
Programming Assignment #3
Rasterization

Due Thursday, November 1 by 11:59pm

(The grade for this assignment is out of 100 points, but you can obtain up to a maximum of 125 
points by doing more optional components. Additional points beyond 100 will be applied to your 

final score for all programming assignments.)

Required Components: (60 pts)
You must do all of these parts using only GL_POINTS as your rendering primitives if you use 
OpenGL. Alternatively, you could render to a buffer, and display it as a texture in OpenGL, or 
use a library such as OpenCV that can display the contents of a buffer.
(1) Implement Bresenham’s line drawing algorithm as a function that takes 4 floats as input (so it 

can be tested with arbitrary lines) and returns a list of vertices. Display these vertices. You 
must handle ALL possible line slopes. (20 pts) 

(2) Implement triangle rasterization. That is, implement the scan-line polygon rasterization 
algorithm, but it only has to work on triangles for this part of the assignment. This function 
should take 6 floats as input, and return a list of vertices. Display these vertices. (NOTE 1: 
You may assume that the triangle is not degenerate; that is, it is not just a point or a line) 
(NOTE 2: This function will likely build upon your line-drawing algorithm from part 1.) 
(20 pts)

(3) Implement 2D line-clipping using the Cohen-Sutherland algorithm. This function should take 
as input 4 floats (representing the segment endpoints) and produce as output 4 floats 
(representing the new endpoints). (20 pts)



Optional Components: (40-65 pts)
NOTE: You MUST do at least 40 points worth of components from this section to achieve full 
credit on this assignment.
(1) Implement another line rasterization algorithm. Run this algorithm on a set of 1000 lines and 

time it; also run your Bresenham algorithm on the same number of lines and time it. Report 
these timings. (10 pts)

(2) Implement robust scan-line polygon rasterization. That is, extend the triangle rasterizer from 
part 2 above to support polygons with an arbitrary number of vertices, concave polygons, and 
degenerate polygons (i.e. polygons that are actually a single point or a single line). (15 pts)

(3) Implement another line-clipping algorithm. (10 pts)
(4) Implement Sutherland-Hodgman polygon clipping. (15 pts)
(5) Implement Weiler-Atherton polygon clipping. (20 pts)
(6) Implement flood-fill (4 or 8 fill). The algorithm should take as input a list of vertices and fill 

in the polygon defined by those vertices. (10 pts)
(7) Implement supersampling line anti-aliasing for your line-drawing algorithm. (10 pts)
(8) Implement ratio line anti-aliasing for your line-drawing algorithm. (10 pts)


