ Nicholl-Lee-Nicholl

Any Questionsj

® Polygon Clipping
® Sutherland-Hodgeman
® _Weiler-Atherton

Next Time

® Moving on down the pipeline
® Rasterization

® Line drawing

