
1

Now Playing:

Coulibaly

Amadou & Mariam

from Dimanche a Bamako

Released August 2, 2005

Vertex Processing:
Viewing

Rick Skarbez, Instructor

COMP 575

September 27, 2007

Announcements

• Programming Assignment 1 is due
TONIGHT at 11:59pm

• If you want to demo your program in person,

I’d like to do it Friday afternoon if possible

• Please contact me by email (TODAY) to set

up a time

Submitting Programs
• Upload source and executable(s)

(Windows or Mac) to digital dropbox on
Blackboard

• blackboard.unc.edu

• Include a document that lists

• What optional components you did

• Instructions for use

• Any problems that you had, or components
that do not work properly

• Please submit as a zip file with your
name in the filename

• Presented the functions needed for
lighting and shading in OpenGL

• Demoed some lighting and shading
functions in OpenGL

• Briefly discussed Non-Photorealistic
Rendering (NPR)

Last Time Today

• Review the OpenGL pipeline

• Discuss viewing and how it applies to
computer graphics

2

Rendering Pipeline

• OpenGL rendering works like an
assembly line

• Each stage of the pipeline performs a

distinct function on the data flowing by

• Each stage is applied to every vertex to

determine its contribution to output pixels

Geometry

(Vertices)

Vertex

Processing
Rasterizer

Fragment

Processing
Pixels

Vertex Processing

• The job of the vertex processing step is
to take arbitrary input geometry, and
turn it into something that the rasterizer
can understand

• Input: arbitrary geometry, lighting and

camera information

• Output: Shaded screen-space polygons

Vertex Processing
• Vertex processing consists of:

• ModelView transform

• Projection transform

• Lighting

• Perspective divide

• Polygon clipping

• Viewport transform

Vertex

Processing

Vertex Processing

Vertex

Processing

Vertices

Modelview

Transform

Projection

Transform

Clipping & Primitive Assembly

Viewport

Transform

Lighting

Vertex Processing

• We already talked about lighting

• We already talked about modeling
transformations

• We talked a bit about projections and
viewports

• We’re going to do that in more detail today

• Clipping is for next time

Viewing in OpenGL

• The OpenGL viewpoint acts as a virtual
camera

• What parameters do you need to define a

camera?

• Viewpoint (Center of Projection)

• View direction

• Field of view

• Film size

• Projection plane

3

Viewing

• Viewing requires 3 elements:

• Objects to be viewed

• A viewer with a projection surface

• A projection from the objects to the viewing

surface

Viewing

• Example: A real camera

• Objects: Whatever you’re taking a picture

of: landscape, people, etc.

• Viewer: The camera (with its film as the

projection surface)

• Projection: Defined by the lens, maps 3D

objects on to the 2D surface

Viewing
• Example: OpenGL camera

• Objects: The input geometry

• Viewer: The OpenGL “camera” (with the

view volume as its viewing “surface”)

• Projection: The OpenGL projection matrix

(GL_PROJECTION), maps 3D space (world

coordinates) into 3D space (eye

coordinates)

• Eventually into normalized device

coordinates (NDC)

Classical Viewing

• Classical views are based on the
relationship between these 3 elements:
objects, a viewer, and a projection

• In classical views, objects are assumed
to be constructed from flat principal
faces

• i.e. many buildings

• Used primarily by architects / engineers

Planar Geometric
Projections

• Standard projections are assumed to be
onto a single plane

• A projection can be perspective or
orthographic

• In perspective projection, all rays converge

at a single point (the center of projection, or

COP)

• In orthographic projection, all rays are

parallel

Perspective vs. Parallel
• Perspective

• Viewing volume is a truncated pyramid

• aka frustum

• Orthographic
• Viewing volume is a box

Perspective

Orthographic

4

Taxonomy of Planar
Geometric
ProjectionsPlanar Geometric Projections

Perspective

Parallel / Orthographic

Multiview Axonometric Oblique

Isometric Dimetric Trimetric

One-point Two-point Three-point

Multiview
Orthographic

• Projection plane parallel to principle
face

• Multiview simply means generating an
orthographic view for multiple faces

• Commonly seen in 3D modeling
programs

Isometric

Side View Front View

Top View

Benefits

• Why use orthographic?

• Preserves distances and angles

• Perspective does not

• Can be used for measurements

• Why multiview?

• The main problem with orthographic

projection is that it hides many surfaces

• Often add isometric view as well

Axonometric
Projections

• Direction of projection is still
perpendicular to the viewing plane

• But principle faces not parallel to it

• 3 different kinds:

• Isometric, dimetric, trimetric

• Classified by number of different

foreshortening factors

Axonometric
Projections

• Typically, one axis of space is drawn as
the vertical (as seen here)

Advantages and
Disadvantages• Advantages:

• Can see multiple faces of an object

simultaneously

• Lines are scaled, but by a constant factor

• Could still be used for measurement

• Disadvantages:

• Angles not preserved

• Foreshortening does not depend on

distance

• Not realistic

5

Oblique Projection
• Direction of projection is not

perpendicular to the viewing plane

• Most general parallel projection

• Is this possible with a normal camera?

Orthogonal
Projections• So what is the matrix for an orthogonal

projection?

• Assume we’re looking down z

• How would you implement an
axonometric projection?

• Orthogonal Projection + Rotation(s)

• How would you implement an oblique
projection?

• Orthogonal Projection + Rotation(s) +

Shear(s)

Orthographic
Examples

• How would you map an arbitrary
bounding volume (nearxyz, farxyz) into
the volume defined by (-1, -1, -1) and
(1, 1, 1)?

Vanishing Points

• In perspective projection, parallel lines
(parallel in the scene) appear to
converge to a single point

• This is called the vanishing point

Perspective
Projections

• Perspective projections are
distinguished by the number of
vanishing points in the image

• One, two, or three

One-point
Perspective

• One principal face is parallel to the
projection plane

6

Two-point
Perspective

• One principal direction (i.e. axis) is
parallel to the projection plane

Three-point
Perspective

• Nothing parallel to the projection plane

• Usually used when looking up at or
down on buildings

Classical Viewing
Recap

• Classical viewing is not “accurate”

• Can be useful for various reasons

• Two main branches

• Parallel projection

• Perspective projection

Movie Break!
The Aeronaut

Nicholas Lombardo

Ringling School of Art & Design SIGGRAPH 2006

Available online:

http://www.bestfilmoncampus.com/filmmaker/default.aspx?filmma

kerID=269&filmID=628

Doing Projections in
OpenGL

• We already know the commands to set
up projection matrices:

• glOrtho(...)

• gluOrtho2D(...)

• glPerspective(...)

• gluFrustum(...)

• Now we’ll talk a bit about what they
really mean

Positioning the
Camera• We usually assume that the camera is

located at (0,0,0), looking down -z

• What do we do if we want it to appear

somewhere else?

• Translate the world by the opposite of the

new location

• Two ways to think about this:

• Whole object moves into the camera

frame

• Camera moves (need to apply transforms

in reverse order)

7

Perspective
Projection

Perspective Divide

• Perspective divide is the mechanism by
which objects farther away are made to
appear smaller

• How?

Perspective Divide
• x’ = (x * d) / z

y’ = (y * d) / z

• How would you implement this in a
matrix?

• [1 0 0 0]

[0 1 0 0]

[0 0 1 0]

[0 0 1/d 0]

• d is the z location of the projection plane

• How does this work?

Perspective Divide

• M * [x y z 1]T = [x y z (z/d)]T

• Need to normalize new point:
normalize([x y z (z/d)]T) =

[(xd/z) (yd/z) d 1]

• This is the image of that point on the
projection plane

• What happens if d = 0?

Viewport Transform

• After perspective divide, we know
where the vertices will map to in 2D

• But in normalized device coordinates

• Need to know where these will actually
be displayed

• This is the viewport transform

Viewport Transform

• Just need to translate into a different
set of 2D coordinates

• From the rectangle defined by (-1, -1) and

(1, 1) to the rectangle defined by (0, 0) and

(width, height)

• How?

• Translate and scale

• What if the aspect ratio of the viewport is

different from that of the camera?

8

Next Time

• Continuing with vertex processing

• Clipping

• Discussion of vertex shaders

• Assignment 2 will go out

• Reminder: Programming assignment 1
due TONIGHT by 11:59pm

• Upload to blackboard.unc.edu

