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Abstract— Tagged MRI provides a useful way to assess regional
cardiac mechanical function. However, it only provides 2D data,
and does not provide direct access to functional parameters, nor
does it allow easy comparisons between patients. Our approach
to this problem is to create a patient-specific 3D model from a
generic heart shape model and segmented image data. Results
show that the model fits the data quite well, even when only sparse
data is available. This approach is promising for both individual
patient analysis and creation of statistically based analysis of
regional cardiac function.

I. INTRODUCTION

A. Motivations

Some cardiac disorders have direct consequences on the
mechanical efficiency of the heart pump. However the cardiac
contraction is complex, and can vary greatly between patients.
Current medical imaging techniques such as magnetic reso-
nance imaging (MRI) or computed tomography (CT) allow
non-invasive evaluation of cardiac function. In particular,
tagged MRI is a technique that allows the detailed visu-
alization of myocardial motion and deformation throughout
the cardiac cycle. However, these imaging techniques do not
directly allow estimation of clinically relevant parameters,
such as volume variations, or local velocities and stress in
the myocardium. Study of these functional parameters can be
very useful for both research and clinical applications.

Detailed analysis of cardiac function should also allow
comparisons to be made between patients. Statistical analysis
of this data could lead to a better understanding of different
pathologies. However, due to anatomical variability between
patients and differences in the conditions of image acquisition,
itis generally not possible to directly compare image datasets.

A potential solution to both problems could be the use of a
generic geometrical heart model, that can be adapted to fit the
specific patient data. A good model adaptation scheme should
be able to fit the patient data as closely as possible in order to
extract detailed functional parameters, while remaining generic
enough to allow easy comparisons between patients. Applying
such a method to a number of different subjects would provide
data that can be used for statistical analysis of regional shape
and function variations.

Corresponding author: Joél Schaerer, email: joel.schaerer@insa-lyon.fr.

B. Previous work

Some previous approaches modeled the heart as a volumet-
ric finite element mesh, and tried to fit all the heart structures
at the same time [1], [2]. However, the relative position of
the ventricles and the wall thickness tend to vary a lot from
patient to patient. Large deformations are thus required, and
can result in a degenerated mesh, which is a problem for finite
element based methods like the ones cited previously.

Other approaches rely on a simplified shape model [3].
However, the simplified model does not give a realistic
anatomy. We believe a model based on real data should be
able to fit the data more closely, especially when the data is
sparse.

Another option is to use a statistical model of the heart,
such as in [4], [5]. In this paper, we use such a model for
segmentation, but our main focus is to use the segmented
data to fit a geometrical model, rather than designing a model
specifically for segmentation,

The approach we pursue in this paper is to use a generic
model of the anatomy of specific cardiac structures extracted
from patient data. Then, using deformable model theory,
we adapt individually each of these structures, e.g. the left
ventricle, to the anatomy of a particular patient.

In order to achieve this goal, we employ automated contour
segmentation methods and we present a novel method to assign
correspondences between the segmented data and the points
on a deformable model.

II. METHOD

This section details the method we used to create a patient-
specific model of the heart from tagged images. The method
consists of three steps: construction of a generic shape model,
segmentation and labeling of MR images, and registration of
the generic model with the segmented data.

A. Initial Model Creation

In order to create the original model, cine MR images were
acquired of a healthy volunteer. Manual segmentation with
validation by an expert was then performed to extract three
cardiac structures: the left and right ventricular cavities and
the epicardium. The meshing algorithm described in [6] was
then used to create surface meshes from the extracted contours.
The whole process is illustrated in figure 1.




Fig. 1. Initial model construction: manual segmentation, 2D contours, surface
meshing, and final result.

B. Automated Contour Segmentation method

Following is a short description of the segmentation method
we used to process the tagged MR images. A more complete
description can be found in [7].

Segmentation of tagged MR Images is difficult for several
reasons: boundaries are often blurred and corrupted by nearby
tagging lines; moreover, tagged images have lower signal-to-
noise ratio and contrast than regular MR images. Because of
these difficulties, strong priors for both shape and appearance
are needed. Our method uses an active shape model as a shape
prior, and a boundary appearance learning technique based on
the Adaboost algorithm [8].

1) Active shape model: Active shape models [9] are a
well known method for learning shape variability. Shapes are
represented as a collection of landmarks. Principal Component
Analysis is performed over a training set, giving the modes of
principal shape variability. The resulting model can be used
as a strong prior for segmentation.

In order to train the active shape model(ASM), 220 datasets
were manually segmented. The resulting contours were labeled
using the method described in [7], providing landmarks for
the ASM training. The method is based on localizing high
curvature points in the contours, and linearly interpolating
between them. The result is a set of 50 landmarks or semi-
landmarks. An illustration of the results can be seen in figure 2.

2) Local boundary appearance modeling: Because of the
complicated boundary and region appearance in tagged MRI,
we need to use all available information to form a complex
rule. At different locations on the boundary, the rules and
our confidence in the rules must be different. However, it is
difficult to manually designate the rules and their confidence
ratings. Our method uses the Adaboost learning approach
to generate the local boundary criteria and their confidence
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Fig. 2. Result of the automatic method used to place the landmark points.
Black points are key points which are automatically found based on curvature
and location. A fixed number of other points (represented with diamonds) is
equally placed in between.

ratings. Adaboost selects a small number of important features
from a huge potential feature set (i.e., weak classifiers) and
creates a weighted combination of them to use as an accurate
strong classifier.

Three kinds of steerable filters are used as the weak classi-
fiers, for a total of 1840 filters.

3) Segmentation: In order to perform segmentation using
the shape and appearance models, the heart is first detected
using an Adaboost detection method, which is described in
[7]. The detection is used to choose an initial position for the
ASM. For each model landmark, several possible landmark
locations are then searched along the model normal, and their
likelihood of being on the heart boundary is estimated using
the appearance model. The location with the highest likelihood
is selected, and the following force is applied to the model at
the location of the landmark:

g, O0) —x(@)eli)
|I<(5) — x(@)]]

where x(i) is the current location of the landmark, x(j) is

the candidate location of the landmark, and ¢(i) is the confi-

dence of the detection, given by the Adaboost classifier. This
operation is then repeated several times to ensure convergence.

(1

C. Correspondence between the heart model and segmented
COntours

In order to register the generic heart model to the extracted
contours, some kind of correspondence must be found between
the model and the contours. Such a correspondence can
be found automatically, as with the Iterative Closest Point
algorithm [10], for example.

In our case, however, the segmentation method directly
provides a number of semi-landmarks, which can also be
identified on the model. The knowledge of such a point-
to-point correspondence simplifies the problem and allows
for more efficient (direct) implementations of the registration
methods.
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To find the landmarks on the model, we must first identify
the planes that correspond to the image slices. Since the
process is conducted at end-diastole, we know that the top
and bottom slices correspond to the base and the apex of the
heart, respectively. From this knowledge, we can deduce the
relative positions of the image slices on the model, and extract
the model contours by cutting it along planes corresponding
to the image slices. The resulting contours are labeled using
the same method that is used to train the ASM.

We now have a set of points extracted from the images and
corresponding to the anatomy of the patient, and the location
of the corresponding points on the generic model. The next
step is to use this knowledge to compute a global non-rigid
registration for each heart structure and apply it to the model.

D. Registration

The ASM segmentation provides the location of 50 land-
marks per image slice, which we are also able to find on the
generic heart model. In order to fit the model to the patient, we
need to compute a dense transformation from this information.

A good transformation should fulfill two competing require-
ments: it should fit the image data as closely as possible, while
preserving an anatomically plausible shape for the model.
We have explored a hybrid approach [11], using a similarity
transform to first roughly find the location and scale the model,
and a smoothing thin-plate deformation to fit it locally while
preserving its smoothness.

It is generally observed that the configuration of the different
heart structures can vary significantly from patient to patient.
Therefore, instead of fitting all structures at the same time,
we propose to fit them independently, using an independently
computed hybrid transformation for each of them. The struc-
tures can later be put back together in a single volumetric
mesh, for example. In order to do that, landmarks are separated
in groups corresponding to the heart structure they belong to:
left ventricle, right ventricle and epicardium. The registration
methods described in the next sections are applied to each set
of landmarks individually.

1) Affine registration: To roughly place and scale the
model, a 7 parameter similarity transform is used, including:
translation, rotation and isotropic scaling. This transform is
preferred to a full affine one because anisotropic scaling and
shearing can lead to anatomically impossible shapes. Since
this transformation is linear, the best fit can be computed using
linear least squares. This only requires the solving of a linear
system and is very efficient.

2) Non rigid thin-plate spline registration: Once the model
is located correctly, a local non-rigid transform can be used
to fit it more closely with the data. The method presented in
[12] provides a reasonable solution, based on smoothing thin-
plate splines. The resulting transforms are a linear combination
of basis functions whose coefficients can be computed as the
solution of a linear system. This is also very computationally
efficient.

ITI. RESULTS

The method was applied to several datasets, and in this
paper we present two datasets with different parameters. The

Fig. 3. Left and right ventricular cavities and epicardium of the constructed
model for a sample image set. The yellow dots are the landmarks extracted
by the ASM.

first dataset was acquired with 192x192 pixels, an in-plane
resolution of 1.3mm, a slice thickness of 0.5cm, and 18 slices
spaced by 4.8mm. The second dataset was acquired with
132x192 pixels, an in-plane resolution of 1.7mm, and 7 slices
separated by 12.5mm. Both datasets were acquired on a 1.5T
Siemens Sonata MR Scanner. We show reconstruction of the
whole ventricles, even though segmented data was sparse and
didn’t include the apical portion of the heart.

The method was implemented in Python using the
Open Source VTK library. The registration process took less
than 10 seconds on 2.4GHz Pentium M computer with 1GB
of RAM. The reconstructed model corresponding to the first
dataset can be seen on figure 3.

Superposition of the reconstructed model with the original
images can be seen on figure 4. The results show that the
model fits the original data quite well even in the areas where
no data was available to guide it (in our case, near the apex),
showing the usefulness of such a model.

In order to quantitatively assess the accuracy of the pro-
posed method, the reconstructed meshes were compared to
the original data points. First, the reconstucted meshes were
cut along the original image planes. Then, connected contours
were created from the segmentation data points. In order to in-
crease their resolution, the contours were linearly interpolated.
Finally, the original and reconstructed contours were compared
using the method described in [13]. The average distance
between reconstucted and data contours on the two datasets
was of 0.42mm for the left ventricle and the epicardium, and
0.59mm for the right ventricle. Further analysis shows that
this difference is mainly due to the low resolution of the data
contours, and could be improved by using more data points.
The reconstruction error is small compared to the error induced
by typical segmentation methods, which is at least 2mm in
state-of-the-art methods (see [5] and [4]).




Fig. 4. Contours of the reconstructed model, superimposed on corresponding
images from the two datasets. Left column is dataset #1, right is #2. Top is a
slice near the base, the middle images represent a slice near the mid-portion
of the ventricles, and the bottom images are near the apex. Note that no
segmented data was available for the lower portion of the heart.

IV. DISCUSSION AND PERSPECTIVES

The method presented in this paper is a first step towards a
detailed automated functional analysis of the cardiac function
from tagged MR images. It allows creation of a patient-specific
model from a generic geometrical model and arbitrarily lo-
cated segmented landmarks.

In this paper the method was applied only to the case
of cardiac imaging, however, it is obviously more generally
applicable. It could be applied to any case where a generic
geometrical model can be designed, and a correspondence can
be found between the segmented data and the model.

Results could be further improved in a few ways. In figure 3,
the effects of inter-slice misregistration can clearly be seen.
This effect is due to the fact that different slices are acquired
during different patient breatholds, which may be inconsistent
with each other. This problem can be partly solved using
automated motion compensation algorithms, such as the one
presented in [4].

Most functional parameters need the complete geometry of
the ventricles, in order to be accurately estimated. The current
model does not include the basal part of the heart. Further
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work will include extending the segmentation algorithm to
long axis images, which are the only way to accurately acquire
the heart geometry near the base. The method presented in this
paper should be easily extensible to different orientations of
data.
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