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• Reviewed the math we’re going to 
use in this course

• Points

• Vectors

• Matrices

• Linear interpolation

• Rays, planes, etc.

Last Time

Today

• Vector spaces and coordinate frames

• Transforms in 2D

• Composing Transforms

Vector Spaces

• Let’s think for a minute about what x 
and y coordinates really mean
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Vector Spaces

• For illustration, let’s flip things around
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Vector Spaces

• Any pair of non-parallel, non-anti-
parallel vectors can define a vector 
space in 2D

• We’re used to thinking about spaces 
defined by orthogonal, normalized, 
axis-aligned vectors

• But there’s no reason this is the only 
way to do things

Vector Space Terms
• Linear Vector Space:  Any space made 

up of vectors and scalars

• Euclidean Space:  Vector space with a 
distance metric

• Affine Space:  Vector space with an 
origin

• The Cartesian plane is both affine and 
Euclidean

• We call this type of space a frame

2D Transforms

• What am I talking about when I say 
“transforms”?

• Translation

(x,y)

(x’,y’)

• Scaling

• Rotation

General Form

• The transformations we consider are of 
the following form:

Transformation

Matrix

• Remember that the transformation matrix 
describes the change in vector space:

x

y

x’

y’

Object vs. World 
Space

• Let’s stop and think about why we’re 
doing this...

• We can define the points that make up 
an object in “object space”

• Whatever is most convenient, often 
centered around the origin

• Then, at run time, we can put the 
objects where we want them in “world 
space”
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Object vs. World 
Space

• Makes building large models easier

• Example:

Object Space

(x0,y0)

(x1,y1)(x2,y2)

World Space

(x’0,y’0)

(x’1,y’1)

(x’2,y’2)(x
’’0

,y
’’0

)

(x
’’1

,y
’’1

)

(x
’’2

,y
’’2

)

Translation
• Basically, just moving points

• In 2D, up, down, left, or right

• All points move in the same way

• For example, we may want to move all 
points 4 pixels to the right and 3 down:

Object Space

(x,y)

World Space

(x+4,y-3)

So How Do We Do 
It?• What transformation matrix will add 4 

to x and subtract 3 from y?

• That is, what are the values of a, b, 

c, and d needed for this 
transformation?

Transformation

Matrix

• Actually, this is impossible to do with a 
2x2 matrix and 2-vectors

How Do We Do It?

• Option 1:  Implement translation as a 

2-step process

e is the x-offset
f is the y-offset

• What are the values for our example?

So How Do We Do 
It?• Option 2: Use bigger matrices

• If we set w = 1, then

c is the x-offset
f is the y-offset

How We Do It

• This is the way we’ll normally do it

• However, in computer science, we 
really like square matrices, so it’ll be 
written as:

So what does this w stand for?
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Homogeneous 
Coordinates

• We refer to this as a homogeneous 
coordinate:

• This mathematical construct allows us to

• Represent affine transforms with a single 

matrix

• Do calculations in projective space 
(vectors are unique only up to scaling)

Homogeneous 
Coordinates

• For points, w must be non-zero

• If w=1, the point is “normalized”

• If w!=1, can normalize by

Vectors in 
Homogeneous 
Coordinates• Remember last time, I mentioned that 

it would be useful that we could 

represent points and vectors the same 
way?

• Here’s the payoff

• Can use homogeneous coordinates to 
represent vectors, too

• What is w?

• Remember, vectors don’t have a 
“position”

Vectors in 
Homogeneous 
Coordinates• Since vectors don’t have a position, 

they should not be affected by 
translation

• What about rotation/scaling?

• Set w=0 for vectors:

These have no effect

Summing up 
Translation

• We will represent translation with a 
matrix of the following form:

u is the x-offset
v is the y-offset

Scaling
• Want to stretch or shrink the entire 

space in one or more dimensions

• α = stretch in x, β = stretch in y

x

y

Original
α=1, β=1

x

y

α=2, β=1

x

y

α=1, β=2
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Scaling

• Scaling is centered around the origin

• Points either get pulled toward the 
origin or pushed away from it

x

y

x

y

x

y

Scaling

• So, given what we know, how would we 
construct a scaling matrix?

• Assume we have an object centered 
around the origin, and want to scale it 
by α in x, and β in y

• x’ = αx

• y’ = βy

Summing up Scaling

• We will represent scaling with a matrix 
of the following form:

α is the scale factor in the x-direction

β is the scale factor in the y-direction

Rotation

α

α

Rotation

• Like scaling, rotations are centered 
about the origin

x

y

x

y

x

y

Rotation
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Summing up Rotation

• We will represent rotation with a matrix 
of the following form:

α is the angle of rotation

(counter-clockwise)

Anything else?

• Translation, scaling, and rotation are 
the three most common transforms

• What do they have in common?

• They maintain the orthogonality of the 
coordinate frame

• What happens if we relax this 
constraint?

Shearing

x

y

Horizontal
Shear

x

y

Original

x

y

Vertical
Shear

Shearing

Vertical Shear

x

y

Horizontal Shear y

x
s=0, No Shear

s=1, 45 Degree Shear

s is -tan(θ), where θ is the desired shear 
angle

Transforms Summary

• Discussed how to do 4 common 
transforms in 2D

• Translation

• Scaling

• Rotation

• Shearing

• Also took a detour to discuss 
homogeneous coordinates

Composing 
Transforms

• These are the basics

• However, single transforms aren’t really 
very interesting

• The real power comes from using 
multiple transforms simultaneously

• That’s what we’re going to do now
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Composing 
Transforms

• So why did we go through the trouble to 
use homogeneous coordinates for our 
points, and do our transforms using 
square transformation matrices?

• To make composing transforms easy!

• Composing 2 transforms is just 
multiplying the 2 transform matrices 
together

WARNING: The order in which matrix multiplications

are performed may (and usually does) change the result!
(i.e. they are not commutative)

Let’s do an example

• Two transforms:

• Scale x and y by a factor of 2

• Translate points (+3, +2)

• Let’s pick a single point in object space

• (1, 2)

Two Transform Paths

x

y
(2,1)

Translate Then Scale

Two Transform Paths

x

y
(5,3)

(+3, +2)

Translate Then Scale

Two Transform Paths

x

y

(10, 6)

(*2, *2)

Translate Then Scale

Two Transform Paths

x

y
(2,1)

Scale Then Translate
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Two Transform Paths

x

y

(4,2)

(*2, *2)

Scale Then Translate

Two Transform Paths

x

y
(7,4)

(+3, +2)

Scale Then Translate

Composing 
Transforms

• Translate then scale

• (x’, y’) = (10, 6)

• Scale then translate

• (x’, y’) = (7, 4)

• Need a standard way to order 
transforms!

Transform Matrix 
Multiplications

• Always compose from right to left

• Here, transform M1 is applied first

• Transform M3 is applied last

Two Transform Paths
Translate then Scale

Two Transform Paths
Scale then Translate
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Composing 
Transforms• We can go one step further than just 

multiplying matrices

• Specifically, we can use a matrix stack

• This is what OpenGL and DirectX use

You can build it 
in either order

(world to object 

or object to 
world), 

then multiply out 

when needed

Transform

Scale

Identity

Push Pop

Application: Rotation 
about a non-origin 

point

x

y

x

y

x

y

x

y

x

y

Robotic Arm Example

• Fingers first

• Then wrist

• Then elbow

• Finally, 
shoulder

Next Time

• Going to talk a bit more about 
transforms, and in particular, 3D 

transforms

• Might talk a little bit about animation


