Rasterization:
Line Drawing

)

|

| iy
|

e

S

o~
ot

Rick Skarbez, Instructor
COMP 575
October 4, 2007
Some slides and images courtesy Jeremy Wendt (2005)
and Eric Bennett (2006)

Announcements

® Assignment 2 is out

® Due next Tuesday by the end of class

Last Time

® Discussed clipping
® Points
® Lines
® Polygons
® Introduced Assignment 2

Today

® |ntroduce rasterization

® Talk about some line drawing
algorithms

® Discuss line anti-aliasing

Rendering Pipeline

® OpenGL rendering works like an
assembly line

® Each stage of the pipeline performs a
distinct function on the data flowing by

® Each stage is applied to every vertex to
determine its contribution to output pixels

G t P
eometry . __Fragmen .
(Vertices) - - ixels

Rasterization

® In the rasterization step, geometry in
device coordinates is converted into
fragments in screen coordinates

® After this step, there are no longer any
“polygons”

Rasterization

® All geometry that makes it to
rasterization is within the normalized
viewing region

® All the rasterizer cares about is (x, y)
® zis only used for z-buffering later on

® Need to convert continuous (floating
point) geometry to discrete (integer)
pixels

Mapping Continuous
to Discrete

® Note that there isn’t only one “right” way
to do this

-

Line Drawing
® A classic part of the computer graphics
curriculum (x2, 2)
® Input:

® Line segment definition

[]
(X1, Y1), (X2, y2) (X, y1) o0
® Qutput: @@
® List of pixels 0

Line Representation

® We usually think about lines in slope-
intercept form:

® y=mx+b

® There are some problems with this

Problems with Slope-
Intercept Form

® We have the wrong variables
® (X0, Yo), (X1, y1), not (m, b)
® mis the slope of the line
® m=(y1-yo)/ (X1 - o)
® What happens if the line is vertical?

® M-

Line Algorithm #1:
Brute Force

® Test every pixel:
e

SEee e

Line Algorithm #1:
Brute Force

function Drawline(lineColar, x0, y0, x1, y1)

float m = (y1 - y0) / (x1 - x0);
float b =-x0 * m + y0;

[ForEach y = 0:ImageHeight-1
{
[ForEach x = 0:Image Width-1
{
If (y ==round(m*x + b))
If((x>=x0) && (x<=x1))
Output[x,y] = LineCalar;

Brute Force:
Pros and Cons

® Pros:

® Very simple to implement
® Cons:

® Very slow

® Need to traverse every screen pixel for
every line

® Can't handle vertical lines properly

® Requires floating point ops, including
round()

Line Algorithm #2:
Line Traversal

Line Algorithm #2:
Line Traversal

function Drawline(lLineColar, x0, y0, x1, y1)
if(x0>x1) flip (x0,y0), (x1, y1));

float m = (y1 - y0) / (x1 - x0);
float b =-x0 * m + y0;

ForEach x = x0:x1
{
ly =round(m*x + b);

Output[x,y] = LineColar;

}

Line Traversal
Problem

3

Line Algorithm #2a:
Line Traversal++

® Check m right away
® If |m| > 1, need to step in y instead of x

® Even better, check whether |x1 - x0| or
ly1 - yOl is bigger

® Fixes the vertical line problem, too

Line Algorithm #2a:
Line Traversal++

Line Traversal++:
Pros and Cons

® Pros:
® Still quite simple to implement
® Much better performance
® O(N) vs. O(N?)
® Can be pipelined
® Cons:

® Still needs floating point round

Lirne I-\IgOI’IIﬂm HO.
Incremental Line

TPf\\ lﬁlf(\ﬁl

function DrawlLine(LineColar, x0, y0, x1, y1)

if(x0>x1) flip ((x0,y0), (x1, y1));

float m = (y1 -y0) / (x1 —x0);

lOutput[x, round(y)] = LineColar;
v =y+m

float v = y0;

for (x=x0; x<=x1; x++)

{

}

Note that we no longer need ‘b’

imcrerrierital Lire
Traversal:
. ro2ros and Cons

® Moderate performance
® Only max(|x1 - xol, |y1 - yo|) iterations
® Handles vertical lines
® Cons:
® Still needs floating point round

® No longer able to easily pipeline

Line Algorithm #4-

Y-Crossing Detection

Hf(x0>x1) flip ((x0,y0), (1, y1));
float m = (y1-y0) / (x1 - x0);
irt y = y0;

float erar = 0.0;

i (y1 > y0)
vStep = 1;
else

ystep =-1;

for (x=x0; x<=x1; x++)

{

[outputlxy] = LineColar;

lerror = emror +fabs (m);

if(erar > .5)

{
v =y +yStep;
errar = ear - 1.0;

i

i

Y-Crossing
Detection:
« o oPros and Cons

® Pretty good performance
® 2fpadds, 1 fp sub, 1 compare in loop
® No more rounding
® Cons:
® Still floating point
® Hard to pipeline

® Needs special case for |m| > 1

The Need for Speed

® How can we do even better?
® Need to get rid of floating point ops

The Need for Speed

float m = (y1 -y0) / (x1 —x0);

for (x=x0; x<=x1; x++)

{

lOutputlx,y] = LineColar;

lerrar = errar + fabs(m);

if(errar > .5)

{
y =y +yStep;
errar = emror - 1.0;

}

1

® Siill have floating point ‘m’

® Siill using floating point error
® Comparing to 0.5

Changes from #4

2(y1 — o)

-5 5(z1 — o) T — Tp

1.0 T1 — g 2(z1 — zg)

CNe AIgormnm #5.
Bresenham'’s

.
Alnnrithm

if(x0>x1) flip ((x0,y0), (x1, y1));

ity = y0;

irt errer = 0;

i (v1 > y0)
lyStep = 1;
lelse

lyStep =-1;

far (x=x0; x<=x1; x++)
{
[Output(xy] = LineCalar;
lerrar = erar + abs(2 * (y1 - y0));
lif(errar > (x1 - x0))
{
Yy =y +yStep;
errar = ewar - (2% (k1 -x0));
)
)

LNe AIgormnm #5:
Bresenham’s
Algorithm

® So how do we do it?

® Algorithm #4 stored the offset from the pixel
center

® Bresenham’s only stores a decision
parameter:
If > 0, go up, else, go across

preseriridaii S
Algorithm:
Pros and Cons
Pros:
® Great performance
® Only integer arithmetic
® Cons:
® Cannot be easily pipelined

® Still needs special case for |m| > 1

Line Drawing
® Talked aﬁym MMawing

algorithms
® All produce the same output

® Bresenham’s algorithm is fastest in most
cases

® | would suggest knowing how these
work:

® #2a: Line Traversal
® #5: Bresenham’s

® Thara ara mara that | did nat diccnice

Chaos Theory

Conspiracy Group, Assembly 2006 / SIGGRAPH

Available online:
http://xplsv.tv/movie.php?id=1942

How Do They Look?

® So now we know how to draw lines

® But they don'’t look very good:

11
EEEE

o

® Why not?

® Aliasing

Better Looking Lines
® There are ways to make lines look
better:
® Hacky: Just draw wider lines

® Better: Anti-aliasing

® NOTE: This isn't really part of the
rasterizer

® Just a good place to talk about it

Quick Hack:
Increase Line Width

® One quick fix may be to add nearby
pixels:

® Say, add the pixels above and below the
correct y value

® Makes lines look a little bit better

® Does not increase computational
complexity

Antialiasing

Antialiasing #1:
Supersampling

® One technique that can be used for
antialiasing is supersampling

® Drawing at a higher resolution than will
actually be used for the final output

Antialiasing #1:
Supersampling

® Technique:

1. Create an image 2x (or 4x, or 8x) bigger
than the real image

2. Scale the line endpoints accordingly
3. Draw the line as before
* No change to line drawing algorithm

4. Average each 2x2 (or 4x4, or 8x8) block into
a single pixel

Antialiasing #1:
Supersampling

= 2/4
2/4 | 4]
No 2x2 Downsampled to
antialiasing Supersampled original size

Supersampling
® So why is this a good idea?

® Processing at a higher resolution produces
more accurate data

® Less aliasing

® However, it produces high frequency
data that cannot be represented at the
lower resolution

® Need to filter

® Note: This usually makes lines appear
fainter

Filtering Basics

® Filtering is, basically, removing some
components from a signal

® je. low frequencies (high-pass filter)
® We want to remove high frequencies
® That is, we want a low-pass filter

® Since the high frequencies represent
fine/sharp details, low-pass filtering is
called smoothing or blurring

Low-Pass Filtering

® Want to smooth changes between
neighboring pixels

® Many ways to do it

® 2 Examples:
® Tent: Fast, but not great /\

® Gaussian: Slow, but very

1
Gaussian(z, u, o) = e
(a,p,0) = — s

Resizing a high-
resolution image

F

Incorrect

.

Gaussian
(Correct)

Filtering

® Not going to go into any more details
right now

® We'll talk about it more in the second
half of the semester when we talk about
real cameras

® For now, just accept that doing a better
job filtering makes your antialiasing
better

Next Time

® Finish up anti-aliasing
® Ratio method
® Continuing with rasterization
® Shape and polygon drawing
® Assignment 2 due

