
1

Noggin
(BYU Students, 

SIGGRAPH 2006)

Introduction to 
OpenGL Programming

Rick Skarbez, Instructor

COMP 575

September 11, 2007

Announcements

• Reminder: Homework 1 is due 
Thursday

• Questions?

• Class next Tuesday (9/18) will be held 
in SN 014

• Extended transformations to 3D

• Introduced some principles of computer 
animation

• Lasseter’s “Principles of Traditional 

Animation Applied to 3D Computer 

Graphics”

• How to create “The Illusion of Life”

Last Time

Today

• Learning how to program in OpenGL

• OpenGL

• C/C++

• GLUT, FLTK, Cocoa

OpenGL in Java

• I have never used Java for OpenGL 
programming

• I can’t be much help in getting it set up

• If you really want to try using OpenGL 
in Java

• The JOGL API Project

• https://jogl.dev.java.net/

• Go there and follow the instructions



2

What is OpenGL?

• The standard specification defining an 
API that interfaces with the computer’s 
graphics system

• Cross-language

• Cross-platform

• Vendor-independent

• Competes with DirectX on Windows

The Rendering 
Datapath

Computer 
Software

Graphics 
Driver

Frame 
Buffer

Scanout 
Logic

Display

VGA / DVI

OpenGL API

PCI Express Bus

High-Speed, Guaranteed Latency Interconnect

3D 

Hardware

An older version is available (free!) 
online:

http://fly.cc.fer.hr/~unreal/theredboo
k/

The “Red Book” Online Resources

http://nehe.gamedev.net

http://www.opengl.org

The Camera Analogy
OpenGL’s World

Camera
Description

(Intrinsic &

Extrinsic)

Scene Object
Transforms

What To
Display On Screen

Code 

Specified 

Parameters



3

Contexts and 
Viewports?

• Each OpenGL application creates a 
context to issue rendering commands to

• The application must also define a 
viewport, a region of pixels on the 
screen that can see the context

• Can be

• Part of a window

• An entire window

• The whole screen

OpenGL as a State 
Machine

• OpenGL is designed as a finite state 
machine

• Graphics system is a “black box”

• Most functions change the state of the 
machine

• One function runs input through the 
machine

OpenGL State

• Some attributes of the OpenGL state

• Current color

• Camera properties (location, orientation, 

field of view, etc.)

• Lighting model (flat, smooth, etc.)

• Type of primitive being drawn

• And many more...

Our First OpenGL 
Code

...

glClearColor(0.0, 0.0, 0.0, 0.0);

glClear(GL_COLOR_BUFFER_BIT);

glColor3f(1.0, 1.0, 1.0);

glOrtho(-1.0, 1.0, -1.0, 1.0, -1.0, 1.0);

glBegin(GL_POLYGON);

glVertex2f(-0.5, -0.5);

glVertex2f(-0.5, 0.5);

glVertex2f(0.5, 0.5);

glVertex2f(0.5, -0.5);

glEnd();

glFlush();

...

OpenGL Input

• All inputs (i.e. geometry) to an OpenGL 
context are defined as vertex lists

• glVertex*

• * = nt OR ntv

• n - number (2, 3, 4)

• t - type (i = integer, f = float, etc.)

• v - vector

OpenGL Types
Suffix Data Type

Typical Corresponding 

C-Language Type

OpenGL Type 

Definition

b 8-bit integer signed char GLbyte

s 16-bit integer short GLshort

i 32-bit integer long GLint, GLsizei

f 32-bit floating-point float GLfloat, GLclampf

d 64-bit floating-point double GLdouble, GLclampd

ub 8-bit unsigned integer unsigned char GLubyte, GLboolean

us 16-bit unsigned integer unsigned short GLushort

ui 32-bit unsigned integer unsigned long
GLuint, GLenum, 

GLbitfield



4

OpenGL Input

• Examples:

• glVertex2i(5, 4);

• Specifies a vertex at location (5, 4) on the 

z = 0 plane

• “2” tells the system to expect a 2-vector 

(a vertex defined in 2D)

• “i” tells the system that the vertex will 

have integer locations

OpenGL Input

• More examples:

• glVertex3f(.25, .25, .5);

• double vertex[3] = {1.0, .33, 3.14159};

glVertex3dv(vertex);

• “v” tells the system to expect the 

coordinate list in a single data structure, 

instead of a list of n numbers

OpenGL Primitive 
Types

• All geometry is specified by vertex lists

• But can draw multiple types of things

• Points

• Lines

• Triangles

• etc.

• The different things the system knows 
how to draw are the system primitives

Specifying the 
OpenGL Primitive 

Type• glBegin(primitiveType);
// A list of glVertex* calls goes here
// ...

glEnd();

• primitiveType can be any of several 
things

• See the next slide

OpenGL Primitive 
Types

OpenGL Primitives 
Example

glBegin(GL_POLYGON);

glVertex2f(0.0, 0.0);

glVertex2f(0.0, 3.0);

glVertex2f(3.0, 3.0);

glVertex2f(4.0, 1.5);

glVertex2f(3.0, 0.0);

glEnd();



5

Color in OpenGL

• Monitors can have different color 
resolutions

• Black & white

• 256 color

• 16.8M color

• Want to specify color in a device-
independent way

Color in OpenGL
• glColor4f(r, g, b, a);

• r, g, b, a - should all be between [0.0, 1.0]

• r, g, b - amounts of red, green, and blue

• a - alpha

• Defines how opaque a primitive is

• 0.0 = totally transparent, 1.0 = totally 

opaque

• Usually want a = 1.0

Finishing Up Your 
OpenGL Program

• OpenGL commands are not executed 
immediately

• They are put into a command buffer that 

gets fed to the hardware

• When you’re done drawing, need to 
send the commands to the graphics 
hardware

• glFlush() or glFinish()

glFlush vs. glFinish

• glFlush();

• Forces all issued commands to begin 

execution

• Returns immediately (asynchronous)

• glFinish();

• Forces all issued commands to execute

• Does not return until execution is complete 
(synchronous)

Matrices in OpenGL

• Vertices are transformed by 2 matrices:

• ModelView

• Maps 3D to 3D

• Transforms vertices from object 

coordinates to eye coordinates

• Projection

• Maps 3D to 2D (sort of)

• Transforms vertices from eye coordinates 

to clip coordinates

The ModelView 
Matrix

• In OpenGL, the viewing and modeling 
transforms are combined into a single 
matrix - the modelview matrix

• Viewing Transform - positioning the camera

• Modeling Transform - positioning the object

• Why?

• Consider how you would “translate” a fixed 

object with a real camera



6

Placing the Camera
• gluLookAt(

GLdouble eyeX, GLdouble eyeY, GLdouble 

eyeZ, GLdouble midX, GLdouble midY, 

GLdouble midZ, 

GLdouble upX, GLdouble upY, GLdouble upZ)

• (eyeX, eyeY, eyeZ) - location of the 

viewpoint

• (midX, midY, midZ) - location of a point on 
the line of sight

• (upX, upY, upZ) - direction of the up vector

• By default the camera is at the origin, 
looking down negative z, and the up 
vector is the positive y axis

WARNING!
OpenGL Matrices

• In C/C++, we are used to row-major 
matrices

• In OpenGL, matrices are specified in 
column-major order

Row-Major Order Column-Major Order

Using OpenGL 
Matrices

• Use the following function to specify 
which matrix you are changing:

• glMatrixMode(whichMatrix);

• whichMatrix = GL_PROJECTION | 

GL_MODELVIEW

• To guarantee a “fresh start”, use
glLoadIdentity();

• Loads the identity matrix into the active 

matrix

Using OpenGL 
Matrices

• To load a user-defined matrix into the 
current matrix:

• glLoadMatrix{fd}(TYPE *m)

• To multiply the current matrix by a user 
defined matrix

• glMultMatrix{fd}(TYPE *m)

• SUGGESTION: To avoid row-/column-
major confusion, specify matrices as 
m[16] instead of m[4][4]

Transforms in 
OpenGL

• OpenGL uses 4x4 matrices for all its 
transforms

• But you don’t have to build them all by hand!

• glRotate{fd}(angle, x, y, z)

• Rotates counter-clockwise by angle degrees 

about the vector (x, y, z)

• glTranslate{fd}(x, y, z)

• glScale{fd}(x, y, z)

• In OpenGL, the last transform in a list is 
applied FIRST

• Think back to right-multiplication of 

transforms

• Example:

• glRotatef(45.0f, 0.0f, 0.0f, 0.0f);

glTranslatef(10.0f, 0.0f, 0.0f);

drawSomeVertices();

• Translates first, then rotates

WARNING!Order of 
Transforms



7

Projection 
Transforms

• The projection matrix defines the 
viewing volume

• Used for 2 things:

• Projects an object onto the screen

• Determines how objects are clipped

• The viewpoint (the location of the 
“camera”) that we’ve been talking about 
is at one end of the viewing volume 

Projection 
Transforms• Perspective

• Viewing volume is a truncated pyramid

• aka frustum

• Orthographic
• Viewing volume is a box

Perspective

Orthographic

Perspective 
Projection

• The most noticeable effect of 
perspective projection is foreshortening

• OpenGL provides several functions to 
define a viewing frustum

• glFrustum(...)

• gluPerspective(...)

glFrustum
• glFrustum(GLdouble left, GLdouble 

right, GLdouble bottom, GLdouble top, 

GLdouble near, GLdouble far)

• (left, bottom, -near) and (right, top, -near) 

are the bottom-left and top-right corners of 

the near clip plane
• far is the distance 

to the far clip 

plane

• near and far

should always be 

positive

gluPerspective
• This GL Utility Library function provides a 

more intuitive way (I think) to define a 
frustum

• gluPerspective(GLdouble fovy, GLdouble 
aspect, GLdouble near, GLdouble far)

• fovy - field of view in y (in degrees)

• aspect - aspect ratio (width / height)

• near and far - same as with glFrustum()

Orthographic 
Projection

• With orthographic projection, there is no 
foreshortening

• Distance from the camera does not change 

apparent size

• Again, there are several 
functions that can define 
an orthographic projection

• glOrtho()

• gluOrtho2D()



8

glOrtho
• glOrtho(GLdouble left, GLdouble right, 

GLdouble bottom, GLdouble top, 

GLdouble near, GLdouble far)

• Arguments are the same as glPerspective()

• (left, bottom, -near) and (right, top, -near) 

are the bottom-left and top-right corners of 

the near clip plane

• near and far can be any 

values, but they should 

not be the same

gluOrtho2D
• This GL Utility Library function provides 

a more intuitive way (I think) to define a 
frustum

• gluOrtho2D(GLdouble left, GLdouble 
right, GLdouble bottom, GLdouble top)

• (left, bottom) and (right, top) define the (x, y) 

coordinates of the bottom-left and top-right 

corners of the clipping region

• Automatically clips to between -1.0 and 1.0 

in z

Viewport

• The viewport is the part of the window 
your drawing is displayed to

• By default, the viewport is the entire window

• Modifying the viewport is analogous to 
changing the size of the final picture

• From the camera analogy

• Can have multiple viewports in the 
same window for a split-screen effect

Setting the Viewport
• glViewport(int x, int y, int width, int 

height)

• (x, y) is the location of the origin (lower-left) 

within the window

• (width, height) is the size of the viewport

• The aspect ratio of the viewport should 
be the same as that of the viewing 
volume

(0,0) width

height

(x,y)

Viewport

Window


