
1

Now Playing:

Gong
Sigur Rós

From Takk...

Released September 13, 2005

Andre and Wally B
(Lucasfilm CG

Project [later Pixar],
1984)

2D Transforms

Rick Skarbez, Instructor

COMP 575

September 4, 2007

• Reviewed the math we’re going to
use in this course

• Points

• Vectors

• Matrices

• Linear interpolation

• Rays, planes, etc.

Last Time

Today

• Vector spaces and coordinate frames

• Transforms in 2D

• Composing Transforms

Vector Spaces

• Let’s think for a minute about what x
and y coordinates really mean

y
(x,y)

x

i

j
(u,v)

x

y j

i

2

Vector Spaces

• For illustration, let’s flip things around

i

j
(u,v)

x

y j

i

x

y(x,y)

= (-u,v)

Vector Spaces

• Any pair of non-parallel, non-anti-
parallel vectors can define a vector
space in 2D

• We’re used to thinking about spaces
defined by orthogonal, normalized,
axis-aligned vectors

• But there’s no reason this is the only
way to do things

Vector Space Terms
• Linear Vector Space: Any space made

up of vectors and scalars

• Euclidean Space: Vector space with a
distance metric

• Affine Space: Vector space with an
origin

• The Cartesian plane is both affine and
Euclidean

• We call this type of space a frame

2D Transforms

• What am I talking about when I say
“transforms”?

• Translation

(x,y)

(x’,y’)

• Scaling

• Rotation

General Form

• The transformations we consider are of
the following form:

Transformation

Matrix

• Remember that the transformation matrix
describes the change in vector space:

x

y

x’

y’

Object vs. World
Space

• Let’s stop and think about why we’re
doing this...

• We can define the points that make up
an object in “object space”

• Whatever is most convenient, often
centered around the origin

• Then, at run time, we can put the
objects where we want them in “world
space”

3

Object vs. World
Space

• Makes building large models easier

• Example:

Object Space

(x0,y0)

(x1,y1)(x2,y2)

World Space

(x’0,y’0)

(x’1,y’1)

(x’2,y’2)(x
’’0

,y
’’0

)

(x
’’1

,y
’’1

)

(x
’’2

,y
’’2

)

Translation
• Basically, just moving points

• In 2D, up, down, left, or right

• All points move in the same way

• For example, we may want to move all
points 4 pixels to the right and 3 down:

Object Space

(x,y)

World Space

(x+4,y-3)

So How Do We Do
It?• What transformation matrix will add 4

to x and subtract 3 from y?

• That is, what are the values of a, b,

c, and d needed for this
transformation?

Transformation

Matrix

• Actually, this is impossible to do with a
2x2 matrix and 2-vectors

How Do We Do It?

• Option 1: Implement translation as a

2-step process

e is the x-offset
f is the y-offset

• What are the values for our example?

So How Do We Do
It?• Option 2: Use bigger matrices

• If we set w = 1, then

c is the x-offset
f is the y-offset

How We Do It

• This is the way we’ll normally do it

• However, in computer science, we
really like square matrices, so it’ll be
written as:

So what does this w stand for?

4

Homogeneous
Coordinates

• We refer to this as a homogeneous
coordinate:

• This mathematical construct allows us to

• Represent affine transforms with a single

matrix

• Do calculations in projective space
(vectors are unique only up to scaling)

Homogeneous
Coordinates

• For points, w must be non-zero

• If w=1, the point is “normalized”

• If w!=1, can normalize by

Vectors in
Homogeneous
Coordinates• Remember last time, I mentioned that

it would be useful that we could

represent points and vectors the same
way?

• Here’s the payoff

• Can use homogeneous coordinates to
represent vectors, too

• What is w?

• Remember, vectors don’t have a
“position”

Vectors in
Homogeneous
Coordinates• Since vectors don’t have a position,

they should not be affected by
translation

• What about rotation/scaling?

• Set w=0 for vectors:

These have no effect

Summing up
Translation

• We will represent translation with a
matrix of the following form:

u is the x-offset
v is the y-offset

Scaling
• Want to stretch or shrink the entire

space in one or more dimensions

• α = stretch in x, β = stretch in y

x

y

Original
α=1, β=1

x

y

α=2, β=1

x

y

α=1, β=2

5

Scaling

• Scaling is centered around the origin

• Points either get pulled toward the
origin or pushed away from it

x

y

x

y

x

y

Scaling

• So, given what we know, how would we
construct a scaling matrix?

• Assume we have an object centered
around the origin, and want to scale it
by α in x, and β in y

• x’ = αx

• y’ = βy

Summing up Scaling

• We will represent scaling with a matrix
of the following form:

α is the scale factor in the x-direction

β is the scale factor in the y-direction

Rotation

α

α

Rotation

• Like scaling, rotations are centered
about the origin

x

y

x

y

x

y

Rotation

6

Summing up Rotation

• We will represent rotation with a matrix
of the following form:

α is the angle of rotation

(counter-clockwise)

Anything else?

• Translation, scaling, and rotation are
the three most common transforms

• What do they have in common?

• They maintain the orthogonality of the
coordinate frame

• What happens if we relax this
constraint?

Shearing

x

y

Horizontal
Shear

x

y

Original

x

y

Vertical
Shear

Shearing

Vertical Shear

x

y

Horizontal Shear y

x
s=0, No Shear

s=1, 45 Degree Shear

s is -tan(θ), where θ is the desired shear
angle

Transforms Summary

• Discussed how to do 4 common
transforms in 2D

• Translation

• Scaling

• Rotation

• Shearing

• Also took a detour to discuss
homogeneous coordinates

Composing
Transforms

• These are the basics

• However, single transforms aren’t really
very interesting

• The real power comes from using
multiple transforms simultaneously

• That’s what we’re going to do now

7

Composing
Transforms

• So why did we go through the trouble to
use homogeneous coordinates for our
points, and do our transforms using
square transformation matrices?

• To make composing transforms easy!

• Composing 2 transforms is just
multiplying the 2 transform matrices
together

WARNING: The order in which matrix multiplications

are performed may (and usually does) change the result!
(i.e. they are not commutative)

Let’s do an example

• Two transforms:

• Scale x and y by a factor of 2

• Translate points (+3, +2)

• Let’s pick a single point in object space

• (1, 2)

Two Transform Paths

x

y
(2,1)

Translate Then Scale

Two Transform Paths

x

y
(5,3)

(+3, +2)

Translate Then Scale

Two Transform Paths

x

y

(10, 6)

(*2, *2)

Translate Then Scale

Two Transform Paths

x

y
(2,1)

Scale Then Translate

8

Two Transform Paths

x

y

(4,2)

(*2, *2)

Scale Then Translate

Two Transform Paths

x

y
(7,4)

(+3, +2)

Scale Then Translate

Composing
Transforms

• Translate then scale

• (x’, y’) = (10, 6)

• Scale then translate

• (x’, y’) = (7, 4)

• Need a standard way to order
transforms!

Transform Matrix
Multiplications

• Always compose from right to left

• Here, transform M1 is applied first

• Transform M3 is applied last

Two Transform Paths
Translate then Scale

Two Transform Paths
Scale then Translate

9

Composing
Transforms• We can go one step further than just

multiplying matrices

• Specifically, we can use a matrix stack

• This is what OpenGL and DirectX use

You can build it
in either order

(world to object

or object to
world),

then multiply out

when needed

Transform

Scale

Identity

Push Pop

Application: Rotation
about a non-origin

point

x

y

x

y

x

y

x

y

x

y

Robotic Arm Example

• Fingers first

• Then wrist

• Then elbow

• Finally,
shoulder

Next Time

• Going to talk a bit more about
transforms, and in particular, 3D

transforms

• Might talk a little bit about animation

