
1

Now Playing:

Quicksand Under Carpet

New Radiant Storm King

from Leftover Blues: 1991-2003

Released 2004

Movie:
Geri’s Game

Pixar, 1997

Academny Award Winner, Best Short Film

Ray Casting 2

Rick Skarbez, Instructor

COMP 575

October 30, 2007

Announcements

• Programming Assignment 3
(Rasterization) is out

• Due Saturday, November 3 by 11:59pm

• If you do hand in by Thursday midnight,

+10 bonus points

• Remember that you need to talk to me
about your final project

• Send an email to schedule a meeting, or

come by office hours

Programming 2
Recap

• Spherical Coordinates

• Demo on board

• Per-Vertex Normals

• Demo on board

Programming 3 Info
• Test data for part 1 (Lines) is available

• As C/C++ array, or just as a text file

• In both cases, each line has 7 parameters

• (x1, y1, x2, y2, R, G, B)

• This data set anticipates a 512x512

window

• To read the array (line.data), use something

like the following code:

2

Programming 3 Info

• For parts 2 and 3, the program should
respond to user input

• Can do this several ways

• Accept coordinates as command line input

• Prompt for user input while running

• Allow user to click and choose points (like

polygon creation in assignment 1

Programming 3 Info

• For part 3 (line clipping), should display
a window bigger than the clip window

• i.e.

Viewport Clip against this

Last Time

• Derived the math for ray casting

• Intersecting rays and objects

• Generating rays

• aka generating a camera matrix

• Coloring pixels

• Phong shading for each ray

Today

• Extending some of the ideas from last
time

• Briefly discussing the software
architecture of a raycaster

• Optional course feedback survey

• for each pixel / subpixel
shoot a ray into the scene
find nearest object the ray intersects
if surface is (nonreflecting OR light)

color the pixel
else

calculate new ray direction
recurse

Ray-Tracing
Algorithm

• for each pixel / subpixel
shoot a ray into the scene
find nearest object the ray intersects
if surface is (nonreflecting OR light)

color the pixel
else

calculate new ray direction
recurse

Ray-Tracing
Algorithm

Ray Casting

3

Generating an Image

1. Generate the rays from the eye

• One (or more) for each pixel

2. Figure out if those rays “see” anything

• Compute ray-object intersections

3. Determine the color seen by the ray

• Compute object-light interactions

Computing Ray-
Object Intersections
• If a ray intersects an object, want to

know the value of t where the
intersection occurs:

• t < 0: Intersection is behing the ray, ignore it

• t = 0: Undefined

• t > 0: Good intersection

• If there are multiple intersections, we
want the one with the smallest t

• This will be the closest surface

r(t) = p + td

Generating Rays

• Now, given a ray, we know how to test
if it intersects an object

• But we don’t yet know how to generate the

rays

• We talked a bit about lenses last time,
but an ideal pinhole camera is still the
simplest model

• So let’s assume that

Generating Rays
• Recall the pinhole camera model

• Every point p in the image is imaged

through the center of projection C onto the

image plane

• Note that this means every point in the

scene maps to a ray, originating at C

• That is, r(t) = C + tV

• C is the same for every ray, so just

need to compute new Vs

Generating Rays in
2D

Eye

Once we know this ray,

the rest are easy

This is referred to
as

a “Pencil of Rays”

Generating Rays in
3D

Eye

+x

+y

+z

Dv =

Du =

V0

Dv

Du

V0 =

4

Generating Rays in
3D

Du = Dv =

V0 =

Vi,j = [Du Dv V0]

A Basic 3D Camera
Matrix

• Assumes:

• Camera on the z-axis

• Looking down -z

• Ideal pinhole model

• Fixed focal length (focal length = 1)

Determining Color

• Since we’re not yet talking about tracing
rays

• Really just talking about OpenGL-style

lighting and shading

• Since surfaces are implicitly defined, can

solve Phong lighting equation at every

intersection

Doing it Better

• We now know how to generate a simple
raycasted image

• However, we’ve assumed only a very
simple/limited camera definition

• Now we’re going to extend our notion of
cameras

Camera Intrinsics
and Extrinsics

• We normally divide camera properties
into two classes: intrinsic and
extrinsic

• Intrinsic properties are those

belonging to the camera itself

• Intrinsic properties are inside

the camera

• Extrinsic properties define how the camera

is situated in the world

Camera Intrinsics

• These describe the behavior of the
camera

• Focal length

• Aspect ratio

• Resolution

• Aperture

• Shutter speed

• etc.

5

Camera Extrinsics

• These locate and orient the
camera in the world

• Camera position

• Camera orientation

Camera Extrinsics

• These are easy to describe

• Camera position

• 3D point

• Camera orientation

• 2 3D vectors

• LookAt vector

• Up vector

Camera Orientation

• So why do we need two vectors after
all?

• Why not just a look vector?

• LookAt vector describes which way the
camera is pointed

• But not where the top of the film is

• That’s what the up vector gives us

Building a Frustum

• Let’s take a step back:

• What are we trying to do?

• Want to build a camera matrix that will

generate our rays

Building a Frustum

• That’s what we want

• Here’s what we have to work with:

• Field of view

• Resolution (vertical & horizontal)

• Gets us aspect ratio

• Eye point & center point

• Gets us look vector

• Up vector

θ

vRes, hRes

eye, center

Up

Building a Frustum

• So, we have:

• θ, hRes, vRes,

eye, center, Up

• Want to use these to compute
Du, Dv, V0

• These three vectors define the image plane

Ey

e

V0

Dv

Du

6

The “Right” Vector

• Need a vector that points in the “Du

direction”

• Any ideas?

• Cross the look vector and the up vector

• Du = LookAt x Up

+x

+y

+z

LookAt

Up

Du

Note that Note that LookAtLookAt and and UpUp

should be unit vectorsshould be unit vectors

Finding Du

• So now we have a vector that points in
the correct direction

• But we originally said that Du was one pixel

width long

• If LookAt and Up are unit vectors, Du now

has length 1

• Too long

• We’ll need to rescale our vectors

The “Down” Vector

• We also need a vector in the Dv

direction

• That is, we need a vector perpendicular to

Du and LookAt

• Could we just use -Up?

• Not necessarily

• We have not required Up to be

perpendicular to LookAt

Finding Dv

• So how to we find a vector
perpendicular to two other vectors

• Cross product

• Dv = LookAt x Du

+x

+y

+z

LookAt

Du

Dv

Note that if LookAt and Up
are both unit vectors, then

Du and Dv are also unit

vectors

Finding V0

• So now we have 2 out of our 3 vectors

• Need to find the “origin” vector

Finding V0

Eye

+x

+y

+z

V0

Dv

Du

✓
✓

?

LookAt

-Du
hRes

2
-Dv

vRes
2

1

-Du
hRes

2

-Dv
vRes

2

1

7

Focal Length

• Remember this equation?

• We want to know how far along the
LookAt vector the image plane lies

• Before, we assumed it was 1, so the

distance from the center of the image to the

left edge was just tan (θ/2)

• Now it is hRes/2

Distance to film
Focal Length

Distance to scene

Complete Frustum
SpecificationGiven Points:

Given Unit
Vector:

Given FOV

Angle:
Given

Dimensions:
NOTE:

Normalize

Du and Dv!

Du = LookAt x Up
Dv = LookAt x Du

eye, center

θ

vRes, hRes

Up LookAt =
||center - eye||

center - eye

Raycaster System
Overview

For Each
Pixel

Camera Ray

Generates

Linked List of Objects

Sphere

Plane

Etc.

App Camera
Matrix

Test For
Closest

Sphere

Closest Object

Linked List of Materials

Material #1

Material #2

Linked List of Lights

Ambient #1

Point #1

Point #2

Shade()

Material #2
Shade()

Surface Material

Illuminated
By

Pixel Color

Next Time

• Figuring out what raycasting/raytracing
really buys us over OpenGL

• Shadows

• Reflection

• Refraction

• i.e. Real Ray Tracing

Course

Feedback

Survey

