
1

Now Playing:

The Loneliness of a Middle Distance Runner

Belle & Sebastian

from Sing Jonathan David EP
Released June 18, 2001

Rasterization:
Line Drawing

Rick Skarbez, Instructor

COMP 575

October 4, 2007
Some slides and images courtesy Jeremy Wendt (2005)

and Eric Bennett (2006)

Announcements

• Assignment 2 is out

• Due next Tuesday by the end of class

• Discussed clipping

• Points

• Lines

• Polygons

• Introduced Assignment 2

Last Time

Today

• Introduce rasterization

• Talk about some line drawing
algorithms

• Discuss line anti-aliasing

Rendering Pipeline

• OpenGL rendering works like an
assembly line

• Each stage of the pipeline performs a

distinct function on the data flowing by

• Each stage is applied to every vertex to

determine its contribution to output pixels

Geometry

(Vertices)

Vertex

Processing
Rasterizer

Fragment

Processing
Pixels

2

Rasterization

• In the rasterization step, geometry in
device coordinates is converted into
fragments in screen coordinates

• After this step, there are no longer any
“polygons”

Rasterization

• All geometry that makes it to
rasterization is within the normalized
viewing region

• All the rasterizer cares about is (x, y)

• z is only used for z-buffering later on

• Need to convert continuous (floating
point) geometry to discrete (integer)
pixels

Mapping Continuous
to Discrete

• Note that there isn’t only one “right” way
to do this

Line Drawing

• A classic part of the computer graphics
curriculum

• Input:

• Line segment definition

• (x1, y1), (x2, y2)

• Output:

• List of pixels

(x1, y1)

(x2, y2)

Line Representation

• We usually think about lines in slope-
intercept form:

• y = mx + b

• There are some problems with this

Problems with Slope-
Intercept Form

• We have the wrong variables

• (x0, y0), (x1, y1), not (m, b)

• m is the slope of the line

• m = (y1 - y0) / (x1 - x0)

• What happens if the line is vertical?

• m = ∞

3

Line Algorithm #1:
Brute Force

• Test every pixel:

Line Algorithm #1:
Brute Force

function DrawLine(LineColor, x0, y0, x1, y1)

float m = (y1 -y0) / (x1 -x0);

float b = -x0 * m + y0;

ForEach y = 0:ImageHeight-1

{

ForEach x = 0:ImageWidth-1

{

if (y == round(m*x + b))

if((x>=x0)&&(x<=x1))

Output[x,y] = LineColor;

}

}

Brute Force:
Pros and Cons

• Pros:

• Very simple to implement

• Cons:

• Very slow

• Need to traverse every screen pixel for

every line

• Can’t handle vertical lines properly

• Requires floating point ops, including

round()

Line Algorithm #2:
Line Traversal

Line Algorithm #2:
Line Traversal

function DrawLine(LineColor, x0, y0, x1, y1)

if(x0>x1) flip ((x0,y0), (x1, y1));

float m = (y1 -y0) / (x1 -x0);

float b = -x0 * m + y0;

ForEach x = x0:x1

{

y = round(m*x + b);

Output[x,y] = LineColor;

}

Line Traversal
Problem

4

Line Algorithm #2a:
Line Traversal++

• Check m right away

• If |m| > 1, need to step in y instead of x

• Even better, check whether |x1 - x0| or
|y1 - y0| is bigger

• Fixes the vertical line problem, too

Line Algorithm #2a:
Line Traversal++

Line Traversal++:
Pros and Cons

• Pros:

• Still quite simple to implement

• Much better performance

• O(N) vs. O(N2)

• Can be pipelined

• Cons:

• Still needs floating point round

Line Algorithm #3:
Incremental Line

Traversalfunction DrawLine(LineColor, x0, y0, x1, y1)

if(x0>x1) flip ((x0,y0), (x1, y1));

float m = (y1 -y0) / (x1 -x0);

float b = -x0 * m + y0;

float y = y0;

for (x=x0; x<=x1; x++)

{

Output[x, round(y)] = LineColor;

y = y + m;

}

Note that we no longer need ‘b’

• Pros:

• Moderate performance

• Only max(|x1 - x0|, |y1 - y0|) iterations

• Handles vertical lines

• Cons:

• Still needs floating point round

• No longer able to easily pipeline

Incremental Line
Traversal:

Pros and Cons

Line Algorithm #4:
Y-Crossing Detection

if(x0>x1) flip ((x0,y0), (x1, y1));

float m = (y1 -y0) / (x1 -x0);

int y = y0;

float error = 0.0;

if (y1 > y0)

yStep = 1;

else

yStep = -1;

for (x=x0; x<=x1; x++)

{

Output[x,y] = LineColor;

error = error + fabs(m);

if(error > .5)

{

y = y + yStep;

error = error -1.0;

}

}

5

Y-Crossing
Detection:

Pros and Cons• Pros:

• Pretty good performance

• 2 fp adds, 1 fp sub, 1 compare in loop

• No more rounding

• Cons:

• Still floating point

• Hard to pipeline

• Needs special case for |m| > 1

The Need for Speed

• How can we do even better?

• Need to get rid of floating point ops

The Need for Speed

• Still have floating point ‘m’

• Still using floating point error

• Comparing to 0.5

float m = (y1 -y0) / (x1 -x0);

...

for (x=x0; x<=x1; x++)

{

Output[x,y] = LineColor;

error = error + fabs(m);

if(error > .5)

{

y = y + yStep;

error = error -1.0;

}

}

Changes from #4

Before After Finally...

m

Test
Value

Subtracte
d

Value

Line Algorithm #5:
Bresenham’s

Algorithmif(x0>x1) flip ((x0,y0), (x1, y1));

int y = y0;

int error = 0;

if (y1 > y0)

yStep = 1;

else

yStep = -1;

for (x=x0; x<=x1; x++)

{

Output[x,y] = LineColor;

error = error + abs(2 * (y1 -y0));

if(error > (x1 -x0))

{

y = y + yStep;

error = error -(2 * (x1 -x0));

}

}

• So how do we do it?

• Algorithm #4 stored the offset from the pixel

center

• Bresenham’s only stores a decision

parameter:

If > 0, go up, else, go across

Line Algorithm #5:
Bresenham’s

Algorithm

6

Bresenham’s
Algorithm:

Pros and Cons
• Pros:

• Great performance

• Only integer arithmetic

• Cons:

• Cannot be easily pipelined

• Still needs special case for |m| > 1

Line Drawing
Summary• Talked about several line drawing

algorithms

• All produce the same output

• Bresenham’s algorithm is fastest in most

cases

• I would suggest knowing how these
work:

• #2a: Line Traversal

• #5: Bresenham’s

• There are more that I did not discuss

Movie Break
Chaos Theory

Conspiracy Group, Assembly 2006 / SIGGRAPH

2007

Available online:

http://xplsv.tv/movie.php?id=1942

How Do They Look?

• So now we know how to draw lines

• But they don’t look very good:

• Why not?

• Aliasing

Better Looking Lines
• There are ways to make lines look

better:

• Hacky: Just draw wider lines

• Better: Anti-aliasing

• NOTE: This isn’t really part of the
rasterizer

• Just a good place to talk about it

Quick Hack:
Increase Line Width
• One quick fix may be to add nearby

pixels:

• Say, add the pixels above and below the

correct y value

• Makes lines look a little bit better

• Does not increase computational
complexity

7

Antialiasing
Antialiasing #1:
Supersampling

• One technique that can be used for
antialiasing is supersampling

• Drawing at a higher resolution than will

actually be used for the final output

Antialiasing #1:
Supersampling

• Technique:

1. Create an image 2x (or 4x, or 8x) bigger

than the real image

2. Scale the line endpoints accordingly

3. Draw the line as before

• No change to line drawing algorithm

4. Average each 2x2 (or 4x4, or 8x8) block into

a single pixel

Antialiasing #1:
Supersampling

No
antialiasing

2x2
Supersampled

Downsampled to
original size

1/42/41/4

1/42/4

Supersampling
• So why is this a good idea?

• Processing at a higher resolution produces

more accurate data

• Less aliasing

• However, it produces high frequency
data that cannot be represented at the
lower resolution

• Need to filter

• Note: This usually makes lines appear
fainter

Filtering Basics

• Filtering is, basically, removing some
components from a signal

• i.e. low frequencies (high-pass filter)

• We want to remove high frequencies

• That is, we want a low-pass filter

• Since the high frequencies represent
fine/sharp details, low-pass filtering is
called smoothing or blurring

8

Low-Pass Filtering
• Want to smooth changes between

neighboring pixels

• Many ways to do it

• 2 Examples:

• Tent: Fast, but not great

• Gaussian: Slow, but very good

Filtering
• Not going to go into any more details

right now

• We’ll talk about it more in the second
half of the semester when we talk about
real cameras

• For now, just accept that doing a better
job filtering makes your antialiasing
better

Resizing a high-
resolution image

Incorrect

Gaussian
(Correct)

Next Time

• Finish up anti-aliasing

• Ratio method

• Continuing with rasterization

• Shape and polygon drawing

• Assignment 2 due

