
Reasoning and Writing in the
Mathematics Underlying Computation

Jack Snoeyink

May 5, 2021

Contents
‘Reeling and Writhing, of course, to begin with,’ the Mock
Turtle replied; ‘and then the different branches of Arithmetic
– Ambition, Distraction, Uglification, and Derision.’

—Lewis Carroll, Alice’s Adventures in Wonderland

Page

Glossary of Notation ix

1 Introduction 1
1.1 Defining Kara’s world . 2
1.2 On problem solving . 4
1.3 The purpose of puzzles 12
1.4 Summary . 14
1.5 Exercises and Explorations 16

2 Propositional Logic 20
2.1 Logic operations . 21
2.2 Conditionals . 25
2.3 Logic puzzles . 30
2.4 Properties of operations and inference 33

2.4.1 Inference with properties 34
2.5 Boolean circuits . 38
2.6 Solving a puzzle with logic notation 40

2.6.1 Defining and using notation 41
2.6.2 Solution via truth table 42

ii

edge draft version of May 5, 2021, copyright Jack Snoeyink
edge draft version of May 5, 2021, copyright Jack Snoeyink

2.6.3 Solution by inference from properties 44
2.6.4 Solution by cases and decision tree 46

2.7 Summary . 47
2.8 Exercises and Explorations 49

3 Sets, Tuples, & Counting 57
3.1 Defining sets and tuples 58

3.1.1 Sets . 59
3.1.2 Tuples . 62
3.1.3 Sequences, strings, and series 65

3.2 Counting elements in sets 68
3.2.1 The sum and product rules 68
3.2.2 Permutations and factorial 71
3.2.3 Combinations and choose 73

3.3 A mixed example: distributing donuts 78
3.4 Counting multisets . 85
3.5 Summary . 88
3.6 Exercises and Explorations 90

4 First Order Logic: Quantifiers 98
4.1 Quantified statements 99

4.1.1 Writing a quantified statement 101
4.1.2 Negation and inference for quantifiers 104
4.1.3 Scope and nested quantifiers 106
4.1.4 Idioms and abbreviations 108

4.2 Event-time logic using quantifiers 111
4.3 Summary . 117
4.4 Exercises and Explorations 119

5 Set Operations and Properties 124
5.1 Set operations . 125

5.1.1 Definitions for set operations 125
5.1.2 Properties for set operations 128
5.1.3 Proofs for set operations 129

5.2 Inclusion/exclusion counting 134
5.3 Families of sets . 136

5.3.1 Partitions . 136
5.3.2 Further questions 136

5.4 Summary . 138
5.5 Exercises and Explorations 140

6 Relations and Functions 143
6.1 Relations . 144

6.1.1 Binary relations 147
6.2 Functions . 150

6.2.1 Some numerical functions 152
6.2.2 Types of functions 154

6.3 Bijections and counting 158
6.3.1 Resource bounds and asymptotic notation . . 162

6.4 Summary . 167
6.5 Exercises and Explorations 168

7 Math Review 174
7.1 Messages and bases . 175

7.1.1 Strings to numbers 175
7.1.2 Floor and ceiling 177
7.1.3 Length of a given message 177
7.1.4 Mod for decoding 179

7.2 Encoding by exponentiation mod hidden primes . . . 181

7.2.1 Divisibility . 181
7.2.2 Hiding two primes in a composite number . . 182
7.2.3 Messages of given length 183
7.2.4 The unexpected power of counting 186

7.3 Finding the encoding and decoding exponents 189
7.3.1 Fun with fractions 189
7.3.2 A vector view . 193
7.3.3 Common divisors 195
7.3.4 Encryption . 196

7.4 Summary . 197
7.5 Exercises and Explorations 199

8 Recursive definition 206
8.1 Recursive definition. 207

8.1.1 . . . of sets . 207
8.1.2 . . . of functions and relations 209
8.1.3 . . . of tuples, lists, and sequences 212
8.1.4 . . . of notation for operations 215
8.1.5 . . . of strings and languages 216
8.1.6 . . . of other structures 218

8.2 Recurrences, series, and counting 219
8.2.1 Combinatorial proof of a numerical identity . 220
8.2.2 Counting partitions 221
8.2.3 Mathematical series 223
8.2.4 Estimating factorial 226
8.2.5 Generating functions 227

8.3 Summary . 229
8.4 Exercises and Explorations 230

9 Proof 233
9.1 What is a proof . 234

9.1.1 The roles of definitions and properties 236
9.1.2 Proof types . 237

9.2 Modified two-column proof form 243
9.2.1 Example two column proofs 243

9.3 Communication . 249
9.4 What may I use? . 253

9.4.1 Primitives . 254
9.4.2 Basic definitions and properties that follow

from them . 255
9.4.3 Definitions with variations: Functions, rela-

tions, graphs . 257
9.5 Summary . 258
9.6 Exercises and Explorations 260

10 Mathematical Induction 266
10.1 Strong induction . 267

10.1.1 Examples . 268
10.1.2 8-step template for strong induction 272

10.2 Variants . 277
10.2.1 Weak vs. strong induction 279
10.2.2 With nested quantifiers 282
10.2.3 Strengthen what is to be proved 285
10.2.4 Minimal counterexample 288

10.3 Summary . 290
10.4 Exercises and Explorations 292

11 Algorithms and invariants 302
11.1 Preliminaries . 303

11.2 Max in a list(A) . 304
11.3 Iterative binary search 321
11.4 Sorting by insertion . 325
11.5 Greatest common divisor 330

12 Binary Relations & Applications 340
12.1 Binary relations extended 341

12.1.1 Closure operations for relations 342
12.2 Aboveness: A partial order 347
12.3 Equivalence relations and finite state automata 350

12.3.1 Regular languages and simplified Kara 351
12.3.2 Recognizing a regular language with superKara355
12.3.3 Simple Kara simulates superKara 357
12.3.4 An equivalence relation ≡L 358
12.3.5 Proof in detail: 359
12.3.6 The smallest machine for L 361
12.3.7 Reducing K ′ to KL 362

12.4 Summary . 363
12.5 Exercises and Explorations 366

13 Graphs and Trees 369
13.1 A draw-it-yourself chapter outline 371
13.2 Foundational definitions 379
13.3 Modify, count, draw, and color graphs 386

13.3.1 Modifying graphs 387
13.3.2 Counting graphs 388
13.3.3 Drawing partial order graphs 390
13.3.4 Coloring . 391

13.4 Paths and cycles . 393
13.5 Trees . 400

13.5.1 Equivalent definitions for rooted trees 400
13.5.2 Counting Trees 409

13.6 Planar Graphs and Triangulations 412
13.6.1 Drawing and encoding planar graphs 417

13.7 Exercises and Explorations 423

14 Discrete Probability 430
14.1 Definitions . 431

14.1.1 Monty Hall and sample spaces 434
14.2 Random variables and expectation 437

14.2.1 Non-transitive dice 442
14.3 Examples: balls into bins 446
14.4 Exercises and Explorations 452

Bibliography 456

Selected Solutions 460

Glossary
of Notation

One of the biggest problems of mathematics is to explain to
everyone else what it is all about. The technical trappings of
the subject, its symbolism and formality, its baffling terminol-
ogy, its apparent delight in lengthy calculations: these tend
to obscure its real nature. A musician would be horrified if
his art were to be summed up as “a lot of tadpoles drawn on
a row of lines,” but that’s all that the untrained eye can see in
a page of sheet music. . . In the same way, the symbolism of
mathematics is merely its coded form, not its substance.

—Ian Stewart, in From Here to Infinity

Quick index: Click symbol to jump to page with definition, or
click the section name to jump to the glossary section with a brief
definition, LATEX and html code, and link to page with definition. Here
symbols are roughly organized by number and direction of strokes,
below by order introduced or importance.
Logic: ¬ → ⇒↔⇔≡ ∧ ∨ ∀ ∃ > ∴ ⊕
Set symbols | | \ × ∪ ∩ ∈ 6∈ ⊆ ⊕ Ak L∗

Set letters: ; Λ N Q R Z 2A O() Ω() P () R+ R≥0 Θ() Z+

Parens: ()
�n

r

�

〈 〉 bc de [] {} {|} (,) (,] [,) [,] [..] {. . .}
Relations: | 6 | = 6= ?= ≈ 'i,b ≡K ≡L ≺≺ ≺ ≤ < > ≥ � �� aRb 6R R̂
Functions: ! ◦ p f () f :→ nr

�n
r

�

nCr ln lg mod gcd(a, b)
Graphs # � d(v) G = (V, E) Kn Kn,m N(v)

ix

Math: x12
i j
· × ±∞ E() Fi ϕ ϕ̂ Pr{} QED

Greek:α–Ω Λ ϕ ϕ̂ O() Ω() Θ()
∑∏

Logic Basic notation and meanings; click page number or reference
for detail. (Below ‘col’ refers to columns of a truth table.)

p \overline p negation of p. Table 2.1
¬ \neg ¬ logical negation Table 2.1
∧ \wedge ∧ logical ‘and’ Table 2.1
∨ \vee ∨ logical inclusive ‘or’ Table 2.1
⊕ \oplus ⊕ logical exclusive ‘or’ Table 2.1
→ \to → implies, conditional Table 2.2
↔ \leftrightarrow ↔ iff, biconditional Table 2.2
≡ \equiv ≡ logically equiv.; same TT cols 23
⇔ \Leftrightarrow ⇔ synonym for ≡ 251
⇒ \Rightarrow ⇒ logical implication 35
∴ \therefore ∴ therefore, in proofs Table 2.4
∀ \forall ∀ Universal quantifier 100
∃ \exists ∃ Existential quantifier 100> \nexists ∄ there does not exist 104

Sets General conventions, tables for definitions, special sets, and
operations:
lower case letters: individual elements
upper case letters: sets or other multipart structures
caligraphic letters: families of sets; sets of multipart structures
Greek letters: strings, including logic expressions

∈ \in ∈ set inclusion; is an element of 61, T5.1
6∈ \not \in ∉ is not an element of 61
|A| |A| set cardinality; # of elts in A Table 5.1

⊆ \subseteq ⊂ subset; is contained in 61, T5.1
∪ \cup ∪ union; set of elts in either Table 5.1
∩ \cap ∩ intersection; set of elts in both Table 5.1
\ \setminus ∖ set difference; in 1st, not 2nd Table 5.1
⊕ \oplus ⊕ symmetric diff; in one, not both Table 5.1
× \times × Cartesian product; set of all pairs 63, T5.1
Ak A^k repeated product A× A× · · ·A 63
L∗ L^* Kleene star; all finite strings from L 66,217

; \emptyset ∅ Empty set {} 59
Λ \Lambda Λ Empty string
N \mathbb {N} ℕ Natural numbers {0,1, 2, . . .} 59
IN I\!\!N fake N w/o mathbb font
O(g(n)) O(g(n)) O() set of fcns upper bdd by cg(n) 165
Ω() \Omega () Ω() set of fcns lower bounded 166
P (A) {\cal P}(A) ℘(A) Power set, 2A; all subsets T 5.1
Q \mathbb {Q} ℚ Rationals {p/q | p ∈ Z, q ∈ Z+} 60
R \mathbb {R} ℝ Real numbers 60
R+ \R ^+ Positive reals 60
R≥0 \R ^{\ge 0} Non-negative reals 60
IR I\!\!R fake R w/o mathbb font
Θ() \Theta () Θ() fcns upper & lower bounded 166
Z \mathbb {Z} ℤ Integers 59
Z+ \Z ^+ Positive integers 60
ZZ Z\!\!\!Z fake Z w/o mathbb font
2A 2^A synonym for power set T 5.1

Parentheses, brackets and braces In LATEX, writing \left(\right) lets
parentheses or other grouping characters grow to fit their contents,
like

�

a+b
2

�

.

() () parentheses: tuples, sequences, lists 62
�n

r

�

\binom {n}{r} binomial coeff; choose r from n 73,210
{ } \{ \} braces define set from list of elts 59
[a, b] [a,b] Closed interval of reals {x | a ≤ x ≤ b} 60
(a, b) (a,b) Open interval of reals {x | a < x < b} 60
(a, b] (a,b] Half-open interval {x | a < x ≤ b} 60
[a, b) [a,b) Half-open interval {x | a ≤ x < b} 60
[a..b] [a..b] Set of integers {a, a+ 1, . . . , b− 1, b} 60
[bool] Iverson bracket [T] = 1; [F] = 0 152
[a] [a] Equivalence class [a] = {b | bRa} 360

{. . .} \{\ldots\} {…} define set by pattern 59
{exp | rule} \{ \mid \} define set by rule 60
〈 〉 \langle \rangle ⟨ ⟩ angle brackets; for lists 212
bc \lfloor \rfloor ⌊ ⌋ floor, max integer ≤ 177
de \lceil \rceil ⌈ ⌉ ceiling, min integer ≥ 177

Relations

aRb aRb Abbrev. in relation: (a, b) ∈ R 144
6R \not \!R Not in relation: (a, b) 6∈ R 144
= known or assigned equal 29,144
6= \neq ≠ not equal 110,144
?
= \overset ?{=} I want to show equal 248
≈ \approx ≈ approximately equal 177, 226
m|n m|n Divides: ∃i ∈ Z, mi = n 181
m 6 |n m\not |n m does not divide n 181
R̂ \hat R Transitive closure of R 342
'i,b \simeq _{i,b} Indistinguishable sets 363
≡K \equiv _K Equiv strings for machine K 354
≡L \equiv _L Equivalent strings for lang L 358

< < less than 144
> > greater than 144
≤ \leq ≤ less than or equal 144
≥ \geq ≥ greater than or equal 144
≺ \prec ≺ predecessor
� \succ ≻ successor; aboveness 347
≺≺ \prec \!\!\!\prec trans closure of predecessor
�� \succ \!\!\! \succ trans closure of successor 348

Functions

! ! factorial 71,209
nr n^{\underline r} falling power; nr = n!/(n− r)! 71
P(n, r) permut.; synonym for nr 73
�n

r

�

\binom {n}{r} binomial coeff; choose 73,210

nCr _nC_r synonym for choose 73
C(n, r) synonym for choose 73
f (a) f(a) Result of fcn f on input a 150
f : A→ B f\colon A\to B f:A&to; B Fcn name:domain→range 150
◦ \circ ∘ function composition 152p

x2 \sqrt {x^2} √ square root 153
[bool] Iverson bracket [T] = 1; [F] = 0 152
lg \lg log base 2 177
ln \ln natural (base e) log 177
bc \lfloor \rfloor ⌊ ⌋ floor, max integer ≤ 177
de \lceil \rceil ⌈ ⌉ ceiling, min integer ≥ 177
mod \bmod mod; remainder 179
gcd(a, b) greatest common divisor 195,330

Graphs

\fullmoon ◯ graph node 401

� \Box □ empty binary tree 218
d(v) vertex degree; d(v) = |N(v)| 382
G = (V, E) graph (vertex & edge sets) 145,369
Kn complete graph 381
Kn,m complete bipartite graph 381
N(v) set of neighbor edges 382

Misc. Math In LATEX, math is surrounded by $ $ or \[\]. Curly braces,
{}, group strings of more than one character. Sub/superscripts:
x12

i j
x_{i_j}^{12} x_{i_j} ¹²

· \cdot · multiplication 68
± \pm ± plus or minus 93
∞ \infty ∞ infinity 161, T 5.1
E() expectation of random variable 437
Fi F_i ith Fibonacci number 209
ϕ \varphi φ Golden ratio, ϕ = (1+

p
5)/2 228

ϕ̂ \hat \varphi ϕ̂ = (1−ϕ) 228
Pr{} {\it Pr}\{\} probability of event 432
∑

i \sum _{i} ∑ Series; sum of terms in sequence 67,215
∏

i \prod _{i} ∏ Product of terms in sequence 68
⋃

i \bigcup _{i} Union 215
⋂

i \bigcap _{i} Intersection 215
QED End of proof 75

Greek letters with LATEX codes; HTML codes are α through
Ω, omitting the \var variations.

α \alpha θ \theta o o τ \tau
β \beta ϑ \vartheta π \pi υ \upsilon
γ \gamma γ \gamma $ \varpi φ \phi
δ \delta κ \kappa ρ \rho ϕ \varphi
ε \epsilon λ \lambda % \varrho χ \chi
ε \varepsilon µ \mu σ \sigma ψ \psi
ζ \zeta ν \nu ς \varsigma ω \omega
η \eta ξ \xi

Γ \Gamma Λ \Lambda Σ \Sigma Ψ \Psi
∆ \Delta Ξ \Xi Υ \Upsilon Ω \Omega
Θ \Theta Π \Pi Φ \Phi

• http://detexify.kirelabs.org Look up LATEX symbols that you draw
onscreen.

• https://www.overleaf.com?r=634aa898&rm=e&rs=b Overleaf full-
featured, collaborative online LATEX editor.

• http://notepag.es/introduction Simple online LATEX editor by Chris
Spencer.

• http://www.mathjax.org, jsMath: Common tools that support LATEX
in markdown for notebooks, blogs, and wikis. You will need to
surround math equations with tags: $ $, \[\], {math}, or {latex}
are common.

• http://miktex.org, http://www.tug.org/texlive TEX/LATEX for your com-
puter.

http://detexify.kirelabs.org
https://www.overleaf.com?r=634aa898&rm=e&rs=b
http://notepag.es/introduction
http://www.mathjax.org
http://www.math.union.edu/~dpvc/jsmath
http://miktex.org
http://www.tug.org/texlive

Preface
For me, the first challenge for computing science is to discover
how to maintain order in a finite, but very large, discrete
universe that is intricately intertwined. And a second, but
not less important challenge is how to mould what you have
achieved in solving the first problem, into a teachable disci-
pline: it does not suffice to hone your own intellect (that will
join you in your grave), you must teach others how to hone
theirs. The more you concentrate on these two challenges,
the clearer you will see that they are only two sides of the
same coin: teaching yourself is discovering what is teachable.

—Edsger Dijkstra [1]

Why discrete? Calculus deals with continuous functions, deriva-
tives, and integrals over the uncountably infinite real numbers. Dis-
crete mathematics deals with functions, relations, sets, graphs, and
other discrete structures defined over finite and countable sets. While
serious mathematicians have been known to look down on discrete
math as “recreational mathematics,” computer scientists find it an
ideal fit for computers, which operate on bits.

This book, with its exercises, puzzles, problems, and explorations,
aims to help you develop your skills in precise reasoning and precise
communication about discrete structures that are important to com-
puter science. You will learn terminology and notation that let you
communicate both with computer programming languages and with

xvi

potential clients. (Not that we’ll deal with programming or clients
in this class, but I hope that what you learn in this class will reduce
debugging time and avoid costly miscommunication in your subse-
quent classes and career.) You will gain skills in counting discrete
structures, both to check your understanding and to determine the
computer resources needed to process them. You will learn how to
guarantee properties of structures and programs. You will polish
your writing skills, which are important even for CS majors. And I
hope you will have as much fun with the material as I do, because
then you’ll spend the time to learn it well.

This book is being written for this course, which means that it
is incomplete and likely to contain errors—don’t trust everything
that you read.∗ for your I wecome your corrections, comments,
suggestions, elaborations, and rewrites. There is a sakai forum for
textbook corrections with instructions. You can also send me email,
idealy with an annotated pdf or fdf, or with enough detail that I can
find where to apply your comment or correction. For example, I
need not only the page number, but also the form factor (e.g. dsipad
or dsphone) and document date from the title page.

This book includes dynamic content via pdf annotations
– hypertext, html links, pop-ups, and answers hidden under
rectangles that can be selected and dragged away or deleted.
Note: if this is not hidden, use Adobe or Foxit Reader. You will not
see dynamic content in your web browser or tablet pdf viewer, so I
strongly suggest that you download the pdf and a viewer that under-
stands the Adobe specification for annotations. Examples include
Adobe Reader or Acrobat, Foxit Reader, and Apple Preview. The
annotations will not appear on printed copy.

This book has three distinguishing characteristics. First, it uses
∗Important advice with any written material.

http://www.adobe.com/devnet/pdf/pdf_reference.html
http://get.adobe.com/reader/
http://www.foxitsoftware.com/Secure_PDF_Reader/

advanced applications and puzzles to encourage practice with the
basic definitions of discrete structures and proofs of properties. I
have taken to heart what Ralph P. Boas [12] said more than half a
century ago:

When I was teaching mathematics to future naval of-
ficers during the war, I was told that the Navy had found
that men who had studied calculus made better line offi-
cers than men who had not studied calculus. Nothing is
clearer (it was clear even to the Navy) than that a line
officer never has the slightest use for calculus.. . . What
is the explanation of the paradox?

I think that the answer is supplied by a phenomenon
that everybody who teaches mathematics has observed:
the students always have to be taught what they should
have learned in the preceding course.. . . [s]He does
not learn algebra in the algebra course; he learns it in
calculus, when he is forced to use it. He does not learn
calculus in the calculus course, either; but if he goes on
to differential equations he may have a pretty good grasp
of elementary calculus when he gets through. And so
on through the hierarchy of courses; the most advanced
course, naturally, is learned only by teaching it.

Thus, this book presents quite advanced material that exercises the
basics—a Turing machine game in Chapter 1 to motivate logic, sets,
tuples, and functions in Chapters 2–8; public key cryptography in
Chapter 7 to review the mathematics of base conversion, logarithms,
exponents, floor, and mod; and finite state machine minimization in
Chapter 12 to demonstrate equivalence relations. Chapters 11 and
after break advanced material into many small challenges that exer-

cise the basics; you are encouraged to try to answer these challenges
on your own before looking at answers that are hidden in the pdf or
in the back of the book. Quizzes and tests for this class examine the
basics, and not the advanced material, since you can expect to see
it again if you continue on in computer science. (So go ahead and
learn it; especially by teaching others in your study group, or in the
on-line community for this class.)

Second, there is an emphasis on writing, with the aid of tech-
nology, to communicate the truths that we derive to others and to
ourselves.∗ Writing, even mathematical writing, is a creative activity.

Third, it tries to identify basic, intermediate, and advanced ma-
terial for each of the topics it covers. (Text in blue is intermediate,
and blue and smaller is advanced.)

Mastery of the material in the basic, intermediate, or advanced
sections corresponds roughly to C, B, or A grades, which my institu-
tion (UNC Chapel Hill) officially defines as follows:

C A totally acceptable performance demonstrating an adequate
level of attainment for a student at a given stage of develop-
ment.

B Strong performance demonstrating a high level of attainment.
A Mastery of course content at the highest level of attainment.

Of course, most students do not think of ‘C’ as totally acceptable, and
neither should you. But to reach the highest level of attainment,
one must build on a solid foundation. So, if a chapter topic is
new to you, start by mastering the basics, which usually involves
a bit of memorization and trying out the basic exercises. Then
reread the basics and work on the intermediate sections, which
apply these basics, explain choices made, and develop vocabulary

∗This is not “discreet” mathematics, which is the kind you don’t tell others about.

and style for communication. The advanced sections show how the
topic branches out to connect to new applications or deeper areas
of mathematics. Unless your class already knows the basics well,
expect your instructor to pick and choose from the advanced sections
because there is more content in this book than fits comfortably in a
semester.

Some other books are “proof first,” starting with proofs in number
theory, algorithms, or graphs. This book tends to be “count first,”
using counting questions to ensure that a new definition has been
understood. There are more encyclopedic books,∗ but they don’t
always motivate the basics by connections to advanced topics or
applications, they serve the instructor’s needs more than the students’
needs, and can be costly.

Wikipedia is an excellent resource if you want a clear exposition of
a certain topic, thanks to some selfless mathematicians and computer
scientists on the web. What a book needs to do in the internet age is
to introduce the topics, encourage you to practice to become familiar
with them and their vocabulary, and open new vistas for further
exploration, whether in subsequent classes or on your own.

Thanks to many:
Authors and collectors of puzzle problems: Martin Gardner, Peter

Winkler
Latex package writers: D. P. Story,
Software developers: Kai Leith
Proofreaders: Shawn Brown, Clinton Freeman, Aram Han,

Steven Love, David Millman, Matt O’Meara, Nada Rahmouni,
William Snoeyink, Vishal Verma

∗I like Epp’s “Discrete Math with Appl,” 4th ed. [2] best. Rosen’s “Discrete Math
and Its Appl,” 4th–7th ed. [22] are good, too.

Chapter 1

Introduction to Discrete
Structures & Problem Solving

Already in 1989, the Super Mario World instructions included
this finite state machine diagram and expected eight-year-olds
to understand it.

—Nick Pippenger

1

Figure 1.1: Kara’s world
editor: Click ? for help, Exer-
cises for puzzles or Program-
ming to create solutions.

The mathematics that underlies com-
putation also underlies recreational
mathematics, so what better way to
begin than with a programmable puz-
zle game, Kara.

Objectives: By studying this chapter
and playing with Kara, you will be able
to see that a simple model of compu-
tation depends upon logic, sets, func-
tions, tuples, and graphs, all of which
we will learn to define formally in the
next few chapters. You will also ex-
plore problem-solving steps that will
become very familiar through the rest
of this book.

1.1 Defining Kara’s world

Kara is a ladybug that wanders a two-dimensional grid world, picking
up or dropping clovers. You can give Kara a set of internal states,
including a start and a stop state, and a list of rules that, depending
on her current state and what her sensors tell her about the clovers,
tree stumps and mushrooms in her immediate neighborhood, dictate
her next actions and movements.

Kara is part of a suite of educational software from Raimond
Reichert’s doctoral dissertation [20], supervised by Jürg Nievergelt

at ETH Zürich. I encourage you to download this to any computer
on which you have or can install java, either from swisseduc or from
www.cs.unc.edu/~snoeyink/kara. Double-clicking kara-en.jar should
show Kara’s world, as in Figure 1.1. Try some exercises; I’ll wait.

Kara is a variant of a Turing machine (TM for short), a simple
model of computation named after Alan Turing that incorporates
most of the discrete structures that we will meet formally in the
chapters that follow.

logic Kara’s sensors report whether she has a clover beneath her,
a tree to either side, or a tree or mushroom ahead. Each sensor
provides a logical predicate, a variable whose value is either true or
false. Chapters 2 and 4 define concise notation for predicate logic
and first-order logic, which we use to make precise, unambiguous
definitions and statements in this book.

sets The foundational discrete structure is the set, which is an un-
ordered collection of distinct elements, defined in Subsection 3.1.1
and expanded on in Chapter 5. Kara has her finite set of states,
the sets of sensors used by each state, and the set of symbols, or
alphabet, that can be placed in her world.

tuples, strings A tuple is an ordered list with a fixed number of
elements, as defined in Subsection 3.1.2. Kara herself would
be described as a tuple consisting of a set of states, a function
encoding the rules, and special start and stop states. Kara’s tape is
a matrix, which is just a specific two-dimensional arrangement of a
rather large tuple. Lists, sequences, and strings may have varying
numbers of elements; e.g., each of Kara’s rules contains a string

www.java.com
http://www.swisseduc.ch/compscience/karatojava/kara
www.cs.unc.edu/~snoeyink/kara

of actions, possibly empty. We need recursion from Chapter 8 to
formally define operations on structures of varying size.

functions, relations Kara’s rules are functions that map an input
state and sensor readings to a new state and a string of actions.
You are familiar with many mathematical functions, though the
formal definition of a function f : A→ B as a special case of a
relation in Chapter 6 may be new to you.

graphs Kara is programmed by drawing a graph in which vertices rep-
resenting states are connected by edges representing rules. Graphs
give us useful visual encodings of relations, and are good models
for many puzzles and problems, as we shall see in Chapter 13.

Other discrete structures important to computer science, includ-
ing languages, grammars, finite state machines, and Turing machines,
will be defined primarily to exercise these basic structures. By defin-
ing a common vocabulary for these discrete structures, we will be
able to communicate our ideas precisely to the computer, to other
people, and, because we think in language and symbols, to ourselves.

1.2 On problem solving

This book is full of mathematical puzzles and problems because
practice is the best way to become a good problem solver. Whether
you think of yourself as “good at math” or “not so good at math,”
you can improve by learning some tricks and then spending a lot of
time in practice and a little time in introspection, observing what
works for you.

Two very readable books on problem solving are M. Gardner’s
“Aha! Insight,” [6] which has simply stated problems that require in-
sight for their solution, and discussion on how to develop this insight,
and G. Polya’s “How To Solve It” [19] which begins with general
advice and heuristics for solving mathematical problems then gives
specific advice under headings from “Analogy” to “Working Back-
wards.” Mixed in with serious topics like “Induction” are less serious
topics, such as his characterization of “The traditional mathematics
professor. . . He writes a, he says b, he means c; but it should be d.”

A math professor talks in
someone else’s sleep.Let me include some problem-solving ad-

vice, gleaned from these and other sources,
and illustrate it on an example problem. Let’s teach Kara (or your
favorite TM) how to count in binary (base 2).∗

• Allocate time. Read a problem early, even if you don’t plan to
write the answer until later.
• Express the rules of the game that you are playing in precise

language.
• Work out a few examples on scratch paper. So get some scratch

paper; look to reuse printer paper that has one clean side.
• Consider changing the problem: If you discover by doing examples

that the problem specification is incomplete, what do you think
should be added? If the problem is too hard initially, can you start
with a simplification?
• Notice the assumptions and decisions that you make; you will

want to justify these when you write down your solution, so start

∗If you haven’t yet tried a Kara exercise, take a 15 minute break to do so.

making notes now.
• Draw diagrams. Visual representations of a problem or model can

often bring new insight.
• Break the task into smaller tasks, then solve these smaller tasks.

This is where the real work is done.
• Ask yourself at each step, “What can go wrong to keep me from

completing this step?” Create new worked examples that demon-
strate the right thing to do in each case.

• Test your formula or program using your worked examples.
• Review your solution. Check that it solves the problem as originally

stated. Next, can you simplify it? Can you generalize it so that it
solves more than the problem originally stated?

• Document the key insights in and from your solution, both for
yourself and others.

Allocate time. Read the problem right away, and decide whether
it is a straightforward problem in which you put into practice things
that you already know, a problem in which you first need to read
up on some new system or concepts, or a problem in which you will
need an “Aha!” insight. For the problem of counting in binary, we
will need to know a little more about Kara and do some counting by
hand on scratch paper to gain insight into how counting works.

When reading a problem, try to observe features that may become
important. Allow time for these features to percolate in your brain
while you do other tasks, whether related, like working examples on
scratch paper, or unrelated, like taking a shower. For example, we
can observe that Kara decides her next action on a limited amount of

information—the symbols at or adjacent to her current cell, and her
current state. This means that Kara cannot remember large count
values without somehow writing them down on the tape.

We humans also need to write things down; allow time for writ-
ing, testing, and rewriting a solution. Writing as you go can help
ensure that you spend time working on a solution, and not just
“thinking about the problem,” aka “spinning your wheels,” without
making forward (or even backward) progress.

Express the rules in precise language. Other limitations on Kara
can be discovered in the documentation or by experimenting with
programs: Kara is not allowed to walk into trees, to pick up a clover
that isn’t there, or to put a clover down if one is already there. Kara
“crashes” if her sensor pattern fails to match any of her rules or
matches more than one rule (in the default “deterministic mode”);
these are deemed programming failures.

Kara’s world, her two-dimensional tape, is finite (not infinite as
in a standard TM), but has wrap-around—if Kara goes off one side,
she reappears on the parallel side. Most of the examples have a ring
of trees around Kara’s world to prevent this. Kara can start at any
place in this world, but by default starts facing to the right.

Computer systems have rules that they will enforce by crashing
or doing the wrong thing. Type-checking is designed to help us by
catching programs that would break rules before they do. Mathe-
matical systems also have rules, whether on operations (don’t divide
by zero, or take log x for x ≤ 0) or notational conventions (use the
equal sign (=) only for things that are really equal, not “equivalent”

or “hopefully equal.”) As we introduce such rules,∗ and define the
notation to express them precisely, develop your own personal type-
checks that you can use to catch the mistakes that would be made
by Polya’s “traditional mathematics professor.”

Work out examples on scratch paper. Draw diagrams. If we
want Kara to count in binary, we should start by figuring out how
we can do it ourselves. Pull out your scratch paper and write in a
column: 0, 1, 10, 11, 100, . . . , as I’ve done in Figure 1.2, or use
blanks for 0 and clovers for 1 as Kara does. Write enough numbers
that you can begin to see patterns. Graph paper, or lined paper turned
sideways, may help to keep columns straight. Perhaps underline the
bits (binary digits) that change from one line to the next.

Change the problem. Remember your decisions. Next, sketch
two rows of Kara’s world, one with a number and one blank. Then
draw the path that Kara would take to fill in the blanks with the next
number.

While doing this, you may realize that the initial problem doesn’t
specify completely how binary numbers should be written in Kara’s
world; should we write them left-to-right or right-to left? I’ve chosen
left-to-right for my scratch paper diagram. I have also chosen to
ring the world with trees like in the examples. Kara can use these to
determine where the rows and columns end.

Even for assigned problems, you may find that the statement of
the problem is incomplete without additional assumptions. Recogniz-

∗It is rules and limitations, not freedoms and capabilities, that stimulate creativity.

Figure 1.2: After you get your own scratch paper and make your own
diagrams for counting in binary and Kara’s sequence of actions, you can
move or delete the green rectangles to reveal mine. (If my scratch paper
is not hidden, then download the pdf for this book and use a viewer that
understands annotations, like Adobe or Foxit Reader. Your web browser
or tablet likely won’t show you the dynamic content.

ing this is a good skill, and if you start early enough, you can query
the instructor or teaching assistant for their assumptions, just like
you can query a client in the real world. If you don’t have time for
that, make what you think are reasonable assumptions and clearly
document them, and, if graders or clients agree that those could be
reasonable assumptions, then they cannot fault you for your solution.
It is when you make undocumented assumptions that you may have
trouble.

Break the task into smaller tasks. In my diagram of Kara actions,
I imagine Kara going through three states:

plus1 Starting at the lowest order bit (rightmost), Kara adds one,

which involves putting a 0 in the next row for each 1 above. When
Kara hits the first 0 above, she puts a 1 in the next row, then goes
to a ‘copy’ state.

copy Kara copies the bits above to the next row until the left end,
then goes to ‘rewind.’

rewind Kara moves to the right end of the newly completed row,
then goes to ‘plus1.’

Before we can write rules for each of these three states, we need
to choose which direction we want Kara facing at the start and end
of each state. Let’s have Kara face right in ‘rewind,’ and down in
‘plus1’ and ‘copy.’ This allows us to start Kara anywhere on the first
row in ‘rewind’, where she can go to the right until she senses a tree
ahead, and then turn down before going to ‘plus1.’ In ‘copy’, she’ll
start facing down, but turn to face right just before ‘rewind.’

We’ve broken the larger task into the smaller tasks of deciding
on Kara’s sensors, rules, and actions for each of these three states.
Before reading further, try to complete these tasks yourself: first on
paper, then in Kara.

Figuring out how to break a complex problem or system into
manageable parts is an essential skill for computer scientists, so we
will return to this over and over again. Much of the notation (logic,
quantifiers) and many of the concepts (sum and product rules for
counting, proof and induction) are to help us precisely break things
into simpler parts.

Figure 1.3: A four-state Kara program for counting in binary, and the
results

Ask yourself what can go wrong. We haven’t told Kara how to
stop! Since rewind gets us ready to do the next row, she can check if
there is a next row, and stop if not.

What if Kara fills a row with 1s (clovers)? As described above,
the plus1 state would never find a 0, and Kara would crash. We could
decide to stop, or we could continue so that the next row becomes
all blank, like an odometer resets to 0000000. We should make a
narrow world to test this; Figure 1.3 shows a 6× 20.

Test your solution. Students are often too credulous—too ready
to believe that work intended as a solution must be a solution. (One
cause may be that most math and computing problems in school
are carefully stated to have simple, or simple to grade, answers.)
With powerful tools of math and computing, we can also easily find

a solution of the wrong problem.
Cultivate your inner skeptic—your work is an attempt at a solution

until it has been tested and your belief that you have a solution is
justified. Your scratch paper work should give you a collection of
worked examples on which to begin testing. Asking, “What can go
wrong,” should produce more.

Review your solution. We’ve solved this for Kara’s two-
dimensional world. In a more traditional TM, the one-
dimensional tape extends to infinity on the right, and starts
with the head at an end-of-tape mark on the left. Here I

Mathematicians think
solutions are answers, but
chemists know solutions
are all mixed up.

would choose to write numbers in reverse,
with the low order bits on the left. Counting
could then just overwrite bits in the plus1
state and rewind, never needing to copy the
unchanged bits because they would already
be present on the tape.

Document your solution. Keep notes on definitions, examples
that helped you understand them, and insights you gain in working
out practice problems. Collect and organize your diagrams and notes
as you edit the final version of your results.

1.3 The purpose of puzzles

Studies by K. Anders Ericsson indicate that the main difference be-
tween people with adequate and exceptional performance in several

areas is the amount of practice directed toward the performance.
Spend the time to develop habits of precise thinking and healthy
skepticism. These are important for

computer science students: Many students begin by programming
“experimentally;” combining commands almost randomly until
they get something that seems to work. If instead you refine your
understanding of the task in precise language, you can far more
quickly refine towards a correct program, including test sets to
verify its correctness. Chapter 11 demonstrates deriving the steps
of important algorithms.

puzzle and problem solvers: You can develop and improve your
abilities to solve both puzzles and serious problems by using precise
language to record what you’ve done so far, which helps you stay
out of ruts, as you explore what the problem looks like from
different points of view. Often the right perspective, model, or
diagram can make a puzzle or problem suddenly reveal a path to
a solution. Section 1.2 collects problem solving hints that are also
scattered throughout the book.

those working under contract: When you negotiate a contract
with a client, both of you must share common vocabulary to agree
on the specifications of the task to be done. This remains impor-
tant at the end, when you demonstrate that you have done what
is specified, and that if there is a specification change then you
are owed more money.

developers of critical systems: Computers control aircraft, medi-
cal devices, and Mars landers are systems in which glitches have
already cost human lives and/or staggering amounts of money.

Formal analysis methods are used to prove that a system cannot be-
come stuck in an infinite loop, or overdose a patient—one cannot
simply hope that all bugs have been found.

documenting for code maintenance: Code specifies what is done,
but to maintain code you want to know why and what are the
limitations. Formal development methods identify and document
those, making code easier to maintain.

anyone listening to politicians: Many policies and actions are jus-
tified by the intended consequences, when the actual consequences
may be quite different. There can be a gap between “I wrote a
program that will measure similarity between faces” and “I wrote
a program to compare pixels that I hope will measure similarity
between faces;” there is almost certainly a gap between, “I will
vote for policies that will end unemployment” and “I will vote for
policies that I hope will increase employment in some sectors.”

1.4 Summary

Kara, a computational puzzle game, depends on many of the discrete
structures that we will define formally in this book.

Puzzle solving skills can be developed if you consciously work
at them. Finding an answer is just one step; there are steps you
can take before and after you find an answer that can deepen your
understanding of a problem and its solution.

Mathematics is a creative activity. You need to learn its language
and idioms to be able to express yourself precisely, and that takes
effort and practice, much like any other language. But new languages

give us new ways to understand the world around and within us, to
communicate, and to create – all of which are fundamental to being
human.

1.5 Exercises and Explorations

Quiz Prep 1.1. Be able to explain the goal of and give an example
of each of these problem solving steps.

1. Allocate your time.
2. Learn the rules of the game.
3. Work out examples on scratch paper.
4. Consider changing the problem.
5. Note the assumptions and decisions.
6. Draw diagrams.
7. Break the task into smaller tasks.
8. Ask “What can go wrong?” and create new examples.
9. Test using your worked examples.

10. Review your solution.
11. Document the key insight, both for yourself and others.

You could think of examples in one of these four contexts, or make
up your own: selecting when to take what courses to satisfy require-
ments, going to a movie by borrowing a car or convincing a friend
to drive, winning a level of your favorite video game, or writing a
Kara program for an exercise.

Exercise 1.2. Download Kara and do one or more exercises. Cre-
ate the Kara program for counting in binary by working through
Section 1.2.

Extension 1.3. Gray code. You want to design a position coder
that can report the angle of a rotating shaft. You could encode 2b

positions by striping the shaft with the b-bit binary count pattern

from Figure 1.2 in b concentric circles and positioning b brushes
or photodiodes to sense the bit pattern. Unfortunately, adding or
subtracting 1 may change many bits of a binary number, and in a
mechanical device they never all change simultaneously. Thus, we
get spurious readings as the shaft rotates from one count to the next.

Figure 1.4: A rotary position encoder; zooming in shows a 13-bit Gray
code. Initially hidden in pdf is a 5-bit Gray code.

Frank Gray observed that the same 2b b-bit binary numbers could
be put into a circular order so that from one number to the next

only a single bit changes: toggling from 0→1 or 1→0. His reflected
binary Gray code can be constructed as follows. For one bit, use
order 0,1. For two bits, use order 00,01,11,10, which places 0s in
front of the one-bit code, then 1s in front of the reverse of the 1-bit
code. For k bits do the same: write 0s in front of the (k−1)-bit code,
then 1s in front of the reverse of the (k − 1)-bit code. On scratch
paper, try writing the orders for the 3-,4-, and 5-bit codes, then check
Figure 1.4.

Program Kara (or another TM simulator) to list binary numbers
in Gray code order. You may do this on a 1-d tape by toggling one bit
for each new number, or by copying rows on Kara’s 2-d tape. What
is the pattern for which bit should be toggled next? É

Exploration 1.4. Busy Beaver Turing machines fill an initially blank
tape with a string of as many clovers as possible, and then halt.
(Halting is the challenge – it is trivial to make Kara run forever filling
the tape with clovers.) Kara is a little different from the standard
Turing machine, but if we use an n× 1 world and limit the number
of move-ahead actions, we can create a Kara version of the Busy
Beaver problem:

• Begin with at least an 18×1 tape with a mushroom at the left end
and tree at the right and Kara just to the left of the tree. (Kara
will face the tree in this configuration, so she can sense the tree is
there—she wouldn’t be able to do so if we started with Kara on
the left end.)

• Create a Kara program with only one new state (plus the stop
state). Your program should write as many clovers as possible, but

still halt with Kara in the stop state (not by crashing.)
• Since Kara can do several actions for one rule, let’s say that no

string of actions can contain more than 3 ⇑ (move ahead) actions.
• Do not use the mushroom sensor. If you crash into the mushroom,

make the tape longer, since the tape is supposedly infinite in
that direction. If you continue to crash, then your Kara program
probably has an infinite loop.

1. Use a single new state. With one rule it is easy to write 4 clovers
and stop; with two rules it should be easy to write 7. I know 3
different ways to write 10 clovers and stop. Can you beat my
best single-state machine, which writes 14 clovers and stops?
(Remember, the “and stop” is what makes this a challenge.)

2. What is the best you can do with two new states? (Mine is 58,
which I doubt is the best possible.) Start with an n× 1 world with
large n so Kara does not crash into the mushroom at the left end.

É

Chapter 2

Propositional Logic
‘Contrariwise,’ continued Tweedledee, ‘if it was so, it might
be; and if it were so, it would be; but as it isn’t, it ain’t. That’s
logic.’

—Lewis Carroll, Through the Looking Glass

Precise reasoning is based on logic, so we begin by introducing propo-
sitional logic, which allows us to determine the truth or falsehood of
statements such as, “If it does not rain in the morning, I commute
by bike.”

Objectives: After studying this chapter and related exercises, you
will be able to demonstrate your ability to express statements in
symbolic form, using the logic operations of negation, and, inclusive
or, implies, if and only if (iff), and exclusive or (and their symbols:
¬, ∧, ∨,→,↔ and ⊕) to express statements without ambiguity. You
will be able to distinguish between inclusive and exclusive ‘or.’ You
will be able to create truth tables in order to recognize tautologies
and logically equivalent expressions, including de Morgan’s rules
and conditional expressions.

You will also meet properties of logic operations and rules of
logical inference, both of which can help us rewrite expressions while
preserving their truth values. You will encounter Boolean algebra

20

and circuit notations for the same logical expressions. Finally, you
will be able to demonstrate how to use at least one of these methods
to solve a logic puzzle.

The goal in this chapter is to reduce reasoning in propositional
logic to be purely mechanical—something that a computer can do.
For now, we are willing to sacrifice creativity for precision; we want
to agree on the truth or falsity of statements with no ambiguity.

2.1 Logic operations

We start with propositions, which are statements that are either true
or false. We can abbreviate example statements with lowercase
letters (logic variables), e.g., let p = “It rained this morning,” and
q = “I commuted by bike.” We can write down all possibilities for
whether p and q are true or false in a truth table. A truth table for n
variables has 2n rows, which are all the distinct ways to assign these
variables true or false. We can generate the rows systematically by
counting in binary, as we had Kara do in Section 1.2.

The truth table in Table 2.1 defines the operations not, and, or, if,
and their symbols. The statement, “If it does not rain in the morning,
I commute by bike,” becomes, “if not p then q”, or “(not p) implies
q,” and is written in symbols as p→ q.

Mnemonic for ∧ ∨:
‘and’:‘a∧d’: both true,
‘or’:‘o∨’: at least one true.

The notation for these operations varies
in some books and most programming lan-
guages. E.g., for ‘not,’ I tend to use the over-
line to avoid parentheses, but logicians pre-
fer ¬, so I use that with quantifiers. Programming languages often

Table 2.1: Truth table for logic operations

tautol- contra-
not and or implies xor ogy diction De Morgan

p q p,¬p p ∧ q p ∨ q p→ q p⊕ q p ∨ p q ∧ q p ∨ q p ∧ q

T T F T T T F T F T T
T F F F T F T T F F T
F T T F T T T T F F T
F F T F F T F T F F F

use ‘!’ or ‘∼’. Boolean algebra often uses ‘0’ and ‘1’ for False and True,
and multiplication and addition for ‘and’ and ‘or.’ Parentheses are
used to specify the order of operations; if omitted, evaluate ‘not,’
then ‘and,’ then ‘or,’ then ‘implies,’ just as we evaluate multiplication
before addition.

The interpretation of these operations, however, is quite standard.
In mathematics, the statement p ∧ q is true only if p and q are both
true; it is false otherwise. (One way to be true; three ways to be
false.) The statement p ∨ q is an inclusive or, which is true if p, q, or
both are true; it is false only if both p and q are false. (Three ways to
be true; one to be false.) If we want exactly one of p or q to be true,
we must use exclusive or, p⊕ q. (Two ways to be true, and two ways
to be false.) Neither inclusive nor exclusive‘or’ implies any causal
connection between p and q.

The English language usage is more ambiguous. If I say, “I left my
keys in the car; I hope the driver’s or passenger’s door is unlocked,”
my listener assumes I’d be pleased to find both doors unlocked

(inclusive or). But if I say, “Either it rains, or I commute by bike,"
my listener is likely to assume a causal connection, and consider it
an exception if they discover that I did bike on a rainy day. And if I
habitually bike on rainy days, they might even accuse me of lying.
Translating English into notation forces us to remove the ambiguity.
(There are temporal and modal logics that capture
the subtleties of possibilities, necessities, and excep-
tions. These are beyond the scope of this book, even
though they are crucial for showing that complex
distributed systems do not get stuck waiting for re-
sources, and give rise to nice puzzle problems like
the Dining Philosophers or Byzantine Generals.)

An expression whose truth table column is all true is a tautology;
p ∨ ¬p is the simplest tautology. A expression with all false is a
contradiction; q ∧ ¬q is the simplest contradiction. (The goal in
mathematics is to find tautologies; statements that are always true.
Sometimes we use proof by contradiction, since the negation of a
contradiction is a tautology.)

Two expressions are logically equivalent, indicated by ≡, if and
only if their corresponding columns in the truth table are identical.
The simplest equivalence would be double negation p ≡ p.

We may replace any expression by a logically equivalent expres-
sion. We need not think about whether the statements themselve
are true or false – replacing logically equivalent expressions ensures
that true statements remain true and false statements remain false.
By writing statements in logic notation, we can often recognize
equivalents and simplify expressions purely by symbol manipulation.

For example, in the last two columns of Table 2.1, you can observe
two equivalences known as De Morgan’s laws for logic:

p ∧ q ≡ p ∨ q

p ∨ q ≡ p ∧ q.

Negating both sides gives the usual way to write them:∗

p ∧ q ≡ p ∨ q

p ∨ q ≡ p ∧ q.

So, mathematically, saying “p and q aren’t both true” is equivalent
to saying “p is false or q is false.”

de Morgan’s laws for logic are worth memorizing. I remember
them as a purely symbolic manipulation: “To negate an AND or OR
statement, flip the ∧/∨ and negate both sides.” (This allows me to
be lazy and apply them without thinking about the meaning.)

Be aware that logic operators may be hidden in an English sen-
tence. My favorite bicycle is my blue recumbent trike, which means
it is blue and has the rider reclining and has three wheels. By de
Morgan, if you see me on a bike that isn’t blue or does not have
me reclining or does not have three wheels, then I’m not riding
my favorite. Logic operators may even be hidden in mathematical
abbreviations: the condition 0≤ x ≤ 5 means 0≤ x and x ≤ 5. The
negation of this condition is not(((((hhhhh0> x > 5, but, by de Morgan, is:

(0≤ x)∧ (x ≤ 5)≡ (0≤ x)∨ (x ≤ 5)≡ (0> x)∨ (x > 5).
∗The first says, “p and q are both true iff neither p is false nor q is false.”

Note that many values of x satisfy (0> x)∨(x > 5), but none satisfy
(((((hhhhh0> x > 5. But we don’t have to think about the meaning if we write
out the abbreviation in complete notation and apply de Morgan’s
law.

2.2 Conditionals

Let’s further explore the conditionals. “If p then q,” denoted p→ q
and read as “p implies q,” is false whenever p is true and q is false,
and true otherwise. (Three ways to be true, and one way to be false.)
In fact, p→q is logically equivalent to p∨q, as seen in Table 2.2. By
de Morgan, p→ q ≡ p ∧ q, which agrees with the above: the only
way p→ q is false is if p is true and q is false.

Table 2.2: Truth table for conditionals including iff = if and only if

if contra-pos converse inverse iff
p q p→ q p ∨ q q→ p q→ p p→ q p↔ q p = q

T T T T T T T T T
T F F F F T T F F
F T T T T F F F F
F F T T T T T T T

For statements p = “it is raining” and q = “I commute by bus:"
Conditional: p→ q If it is raining, then I commute by bus.

Contrapositive: q→ p If I don’t commute by bus, then it isn’t raining.
Converse: q→ p If I commute by bus, then it is raining.

Inverse: p→ q If it isn’t raining, then I don’t commute by bus.

Suppose that I promise, “If you loan me your car, I’ll drive you to
the airport.” What can happen? You could loan me your car: if I then
drive you, I have fulfilled my promise – my statement is true. If I don’t
drive you, then I broke my promise and my statement is false. On the
other hand, if you do not loan me your car (because it is in the shop
for repair), then I claim I have already kept my promise, whether I
get my car to drive you, or you take the bus. When the premise (you
loan me your car) is false, then the statement is considered trivially
or vacuously true. So, “either I drove you to the airport or you didn’t
loan me your car (and possibly both).” The two English sentences
in quotes may seem different, but in mathematics they are logically
equivalent and can be substituted for each other.

Let me say it again: whenever p is false, we
declare p→ q to be (vacuously) true. If you
haven’t seen this idea before, it will take some
time to get used to.∗ A puzzle in the margin
demonstrates this. The Wason selection task lays out 4 cards that
each have a number on one side and a letter on the other. It asks
which card(s) you must flip to test the condition that, “if a number
is even, then the letter on the opposite side is a vowel.” ? Only 10%
of people tested identify the correct cards, though afterward most
will agree with the explanation of which cards are correct.

People have a much higher success rate
when the statement involves a social privi-

∗See what I did there? I’m saying that if you have seen the idea of being vacuously
true, then you may or may not need time to get used to it (again or still), but if you
have not seen it before, then you should expect to take time to get used to it.

https://en.wikipedia.org/wiki/Wason_selection_task

lege with a condition. For the four cards in
the margin with a beverage on one side and
age on the other, which card(s) must you flip to test the condition
that, “if someone is drinking beer or wine at a bar, they must be at
least 18 years old.” ? . So think about these as “if you are enjoying a
privilege legally, then you must have fulfilled the condition,” which
is equivalent to “if you have not fulfilled the condition, then you
must not be enjoying the privilege legally.”

In addition to “if p then q” and “p implies q,” several other
English expressions translate to p→q: “whenever p, q,” “q if p,” and
“p only if q.” That last expression says that the only way that p can
be true is for q to also be true, so it might be better to translate it, “if
q is false then p is false,” q→ p. This is the contrapositive of p→q; in
Table 2.2, you can see that the conditional and the contrapositive are
logically equivalent. You can also see this by replacing the “implies”
by its equivalent “or” statement: q→ p ≡ q ∨ p ≡ p ∨ q.

The expression ‘p if q’ means q → p and is the con-
verse of p → q. The expression “if p is false then q
is false” could translate to p → q, which is the inverse

Negative poets write
inverse;

Retro poets wear
Converse.

of p → q. The names are not so impor-
tant, but recognizing which pairs are log-
ically equivalent is. Memorize this: to form
an equivalent to a conditional statement,
negate both sides and swap the order (con-
trapositive). If you just swap, or just negate, you get converse and
inverse, which are equivalent to each other, but not to the original
conditional, since q→ p ≡ q ∨ p.

The biconditional expression ‘p if and only if q’ is common. It
combines the conditional (p only if q) and converse (p if q), and
is logically equivalent to (q→ p)∧ (p→ q), to (q ∨ p)∧ (p ∨ q), to
(p∧ q)∨ (p∧ q), to p⊕ q, and even to p = q, though we avoid using
that for potential confusion with assignment. The biconditional is
abbreviated ‘p iff q’ and written in propositional logic as p↔q. (Two
ways to be true; two ways to be false.)

Continuing to illustrate with social privilege, at the time I am
writing, to apply for a North Carolina driver’s license (without first
getting a learner’s permit), you should be at least 18, have proof of
identity, and, if you were born outside the US, you need proof of
residence in North Carolina. Let a be an aspiring applicant’s age, let
i be true iff they have proof of identity, b be true iff they were born
in the US, and r be true iff they have proof of NC residence. Finally,
A is true iff they may apply. Assuming I have been complete in the
conditions, A↔

�

(a ≥ 18)∧ i ∧ (b→ r)
�

will always be true.

• My son is over 18, has proof of identity, was born in Canada,
but has proof of NC residence. He can apply.

• I am over 18, have proof of identity, was born in the US, and
have proof of NC residence (which I won’t need). I can apply.

• My daughter is over 18, has proof of identity, was born in the
US, and does not have proof of NC residence. She can apply.

• The only people at least 18 with proof of identity that cannot
apply are those not born in the US that do not have proof of
NC residence.

Note that the conditions for my daughter and I can be expressed
concisely because “if you were born outside the US, then ...” is

considered vacuously true for those born in the US. The alternative
is the verbose (b∧(a ≥ 18)∧ i)∨(b∧r∧(a ≥ 18)∧ i). The expression
length would grow exponentially if we would add more “if/then”
rules. This is why we agree to interpret F → q as vacuously T ; it is a
convenience that lets us state conditions more simply.

Three symbols that students often confuse are↔, ≡, and =.This is not
a surprise because they represent the same concept (equality) in different
contexts: logical calculation on T/F values, comparing logic expressions by
their truth table columns, and comparing numbers, sets, functions, or other
discrete structures. Consider which is the correct symbol to substitute for
the � in three contexts with logic variables p, q and numbers or structures
A, B.

p � q (p→ q)� (p ∧ q) A� B
↔ Ø ◦ ×××
≡ ×× Ø ×××
= × ×× Ø

↔ is a logic operator that will be T or F depending on its inputs, so
it makes perfect sense with logic variables (Ø), and no sense with
numbers (×××). It combines two logical expressions into a single
one (◦).

≡ is shorthand for “I claim that, in a truth table, the columns for these
two statements are identical.” (Ø). The ≡ symbol has other uses in
mathematics, but I use it only for logic;⇔ is a synonym. If you want a
logic operator, use↔ (××).

= is either a claim of equality for the structures on the right and left, or
an assignment of the value on the right to the variable named on the
left (Ø). Words in the context should disambiguate: “If x = y” versus
“Let x = y .” It can be used for logic variables (×), but the other symbols
are less ambiguous. It should not be used for expressions (××).

2.3 Logic puzzles

Truth tables can be useful in many logic puzzles. Get your scratch
paper ready, and try these two. Understanding what is being asked
is the first step.

Q1: On an island often visited by Raymond
Smullyan, every inhabitant is a “knight” who always
tells the truth, or a “knave” who always lies. You
meet three inhabitants, Alice, Bob, and Chris, who
are unfortunately not dressed in their characteristic
gear. However, two of them make statements:

Alice says: Bob is a knave or Chris is a knight.
Bob says: Alice is a knight if, and only if, Chris is a knave.

Can you determine uniquely what each of Alice, Bob, and Chris are?

Hints:
1) I suggest A= ‘Alice is
a knight,’

2) Alice says X ;
whether Alice lies or
not, A ↔ X must be
true.

3) Truth table has 23 =
8 rows.

We’ll work through this in several ways
in Section 2.6, but you can already solve it
using a truth table if you 1) define conve-
nient propositions, 2) transform what Alice
and Bob say into statements that must be
true no matter whether they lie or not, and
3) make a truth table to check if there is
a unique row that makes both statements
true.

While you think about that one, here is
another from “Test Your Logic,” by George
J. Summers [24], that we can solve by truth table in detail.

http://en.wikipedia.org/wiki/Raymond_Smullyan
http://en.wikipedia.org/wiki/Raymond_Smullyan

Q2. When Cora was killed by poison, Anna and Beth were ques-
tioned by the police about the manner of her death. They stated:

Anna: If it was murder, Beth did it.
Beth: If it was not suicide, it was murder.

The police made the following assumptions, which subsequent de-
velopments revealed were correct.

1: If neither Anna nor Beth lied, it was an accident.
2: If either Anna or Beth lied, it was not an accident.

What is the manner of Cora’s death: accident, suicide, or murder?
Let’s identify three propositions for the manner

of Cora’s death that we abbreviate as single letters:
a =accident, s =suicide, and m =murder. Add one
more, B =murder by Beth, and we can directly trans-
late the statements of Anna and Beth and the police
assumptions into symbols.

Anna: m→ B.
Beth: s→m.

1: (Anna∧ Beth)→ a, that is
�

(m→ B)∧ (s→m)
�

→ a.

2: (Anna∨ Beth)→ a, that is (m→ B)∨ (s→m)→ a.

With four logic variables, it initially appears as if we need 24 =
16 rows in our truth table, but note that most combinations are
impossible—if Cora’s death is an accident, then by definition it is not
suicide or murder. Make a truth table to find the answer to this puzzle.
Moving the rectangle in Table 2.3 can reveal the truth table form, the
rows, and the completed table, but try to make your own truth table
first. A shorthand that I use to compactly yet carefully evaluate an
expression with multiple operators is to write truth values for each

subexpression in small letters under the corresponding operator.

Table 2.3: A truth table for solving the puzzle of Cora’s death

Anna Beth
a s m B m→ B s→m (Anna∧ Beth)→ a (Anna∨ Beth)→ a

T F F F T F F T T F
F T F F T T T F F T
F F T F F T F T T T
F F T T T T T F F T

You should find only one way for both police assumptions to be
true: Cora was murdered, but not by Beth. Is that what you conclude
from your table?

Once we have determined the variables and propositions, a truth
table is a purely mechanical way to determine which assignments,
out of all the possibilities, are consistent with the statements that
we know must be true. (With less than a dozen variables it is pretty
easy to get a spreadsheet to calculate them, see Exercise 2.16.) An
answer from a truth table may be unsatisfying, because the truth
table does not help us explain “why?” For working problems by hand,
or reducing problems with many variables, it helps to know some
logic properties.

2.4 Properties of operations and inference

There are many properties that we can observe about logic operations.
For a formal proof of any of these properties, simply create the
appropriate truth table and check for equivalence.

Commutative: Order doesn’t matter for ‘and,’ ‘or,’ ‘iff,’ and ‘xor:’ (It
does for ‘implies.’) p ∧ q ≡ q ∧ p, p ∨ q ≡ q ∨ p, p↔ q ≡ q↔ p,
and p⊕ q ≡ q⊕ p.

Associative: Grouping doesn’t matter for ‘and,’ ‘or,’ ‘iff,’ and ‘xor:’
(It does for ‘implies.’) (p∧q)∧r ≡ p∧(q∧r), (p∨q)∨r ≡ p∨(q∨r),
(p↔ q)↔ r ≡ p↔ (q↔ r), and (p⊕ q)⊕ r ≡ p⊕ (q⊕ r).

Distributive: p∧(q∨r)≡ (p∧q)∨(p∧r), p∨(q∧r)≡ (p∨q)∧(p∨r),
and p→ (q ∧ r)≡ (p→ q)∧ (p→ r).

Complement: p ∨ p ≡ T , p ∧ p ≡ F , T ≡ F , F ≡ T .
de Morgan: p ∧ q ≡ p ∨ q, p ∨ q ≡ p ∧ q.
Identities: p ∧ T ≡ p, p ∨ F ≡ p.
Absorption: p ∧ F ≡ F , p ∨ T ≡ T .
Idempotence: p ∧ p ≡ p, p ∨ p ≡ p.
Inverse: Negation is its own inverse: p ≡ p. For ‘xor’ and ‘iff’ each

element is its own (additive or multiplicative) inverse: p⊕ p ≡ F ,
p↔ p ≡ T ,

I claim that none of these properties is initially inherently inter-
esting, because anything that you can deduce from the properties,
you can also deduce from the operations themselves by exhaustively
examining all possible inputs. On the other hand, this examination
is slow, tedious, and, if you are not a computer but an error-prone
carbon-based unit, you will find that knowing and using properties

will allow for easier communication. Effort spent learning these
properties will be repaid not only in logic but also in other areas
because the same properties arise in operations on sets, functions,
and more. (And because the same properties arise in different sys-
tems, then they do become interesting; whole branches of modern
mathematics are about what systems have given properties.)

Note that not all operations have all properties. For example, the
conditional is neither commutative nor associative: p→ q 6≡ q→ p
and (p→ q)→ r 6≡ p→ (q→ r). You can prove these by finding
a single row in a truth table where the left and right sides are not
equivalent. I mostly remember properties for ‘and,’ ‘or,’ and ‘not’ (∧,
∨, ¬), and reduce other operations to those.

2.4.1 Inference with properties

We can use these properties to derive new facts from given facts. We
will say much more about proof and proof format in Chapter 9, but
here are two brief examples. Suppose that you know that (p→q)∧p,
i.e., if a morning is clear, I commute by bike, and this morning was
clear. We can prove the following equivalence.

(p→ q)∧ p given information

≡ (p ∨ q)∧ p equivalence for→

≡ (p ∧ p)∨ (q ∧ p) distribute ∧ over ∨

≡ F ∨ (q ∧ p) contradiction ≡ F

≡ (q ∧ p) ∨ with F is identity

We conclude that knowing the conditional p→ q and its premise p
is equivalent to knowing both p and q: that I commuted by bike and
that the morning was clear. We can either say that (p→q)∧p ≡ q∧p,
or that

�

(p→ q)∧ p
�

↔ (q ∧ p) is a tautology.

Does it seem odd to you that from knowing, “If a morning is
clear, I commute by bike, and this morning was clear,” we conclude,
“ I commuted by bike and the morning was clear.” Why should we
repeat that the morning was clear?

The reason is that we are claiming logical equivalence: that
�

(p→ q)∧ p
�

and (p ∧ q) have identical columns in the truth table,
which is the same as saying that no matter what values we assign to
the free logic variables, p and q, we find that

�

(p→q)∧ p
�

↔ (q∧ p)
is true. Most of the time we care only about the cases in which the
premises are true, and would be happy to observe that from the truth
of “If it is clear, then I cycle, and today was clear,” we could conclude
that “I cycled.” On the other hand, knowing that I cycled would not
let us conclude that today was clear, which is why we cannot claim
equivalence.

A theorem is typically written as an implication: “If a is true, then
b is true,” for some formulas a and b. We write a⇒ b, which is also
read as “a implies b,” as an abbreviation for “whenever a is true, b is
also true,” which is equivalent to saying that “a→ b is a tautology.”

The biconditional and logical equivalence make claims in two
directions, while implication makes a claim in only one direction.
This makes proving biconditionals more difficult, and laziness sug-
gests that we prove them only when both forward and backward
claims are important. This explains why definitions use “iff,” but

most theorems prove the weaker “if-then.”
For the second brief example of a proof, we establish an implica-

tion: If p ∧ q is true, then p is true; (p ∧ q)→ p is a tautology.

(p ∧ q) given information

→ p implied by ∧

We have just developed our first two of nine rules of inference
that are listed in Table 2.4. Modus ponens says that if we know p→q
and we know p, then we may conclude q; that

�

(p→ q)∧ p
�

→ q is
a tautology. Simplification says that if we know p ∧ q, then we know
p; that (p ∧ q)→ p is a tautology.

Table 2.4: Nine rules of inference. If you know the expressions above the
line are all true, you may therefore (∴) conclude the expression below the
line is true. Create truth tables to establish these.

Modus Modus Hypothetical Constructive
Ponens Tollens Syllogism Dilemma
p→ q
p
∴ q

p→ q
q
∴ p

p→ q
q→ r
∴ p→ r

(p→ q)∧ (r→ s)
p ∨ r
∴ q ∨ s

Simplifi- Conjunc- Disjunctive
cation tion Syllogism Absorption Addition

p ∧ q
∴ p

p
q
∴ p ∧ q

p ∨ q
p
∴ q

p→ q
∴ p→ (p ∧ q)

p
∴ p ∨ q

Translate each of these into your own words and you may decide
that rules of inference are just common sense given complicated

names. In fact, they are shortcuts, allowing us to rewrite expressions
without thinking and without making truth tables. We will usually
use them without naming them, but if you are ever unsure whether
some inference is valid, check it with a truth table.

If you go further in the study of logic, you will encounter four distinct
but similar concepts. Let me introduce them with the symbols that are
commonly used. Although we focus on the second, you need to know that
the other three exist to avoid conflating these.

p→ q Material implication: p and q are statements involving logical vari-
ables; the result is an expression that is true or false according to the
logic operator ‘IF.’ We don’t know whether it is true or false, however,
until we know the values of the variables.

α⇒ β Logical implication: α and β are statements, and whenever α is true,
β is true. Another way to say it is that α→ β is a tautology. Material
implication is a calculation of T or F within each specific row of a
truth table; logical implication is a claim about all rows in a truth
table. Although this claim could be true or false, we don’t think of it
as returning a T/F value, so it cannot be part of a logic expression
itself.

Γ |= τ Tautological implication, aka Logically consistent: A statement τ is
logically consistent with a set of statements Γ if and only if, in every
possible world in which all statements in Γ are true, τ is also true.

Γ ` τ Provable from: a statement τ is a theorem of a set of statements Γ if
and only if there is a formal proof of τ from Γ . Gödel proved that any
system expressive enough to encode statements about itself (standard
arithmetic on integers, for example) must have logically consistent
statements that cannot be proved.

Russell to Whitehead: “My
Godel is killing me!”

A proof system is sound if only true things
can be proved, and is complete if every true thing

can be proved. Propositional logic, with the right
axioms of inference, is sound and complete, but
you must go outside of propositional logic to prove it.

2.5 Boolean circuits

Computers are built on logic implemented as electronic circuits,
which often use 0 and 1 for false and true. Either ‘nand’ or ‘nor’ gates,
whose truth tables are in Table 2.5, can be used to build any of the
logic operations of Table 2.1 or Table 2.2.

Table 2.5: Logic gates

not and or xor nand nor half adder
carry result

a b a a ∧ b a ∨ b a⊕ b a ∧ b a ∨ b a ∧ b a⊕ b

0 0 1 0 0 0 1 1 0 0
0 1 1 0 1 1 1 0 0 1
1 0 0 0 1 1 1 0 0 1
1 1 0 1 1 0 0 0 1 0

Logic gates can also perform numerical computation: Consider
a half adder, which sums two bits, a + b, to produce a 2-bit num-
ber whose most-significant, or 2s bit, is the carry and whose least-
significant, or 1s bit, is the result. As shown in the table, carry = a∧b
and result = a⊕b. A full adder sums a, b, and a carry bit c to produce
a 2-bit sum with carry and result bits. What logic expressions on
these three variables produce the carry and result?

carry: (a ∧ b)∨ (b ∧ c)∨ (a ∧ c)
result: Here are three equivalent expressions that could

be wired up as circuits: a⊕ b⊕ c, a↔ (b↔ c) and
(a ∧ b ∧ c)∨ (a ∧ b ∧ c)∨ (a ∧ b ∧ c)

An expression is in disjunctive normal form (DNF) if it can be
written as an ‘or’ of ‘and’ clauses of basic variables or their negations.
An expression is in conjunctive normal form (CNF) if it can be written
as an ‘and’ of ‘or’s. The Latin root dis, meaning apart, puts ‘or’ at the
top of a disjunction; con, meaning together/with, puts ‘and’ at the
top of a conjunction.

Any formula can be written in DNF or CNF; the final formulae
for carry and result above are DNF examples. The result from the
full adder, also known as parity, requires a much larger formula in
DNF or CNF than using ‘xor’ (⊕).

Figure 2.1: Karnaugh
map

To determine the smallest formula for just a
few variables, a Karnaugh map gives a different
view of a truth table. Here is an example for four
variables: we make a 4× 4 array in which rows
correspond to the 4 possibilities for inputs a, b
and columns correspond to the 4 possibilities for
inputs c, d. These input possibilities are listed
in the order 00, 01, 11, 10, called Gray code
order, so that moving to an adjacent cell in the
array changes only one variable. In each cell in
the array we write the desired output 0 or 1, or
X if for some reason we don’t care. Rectangles
(including squares) with side lengths 1, 2, and 4 in this array, including
those that wrap around the boundaries, have simple ‘and’ expressions. We

aim to cover all the 1s and none of the 0s with a small number of possibly
overlapping rectangles, then ‘or’ these ‘and’ expressions to form a DNF
formula. For the 4-variable example in the margin, a minimum DNF formula
is a d + cd + ac.

2.6 Solving a puzzle with logic notation

Let’s look at three different methods to use logic notation introduced
in this chapter to solve the knight/knave puzzle of Section 2.3. No-
tation helps us in four ways: it forces us to resolve ambiguities of
the English used in the problem statement, it serves as a memory aid
as we scribble ideas on scratch paper, it reveals patterns that help us
ensure that all cases are covered, and it structures the presentation
of our findings so they can be understood by others.

I must point out that the nice, neat presentation orders of my pro-
posed solutions are different from the chaotic orders on my scratch
paper. It is common to take detours and explore blind alleys; these
are left out when I write down the steps of a short, clear path to a
solution. This section will do you the most good if you first work
through this question on you own scratch paper:

A1. Recall that knights always tell the truth and knaves always lie.
When you meet Alice, Bob, and Chris,

Alice says: Bob is a knave or Chris is a knight.
Bob says: Alice is a knight if, and only if, Chris is a knave.

Can you determine uniquely what each of Alice, Bob, and Chris
are?

2.6.1 Defining and using notation

We would like to know if Alice is a knight or a knave. Let’s take a
moment to define notation so we can abbreviate both the reality and
the claims about who is what.

Let A stand for the statement that ‘Alice is a knight.’ This is a
proposition, because it is either true or false. Later we hope to find
out which, but for now just think of A as an abbreviation. Because
knights always tell the truth, we can also interpret this as A= ‘what
Alice says is true.’

The negation A stands for ‘it is not true that Alice is a knight.’∗

Since we are told that every person is a knight or a knave, we could
instead say: A= ‘Alice is a knave,’ or equivalently A= ‘what Alice
says is false.’

Similarly define B = ‘Bob is a knight,’ and C = ‘Chris is a knight.’
Alice’s statement can now be written in concise and precise notation:
B ∨ C . Writing notation forces you to interpret ‘or’ as inclusive (∨)
or exclusive (⊕), resolving an ambiguity of using English. The ‘or’
in Alice’s statement would be considered inclusive—we allow the
possibility that both halves of her statement are true.

We don’t yet know whether Alice’ statement is true or false,
because we don’t know if Alice is a knight or a knave.† What would

be true if Alice’s statement is false? We can negate to get B ∨ C , and
optionally apply de Morgan’s law to get the equivalent B ∧ C .

We can construct, from Alice’s statement and its negation, a new

∗Check the negation to help clarify a proposition.
†“Alice is a knight or knave” is exclusive or, since the puzzle rules won’t allow Alice

to be both.

statement that is true whether Alice lies or not: “If Alice tells the
truth then (Bob is a knave or Chris is a knight) and if Alice lies then
it is false that (Bob is a knave or Chris is a knight).” This becomes a
little shorter, but remains cumbersome when we translate directly
into notation. (Try before peeking.)

�

A→ (B ∨ C)
�

∧
�

A→ (B ∨ C)
�

.

Notice that this statement is a conditional and its inverse, which
makes it equivalent to a concise ‘if and only if’ statement:
A↔ (B ∨ C). You should be able to read your statement in notation
as, “Alice speaks the truth iff (Bob is a knave or Chris is a knight).”

Now, construct a similar statement that must be true from what
Bob said. Either B↔ (A↔ C) or B↔ (A⊕ C) work here, since
both can be read as, “Bob speaks the truth iff Alice and Chris are
opposites.”

2.6.2 Solution via truth table

We can use a truth table to explore all possible assignments of knight
and knave to Alice, Bob, and Chris, or equivalently, all T/F assign-
ments to A, B, and C . With 3 variables, our table will have 23 = 8
lines.∗ On your scratch paper, write the column headers A, B, and C .
Then fill the C column, alternating T/F; the B column, alternating
TT/FF; and the A with TTTT/FFFF. (Or start with falses if you prefer;
but use patterns to make sure you cover all possible assignments.)

∗Corresponding to the numbers 0–7 in binary (see sections 1.2 or 7.1.4)

Now, add two more columns with the propositions from Alice and
Bob—not the statements they say, which may be true or false, but
the statements like A↔(what Alice said) that are true whether Alice
is a knight or a knave. Fill in the rest of the truth table. Go ahead
and use the shorthand of writing truth values for each subexpression
in small letters under the corresponding operator.

Table 2.6: A truth table for solving the 3 islanders puzzle

Alice Bob
A B C A↔(B ∨ C) B↔(A⊕ C)

T T T T T F F

T T F F F T T

T F T T T T F

T F F T T F T

F T T F T T T

F T F T F F F

F F T F T F T

F F F F T T F

When you are done, compare your table to mine in Table 2.6. You
should find a unique row in the table for which the two statements
are both true. This row tells us who are knights ? , and who are
knaves ? .

2.6.3 Solution by inference from properties

We can use logic properties and logical inference to solve the same
puzzle by starting with statements that we know to be true, then
combining and simplifying to derive other true statements.

Here, start with the two ‘iff’ statements that we learn from what
is said by Alice (A↔ “Bob is a knave or Chris is a knight”) and Bob
(B↔ “Alice is a knight iff Chris is a knave”). To make them easier
to work with, convert each statement to an equivalent ‘and’ of ‘or’
clauses, known as conjunctive normal form (CNF). For the statement
to be true, the rule of Simplification (Table 2.4) implies that each
‘or’ clause must be true. We use other rules to further simplify ‘and’s
of ‘or’ clauses.

First, convert ‘D iff E’ to CNF, and use that pattern to convert the
statements we learned from Alice and Bob. We get a total of seven
‘or’ clauses that must each be true.

D↔ E ≡ (D→ E)∧ (D→ E)

≡ (D ∨ E)∧ (D ∨ E).

A↔ (B ∨ C)≡ (A∨ B ∨ C)∧
�

A∨ (B ∨ C)
�

≡ (A∨ B ∨ C)∧ (A∨ B)∧ (A∨ C).

B↔ (A↔ C)≡
�

B ∨ (A↔ C)
�

∧
�

B ∨ (A↔ C)

≡ (B ∨ A∨ C)∧ (B ∨ A∨ C)

∧ (B ∨ A∨ C)∧ (B ∨ A∨ C)

Now, we can bring together the first clause from Alice and third clause
from Bob, distribute over ‘and,’ and simplify away a contradiction to
get a new statement that must be true:

(A∨ B∨C)∧ (B∨A∨C)≡ (A∨C)∨ (B∧ B)≡ (A∨C)∨ F ≡ (A∨C).

Combined with Alice’s third clause, (A∨ C)∧ (A∨ C) is equivalent
to A↔ C , so we know that Alice and Chris are the same, no matter
what Bob is. That means that B: Bob lies. But then A: Alice speaks
truth, and C: Chris does also.

The formal justification for the last two sentences can be given by rules
of logical inference. Here is a two-column proof (more in Section 9.2) in
which each entry on the left is true for the reason on the right. You can ignore
two-column proof structure for now, but when reasoning gets complicated,
refining an argument to this level of detail can avoid errors or gaps.

1. A↔ C Given from above
2. A↔ (B ∨ C) From Alice’s statement
3. B↔ A↔ C From Bob’s statement
4. (B→ A↔ C)∧ (A↔ C)→ B) Defn of first↔ in 3
5. B→ A↔ C Simplif. rule on 4
6. B Modus tolens of 5 with 1
7. B ∨ C Addition to 6
8. (B ∨ C)→ A Defn↔ in 2, simplif.
9. A Modus ponens of 8 with 7

10. C Simpl. 1 & modus ponens w/ 9.
11. QED

On my scratch paper, I had also combined (A∨B∨C)∧(A∨B∨C)≡ (A∨B),
which is true, but unhelpful since I had no direct statement about Alice and

Bob.
There is a general form of the rule we have been applying, known as the

resolution rule. If you have clauses a1∨a2∨ . . . ak ∨C and b1∨ b2∨ . . . b j ∨C
both true, then a1 ∨ a2 ∨ . . . ak ∨ b1 ∨ b2 ∨ . . . b j must also be true. That is,
(A∨ C) ∧ (B ∨ C)→ (A∨ B) is a tautology. If you ever find both C and C ,
then this contradiction would imply that there was no solution. (Note that
the resolution rule would give an empty clause.) Reasoning-based AI has
long used resolution this way: if you want to prove that knowing a, b, and c
you can prove d, then put a∧ b∧ c∧ d into CNF and try to derive the empty
clause. If you succeed, then you know (a ∧ b ∧ c) implies d. Resolution is
sound and complete for propositional logic, meaning that it never proves
something false, and can be used to prove any true theorem.

2.6.4 Solution by cases and decision tree

In computer science, we often use a combination of logic properties
with analysis of cases for selected variables—a combination of the
two previous methods. It is important to use some structure or
diagram to ensure that all cases are covered. For example, we might
draw a decision tree that splits into cases depending on who lied.

If Alice lied, then we would know B ∨ C ≡ B ∧ C . But then Bob,
a knight, claims Alice and Chris are opposite when they are both
knaves. This contradiction shows that Alice must be telling the truth.

Figure 2.2: A decision tree

Since Alice tells the truth, either B
or C , or both. Suppose B is true. Then
C is true since Alice tells the truth. But
now Bob, a knight, claims that Alice
and Chris are opposite when they are

https://en.wikipedia.org/wiki/Resolution_(logic)

both knights, so we again have a con-
tradiction, and B must be false. (This
makes Alice’s statement true, no mat-
ter whether Chris is knight or knave.)

Now, Bob lies, so we know Chris is the same as Alice, who is a
knight. This makes both statements true. Furthermore, we have
ruled out all other possibilities, so this is the unique solution.

This may seem the most straightforward of the three solutions
in this section, because it is a direct attack that requires the least
amount of new notation or concepts. It helps that I presented it
in an order that closed blind alleys quickly. Notice, however, that
it actually requires the most thought because it is not mechanical,
like a truth table, and it speaks mainly about hypotheticals that are
not true, as opposed to the properties and inferences in which every
statement written down was true. Look back over the three solutions
and explain to yourself where thought was required and where you
(or a computer) could do calculations or manipulate symbols without
thinking other than to recall the rules.

We will use all three methods of solution, often in combinations.

2.7 Summary

The definition and use of logical notation (¬, ∧, ∨, →, ↔ and
⊕) forces us to make unambiguous, precise statements about how
we intend to combine logic variables. Even before we know the
specific values of the variables, we can simplify statements with
logical equivalences, or use the rules of logical inference to preserve

truth. Then we can write down a truth table listing all possible
T/F assignments to variables and the outcomes—propositional logic
becomes purely mechanical.

It is important to learn the language of this formal notation,
because we will use it to write the definitions and to reason about
the properties of all of the discrete structures in this book.

2.8 Exercises and Explorations

Quiz Prep 2.1. Be able to fill in truth tables like Table 2.1 and
Table 2.2. Be able to demonstrate logical equivalence for the rules of
inference in Table 2.4. E.g., fill in this truth table demonstrating the
logical implication (and not the logical equivalence) of Hypothetical
Syllogism. (Here p, q, & r are logical variables and A, B, & C are
abbreviations for implications.)

A B C
p q r p→ q q→ r p→ r (A∧ B)→ C (A∧ B)↔ C

A B C
p q r p→ q q→ r p→ r (A∧ B)→ C (A∧ B)↔ C

T T T T T T T T
T T F T F F T T
T F T F T T T F
T F F F T F T T
F T T T T T T T
F T F T F T T F
F F T T T T T T
F F F T T T T T

The tautology in the second to the last column establishes the rule of
Hypothetical Syllogism (HS), that knowing p→ q and q→ r implies
p→ r. The last column shows that HS is not a logical equivalence:
(p→ q)∧ (q→ r) 6≡ (p→ r).

Quiz Prep 2.2. Match each of the following statements, with logic
variables p and q, to their logical equivalent(s), which use only the

“and” (∧) and negation (overline) operations.

1. p→ q

2. p ∨ q

3. p↔ q

4. p⊕ q

a. p ∧ q ∧ p ∧ q
b. p ∧ q
c. p ∧ q
d. p ∧ q
e. p ∧ q

Quiz Prep 2.3. Write logical expressions for:

1. At least one of p, q, and r is true. (p ∨ q ∨ r)

2. At most one of p, q, r is true. p ∧ q ∧ p ∧ r ∧ q ∧ r, or
(p ∧ q)∨ (p ∧ r)∨ (q ∧ r)

3. Exactly one of p, q, r is true. (p ∨ q ∨ r)∧ p ∧ q ∧ p ∧ r ∧ q ∧ r, or
(p ∨ q ∨ r)∧

�

(p ∧ q)∨ (p ∧ r)∨ (q ∧ r)
�

.

Quiz Prep 2.4. Use a truth table to prove the exportation rule: that
(p ∧ q)→ r is logically equivalent to p→ (q→ r).

Exercise 2.5. Operator precidence: In arithmetic expresions we
have precidence rules that says that in an expression like 1·5−8/4+23

evaluate the exponential, then multiplication and division (left to
right), and finally addition and subtraction (left to right). (Some
learn these as PEMDAS.) In logic, the order is parentheses, negation
(¬), and (∧), or (∨), and if,iff (→,↔), with operations evaluated
from right to left. Insert parentheses in these expressions so they
they will evaluate correctly even if you follow only the parentheses
rule.

https://www.purplemath.com/modules/orderops.htm

1. p ∨ q ∧ r is p ∨ (q ∧ r).

2. p→¬q→ r is p→
�

(¬q)→ r
�

.

3. p↔ q→ r is p↔ (q→ r).

4. p ∨¬q→ r is
�

p ∨ (¬q)→ r
�

.

5. p ∧ q→ p ∨ q is (p ∧ q)→ (p ∨ q).

6. p ∨¬q↔¬(¬p ∧ q) is
�

p ∨ (¬q)
�

↔
�

¬
�

(¬p)∧ q
�

�

.

É

Exercise 2.6. Find the mistake(s) in each of the following. ∗

1. The negation of 0< x < 5 is 0≥ x ≥ 5.

2. p only if q means q→ p.

É

Exercise 2.7. Use truth tables to establish the properties of Sec-
tion 2.4. These are among the most useful:

1. Commutative: p ∨ q ≡ q ∨ p, p↔ q ≡ q↔ p, but p→ q 6≡ q→ p.

2. Associative: (p∨q)∨ r ≡ p∨ (q∨ r), (p↔q)↔ r ≡ p↔ (q↔ r),
but (p→ q)→ r 6≡ p→ (q→ r)

3. Distributive: p ∨ (q ∧ r) ≡ (p ∨ q) ∧ (p ∨ r) and p→ (q ∧ r) ≡
(p→ q)∧ (p→ r).

∗Warning: incorrect statements in this problem!

a
b
∴ c

Exercise 2.8. Use truth tables to establish
the nine rules of inference in Table 2.4. To
establish an inference rule that follows the
pattern in the margin, you would demon-
strate that (a ∧ b)→ c is a tautology.

Exercise 2.9. Show that the ‘nand’ operator, which is false if and
only if both inputs are true, can be used to make NOT, AND, OR, IF,
and IFF. One symbol for ‘nand’ is the ‘Sheffer stroke,’ which is just
an upward arrow, ↑.

Hint: make ‘not’: p ≡ p ↑ p.

Puzzle 2.10. (From “Test your logic: 50 puzzles in inductive rea-
soning” [24]) When Adrian, Buford and Carter eat out, each orders
either ham or pork.

1. If Adrian orders ham, Buford orders pork.
2. Either Adrian or Carter orders ham, but not both.
3. Buford and Carter do not both order pork.

Who could have ordered ham yesterday and pork today?
Hint: Make a truth table.

Puzzle 2.11. On an island often visited by Raymond Smullyan,
every inhabitant is a “knight” who always tells the truth, or a “knave”
who always lies. You meet five inhabitants, A–E, and four of them
make statements:

A says: E is a knight if and only if C is a knight.

http://en.wikipedia.org/wiki/Raymond_Smullyan

B says: If D is a knave, then A is a knight.∗

C says: A is a knave if and only if B is a knight.
D says: If A is a knave, then E is a knight.

Write down in logic notation what we learn from each statement,
using logic variable A to stand for “A is a knight.” Thus, if A says
statement P, we would learn A↔ (P). Then, determine who is a
knight and who is a knave so that what we learn from each speaker
is true. As in Section 2.6, you can use a truth table, rules of inference,
or a mix of both. ?

Puzzle 2.12. On Nomanisan Island, the natives communicate only
person to person. Each inhabitant belong to one of two tribes: T or
F . When two people from the same tribe communicate, they tell the
truth, but when two people from different tribes communicate, they
lie.

You meet 5 inhabitants, denoted A–E, and you ask them to talk
about who is from what tribe. You observe these statements:

A to B: C is from tribe T iff E is from tribe T .
B to C: A is from tribe F or E is from T .
C to D: D is from tribe F iff E is from tribe F .
D to E: E is from tribe F or B is from F .
E to A: B is from tribe T or D is from T .

Write in notation what you learn from each statement. For exam-
ple, from A to B: P, you learn (A↔ B)↔ P. Then determine who
is from tribe T and who is from F .
∗Hint: What we learn from B is not (D→ A), but B↔ (D→ A), which captures

that B may lie.

Puzzle 2.13. On Raymond Island, “knights” always tell the truth,
“knaves” always lie, and “normals” sometimes tell the truth and
sometimes lie.

1. You meet three islanders, A, B, and C , who say

A: I am a knight.
B: I am a normal.
C: I am a knave.

For which of the three can you uniquely determine the type? (For
each one, say what type they could be and whether they are lying.)

A can be a truthful knight or a lying normal or knave. B can be a
truthful normal or a lying knave. C must be a lying normal.

2. Suppose you are a normal. What could you truthfully say that
would clearly indicate your status? Say, “I am not a knight.”

Puzzle 2.14. On Raymond Island, “knights” al-
ways tell the truth, “knaves” always lie, and “nor-
mals” sometimes tell the truth and sometimes lie.
You meet 4 natives, denoted A–D. At least one is
a knight, and at least one is a knave. They state:

A: If B is a knave, then C is a knight.
B: D is a knight if and only if C is a knight.
C: If B is a knave, then A is a knave.
D: C is a knave if and only if A is a knave.

Define some notation that will let you write what
you learn from each statement. Unlike the previous problems, you
cannot equate true=knight and false=knave, because there is a third
option. Also, you learn something if the speaker is a knight or knave,
but nothing if the speaker is a normal. Who are knights, who are
knaves, and who are normals?

Puzzle 2.15. (From “Test your logic: 50 puzzles in inductive rea-
soning” [24]) Aaron Green and his sisters, Betty and Clara, had a
tragic dinner with Flora Brown and her brothers, Duane and Edwin.
Their two separate families had pushed them into the same two
professions: Aaron, Betty, and Duane were bankers; Clara, Edwin,
and Flora were lawyers. At the dinner, one of the six was killed by
one of the other five. Who was the killer?

1. If the killer and victim were related, the killer was a man.
2. If the killer and victim were not related, the killer was a banker.
3. If the killer and victim had the same occupation, the victim was

a man.
4. If the killer and victim had different occupations, the victim was

a woman.
5. If the killer and victim were the same gender, the killer was a

lawyer.
6. If the killer and victim were different genders, the victim was a

banker.

Discuss what types of notation you create or use to help you solve
this without getting lost in the possibilities.

Exploration 2.16. Use your favorite spreadsheet program to create
truth tables for logic operations or to solve logic puzzles. You can
use TRUE/FALSE and logic operations (check your documentation
for AND, NOT, OR, IF), or 0/1 and arithmetic operations (*, –, max,
mod). First you’ll want to set up a way to count through all possible
T/F sequences for the variables, and then put in the logic expressions
using those variables. Spreadsheets let you “fill down”∗ to replicate
the formulas in a row to fill the entire table.

Next, put the text of the formulas in row 1, and the spreadsheet
math in row 2. Spreadsheets support logic (AND, OR, NOT) on
TRUE/FALSE, or you can use arithmetic operations on numbers
to achieve the same operations (*, MAX, 1–). The ampersand (&)
concatenates strings in Excel, and is not the operator for ‘AND.’ Check
the documentation on IF; in Excel, A→B is written as=IF(A,B,TRUE),
or you can use the equivalent =OR(NOT(A),B). I use =(A=B) for
the biconditional, A↔ B.

É

∗The first spreadsheet program, Visicalc in 1979, already had replication com-
mands.

Chapter 3

Sets, Tuples,
& Counting

Mathematics may be defined as the economy of counting.
There is no problem in the whole of mathematics which cannot
be solved by direct counting.

—Ernst Mach

In this chapter we begin to define sets, which are unordered collec-
tions of elements with no repeats, and tuples, which are ordered
lists of elements allowing repeats. Strings and arrays are generaliza-
tions of tuples. We also define the most basic operations on sets and
tuples; Chapter 5 defines additional operations and Chapter 8 adds
recursive definitions. And we see how the sum and product rules
help us count how many elements in a set or how many possible
tuples; we return to these rules more formally in Section 6.3.

Counting can help check if we understand a definition. The last
digit of a bank account or credit card number is typically a “check
digit” that can be computed from the others—e.g. it might be the last
digit of the sum of the other digits. It adds no new information to the
account number, but can catch many errors, including any single digit
mistyped. In a similar way, counting often gives a quick confirmation
that we have correctly understood a new concept, structure, or

57

algorithm.

Objectives: After studying this chapter, you will be able to define
sets with braces, { }, tuples with parentheses, (), sets of tuples with
Cartesian product, ×, and sets of strings with concatenation, and
series with summation. You will be able to name common sets
(including the natural numbers N, integers Z, and the empty set
; = {}), and use notation for testing element inclusion in a set,
∈ and its negation 6∈, and for testing whether a set is a subset of
another, ⊆. You will be able to count elements in sets using the sum
and product rules, and count permutations and combinations, using
notation for summation (

∑

), product (
∏

), factorial (!), and choose
(binomial coefficients

�n
k

�

= C(n, k)).
k-element set or bag k-tuple

without repetition
�n

k

�

= C(n, k) = n!
(n−k)!·k! nk = P(n, k) = n!

(n−k)!

allowing repetition
�n−1+k

k

�

nk

3.1 Defining sets and tuples

Definitions are important to remember: how often have you been
in an argument and realized that both parties were using the same
words, but with different meanings? Formal definitions help ensure
that, in mathematics and software development at least, we are
talking about the same thing.

Good definitions are concise, but precise—even though the con-
cepts they define may be abstract. When you encounter a definition,
even if the concept is familiar, create small examples that fit and that

do not fit the definition. Sometimes mathematical definitions don’t
seem to match our intuitive ideas: is a set that contains no elements
still a set? We say ‘yes’ because that causes fewer special cases than
saying ‘no’—for example, the intersection of two sets is always a set.
But it is always a good idea to check these ‘boundary cases.’

3.1.1 Sets

A set is an unordered collection of distinct elements from some uni-
versal set, U . By common convention, we name sets with upper case
letters and elements with lower case, and define notation a ∈ S to
be true if a is an element of S and false otherwise.

We can specify the elements in a set using curly braces in three
different ways.

list: For a finite set, we can list all the elements surrounded by
braces; three examples are S = {a, b}, the empty set ;= { }, and
T = {;, a, S}.

Neither the order of the elements nor repeated elements have any
effect on which elements are in the set, so {b, a, a} is the same
set as S. As the set T shows, however, sets may become elements
of other sets. Here, T has three elements, not two or four, as
explained at the end of this section.

pattern: Informally, we can indicate a set by writing down some
elements and using ellipses. Three examples are the alphabet
A= {a, b, c, . . . , z}, the set of natural numbers∗ N = {0,1,2, . . .},
∗Zero is natural to a computer scientist. Sec 8.1.1 defines N recursively.

and the set of integers† Z = {. . . ,−2,−1,0,1,2,3, . . .}. Be sure
that you write enough of the pattern that there is no ambiguity.

rule: Within braces, we can write a rule consisting of a function,
a vertical bar, and a set to which the function is applied. Three
examples are the state capitals, C = {x | some state S has capital
city x}, the squares {x2 | x ∈ Z}, and the rational numbers Q =
{p/q | p, q ∈ Z and q 6= 0}. Because sets have no duplicates, the
value 1/2 is considered to appear in Q once, even though it is
added in many ways, e.g., 1/2= 3/6= 128/256.

Subsection 8.1.1 introduces recursive definition to formally define
sets of arbitrary sizes, without using ellipses (. . .).

Several common sets have conventional names or symbols: ;, N,
Q, and Z are defined above, the reals R are used in calculus.

For integers and reals we have ranges, such as the positives
Z+ and R+, negatives Z− and R−, non-negatives N and R≥0, and
the closed,∗ open, and half-open intervals: in this book, [m..n] =
{m, m+ 1, . . . , n− 1, n} is always a set of consecutive integers, and
[a, b] = {x | a ≤ x ≤ b}, (a, b) = {x | a < x < b}, and [a, b) =
{x | a ≤ x < b} are usually reals, although they will denote sets of
integers in some contexts, like algorithm loop variables.

Please note that a < x < b is a mathematical abbreviation for
the logical statement (a < x) ∧ (x < b). A few programming lan-
guages, including Python and Julia, support “inequality chaining”
and therefore handle this abbreviation correctly. Most program-

†Z comes from Zahlen, the German word for numbers.
∗Mnemonic: closed contains the ends, and open omits the ends

ming languages will warn you if you try to use an expression like
1 < x < 5, because they recognize that the first inequality gives a
Boolean (true/false) result, which the second tries to compare to
the number 5. In languages that represent logic values as numbers
(including C and FORTRAN, which represent true as 1 and false as
0) a compiler may not even warn you that the expression 1< x < 5
is always true, regardless of the value of x . As discussed at the end
of Section 2.1, we can use de Morgan’s law to determine the set of
values x that are not in (a, b), namely {x | (a ≥ x)∨ (x ≥ b)}.

The basic operation for a set S is element inclusion: testing
whether a given element a from the universe U is in S. As men-
tioned above, the expression a ∈ S is true if a is an element of S
and false otherwise. For example, 2 ∈ Z, but 1/2 ∈ Z, which we can
write with less clutter as 1/2 6∈ Z. Likewise, x 6∈ (a, b) means either
x ≤ a or b ≤ x .

In Chapter 5 we use element inclusion, ∈, and logic to define
other set operations (equality, subset, union, intersection). For ex-
ample, set A is a subset of B, denoted A⊆ B, iff every element in A
is also in B, and A= B iff every element of the universe is either in
both A and B, or in neither A nor B. One consequence of defining all
operations based on inclusion is that we have no way to determine
the order elements are placed into a set, or whether an element is
“in a set more than once.”∗ We thus say that sets have no order and
cannot store repeats; an element is either in a set S or it is not.

The number of elements in a set S, called the size or cardinality of

∗The multi-set or bag data structure tracks repeats, but not order. Tuples, defined
next, track both.

S, is denoted |S|†. To count elements of a set, we simply assign them
numbers 1, 2, 3, . . . until every element has exactly one number.
After Subsection 6.2.2 we can say this more mathematically: |S| = n
if and only if there is a bijection (a one-to-one and onto function)
f : [1..n]→ S. In most of this book we count only finite sets, although
we will touch on infinite counting in Section 6.3.

The elements of sets may be sets themselves, as we saw in the
list example T = {a,;, S}, where S = {a, b}. Set T contains three
elements, two of which are sets: ; ∈ T and S ∈ T are both true.
(Since S is a set it is uppercase; by position in front of ∈ it also being
considered as an element.) Note that T does not contain b as an
element: b 6∈ T , even though {a, b} ∈ T . Likewise, ; 6∈ S.

Counting helps us distinguish between the empty set, denoted ;
or { }, which has zero elements, and the set containing the empty
set, denoted {;} or {{ }}, which has one element that happens to be
a set itself.

Since a ‘set of sets’ is hard to say, we will instead say collection
of sets or family of sets. For example, {{a, b}, {b, c}, {a, c}} is the
family of all three of the two-element sets that can be made from
the elements of {a, b, c}. Section 5.3 has other examples.

3.1.2 Tuples

As just defined, sets are unordered collections of elements. In many
instances, however, order matters; the ordered pairs (x , y) of Carte-
sian coordinates are the most familiar mathematical example.

†Read |S|= n as, “The cardinality of S is n,” or, “Set S has n elements.”

A k-tuple∗ is an ordered sequence of k elements, which we
write down in parentheses, (a1, a2, . . . , ak). Two tuples are equal
iff all of their corresponding elements are equal: (a1, a2, . . . , ak) =
(b1, b2, . . . , bk) iff for all i ∈ [1..k] we have ai = bi .

2-tuples and 3-tuples are more commonly called ordered pairs
and ordered triples. These names emphasize the two important
characteristics of a k-tuple: the number of elements is fixed at k,
and the order matters: (a, a, b) and (a, b, a) are different 3-tuples.
There is also one 0-tuple, (), which may be called the empty tuple.

The basic operation to create tuples is the Cartesian product of
two sets, which actually makes a set that contains all possible pairs:

A× B = {(a, b) | for all a ∈ A and for all b ∈ B}.

Let L = {a, b, c} and D = {0, 1}. Can you list the tuples in these
sets?

L × D = {(a, 0), (a, 1), (b, 0), (b, 1), (c, 0), (c, 1)}

D× L = {(0, a), (0, b), (0, c), (1, a), (1, b), (1, c)}

L × L = L2 = {(a, a), (a, b), (a, c), (b, a), (b, b), (b, c), (c, a), (c, b), (c, c)}.

D× L × D = {(0, a, 0), (0, a, 1), (0, b, 0), (0, b, 1), (0, c, 0), (0, c, 1),

(1, a, 0), (1, a, 1), (1, b, 0), (1, b, 1), (1, c, 0), (1, c, 1)}

L × ;= ;

L × {()}= {(a), (b), (c)}= L

∗ ‘Tuple,’ in American English, is pronounced with a long ‘u’.

Notice three things about the notation used here: First, we abbreviate
L × L as L2. In general, whenever you see a set Sk, it means take
the Cartesian product of k copies of S to make the set of all possible
k-tuples. Since order matters and repeats are allowed in a tuple,
L2 = L × L contains nine pairs. In contrast, the number of two-
element sets from L is only three.

Second, we interpret (0, (a, 1)) = ((0, a), 1) = (0, a, 1); unlike
sets, tuples just become longer, rather than nesting inside each other.
In general, if we join a j-tuple to a k-tuple, then we obtain a (j + k)-
tuple and can suppress all parentheses but the outermost. This holds
also for the 0-tuple; the pair ((a), ()) reduces to the 1-tuple (a).
Notice that this means that D × (L × D) = (D × L)× D; Cartesian
product is associative; it does not matter which product we do first.
(It is generally not commutative; note above that D× L 6= L × D.)

Finally, note the difference between the empty set ; and the set
containing the empty tuple. The empty set has no elements, so the
Cartesian product definition for L × ; has no way to choose a b ∈ ;,
so the result is empty. The set containing the empty list has one
element, and since this element does not affect tuples it is paired
with, L × {()}= L.

We have already seen tuples applied: the rows of
a truth table with k variables are the ele-
ments of {T, F}k, which is the set of all pos-
sible k-tuples of T and F .

Not all elements of a tuple need to have
the same type. This makes tuples perfect for
associating different types of data. A Kara program, for example,

may be described as a 5-tuple (S, s0, f , R,δ) containing a set of states
S, a distinguished start state s0 ∈ S, a final or stop state f ∈ S, a set
of sensors R, and a transition function δ that maps the current state
and the sensor readings to a new state and string of actions from the
set M = {�,⇑,�,↑,↓}.

Relational databases gather data into tuples – e.g., a student
record may be a tuple with a name, id number, address, and other
associated data. The database of all students may be viewed as a set
of these tuples. The distinguishing feature of a set of tuples is that
each tuple has the same finite number of elements and same types
in each position.

3.1.3 Sequences, strings, and series

Several structures that are extensions of tuples will be defined for-
mally in Chapter 8. We use the terms list when we speak about tuples
that may have arbitrary finite length, and sequence when that length
may even be infinite. Vectors are tuples with additional operations,
including addition (translation), scalar multiplication (scaling), rota-
tion, and calculating lengths. Matrices, arrays, and tables are tuples,
displayed with a two-dimensional layout, and perhaps given extra
operations.

Strings are lists containing characters from a given alphabet
set. We write them without parenthesis or braces, and often name
them with lowercase Greek letters like α, β , γ, σ, or τ. The
empty string is commonly denoted by capital Lambda, Λ. A set
of strings is called a language. For example, using the alpha-

bet A = {a, b, c}, we can define strings α = a, β = baa, and
γ = cab. We can define the language of all three-letter strings
A3 = {aaa, aab, aac, . . . cca, ccb, ccc}, the language of all strings
A∗ = {Λ, a, b, aa, ab, bb, ba, aaa, aab, . . . }, and the language D
of all strings from A∗ that are in the official Scrabble dictionary:
D = {aa, aba, abaca, abba, ba, baa, baba, bacca, cab, caca}.∗

A list, sequence, or string by itself is really just a tuple, sometimes
given slightly different notation. The main difference comes when
we make sets: a set of lists or strings may contain elements of many
sizes, but a set of k-tuples contains only tuples of length k.

The main operation for lists and strings is concatenation, which
joins two input lists or strings of length m and n into one of length
m+ n by putting elements of the second list or string after those of
the first. Chapter 8 formally defines this and other operations.

We extend the definition of concatenation from strings (as lists)
to languages L and M by concatenating all possible pairs of strings:
LM = {αβ | α ∈ L and β ∈ M}, like Cartesian product except that if
L or M has entries of different lengths then LM will have entries of
different lengths. Chapter 8 will formally define L∗ to be all strings
that can be made by concatenating a finite number of strings from L.

A series is a sum of a sequence of numbers, replacing commas by
plus signs. Any finite sequence, such as (x1, x2, . . . , xn), has a series
x1 + x2 + · · ·+ xn with a well-defined value. As you should recall
from calculus, an infinite series, x1+ x2+ x3+ · · · , may converge to a
limit, may diverge to infinity, or may be undefined. Do you recognize
the behaviors of the following examples?

∗Find with a regular expression search for ∧[abc] ∗ $.

http://www.puzzlers.org/dokuwiki/doku.php?id=solving:wordlists:dictionary_search

1. x i = i:
∑

i≥1 i = 1+ 2+ 3+ · · · ?

2. x i = 1/i:
∑

i≥1
1
i = 1+ 1/2+ 1/3+ · · · ?

3. x i = (−1)i:
∑

i≥1 (−1)i = −1+ 1− 1+ 1− · · · ?

4. x i = (1/2)i:
∑

i≥1
1
2i = 1/2+ 1/4+ 1/8+ · · · ?

5. x i = (−1/2)i:
∑

i≥1
1
(−2)i = −1/2+ 1/4− 1/8+ 1/16− · · · ?

In this book, nearly all of our series are finite; the main thing that
I want to borrow from calculus is Euler’s Sigma summation notation
to write sums without ellipses. Beneath the sigma,

∑

, name one
or more index variables and a set that its values come from, and
follow with an expression that depends upon the index variables.
For example, the finite sum

∑

i∈[1..n] x i = x1+ x2+ · · ·+ xn uses index
variable i and set [1..n].

Note that an index variable is just a placeholder; as long as you
choose a variable that does not already have a value or otherwise
appear in the expression, you can substitute freely:

∑

j∈[1..n] x j =
∑

i∈[1..n] x i .
We often omit parts of the notation that can be inferred from

context. E.g., rather than writing a set of integers, we may just write
the condition on the index variable:

∑

i∈Z+
x i =

∑

i≥1

x i = x1 + x2 + x3 + · · ·

Many write sums with upper and lower index limits, like
∑n

i=1 x i ,
but I encourage you to sum over a set of indices instead. Specifying
indices by a set or logical condition gives flexibility—for example, we
can easily sum over evens or primes. We can also sum over pairs with
a single summation; if we do want to spell out the nested summation,

it is easier to copy conditions on indices than to correctly calculate
the starting and ending values:

∑

1≤i< j≤n

x i x j =
∑

1≤i<n

∑

i< j≤n

x i x j

!

=
∑

1< j≤n

∑

1≤i< j

x i x j

!

.

In a similar fashion, the product of elements in a sequence is
represented by Greek capital Pi:

∏

1≤i≤n x i = x1 · x2 · · · xn. The next
chapter will use big-and and big-or to apply the corresponding logic
operation to a sequence of true/false values.

3.2 Counting elements in sets

We have already been comparing counts to distinguish between
between a set of sets and a set of tuples. In the rest of this chapter, I
introduce some rules, concepts, and notation to let us count elements
in a set. We revisit these more formally in later chapters.

3.2.1 The sum and product rules

We will repeatedly use two simple rules for counting elements in cer-
tain sets: the sum rule and product rule. I introduce them informally
here, and more formally in Section 6.3.

Sum rule: Suppose that each element of a set has an assigned type.
Then the total number of elements is the sum of the numbers of
elements of each type.

Product rule: Suppose that elements of a set have features that can
be chosen independently. Then the number of elements is the
product of the numbers of choices.

C
al

cu
lu

s

H
ow

to
S

ol
ve

It

1,
2,

3,
∞

H
ow

to
P

ro
ve

It

W
in

n
in

g
W

ay
s

C
on

cr
et

e
M

at
h

em
at

ic
s

P
ro

of
&

R
ef

u
ta

ti
on

s

C
ri

ti
q
u

e
of

P
u
re

R
ea

so
n

W
h
y

is
th

er
e

ai
r?

S
op

h
ie

’s
W

or
ld

D
is

co
u

rs
e

on
th

e
M

et
h

o
d

P
en

sé
es

C
on

fe
ss

io
n

s

O
rt

h
o
d

ox
y

6 + 5 + 3

Here are simple examples of both rules. You
have a set of six different math books, five dif-
ferent philosophy books, and three different reli-
gion books. How many books do you have? The
sum rule says, “Add them up: 14.”

What are we counting? Books in a set, which means no repetition
and order does not matter.

Why the sum rule? Because each book is one of the three types,
math, philosophy, or religion, applying the sum rule counts each book
in the set exactly once.

Now you want a set of three books, one of each type; how many
sets of three are possible? You want to count all tuples of the form
(m, p, r), where m is a math book, p is a philosophy book, and r
is a religion book. You choose one of six math books, one of five
philosophy books, and one of three religion books—the product rule
says, “6 · 5 · 3= 90 sets of three are possible.”

What are we counting? The possible sets of three books, one of each
type. (We can instead think of this as counting triples (m, p, r), using
the three types to impose an order; more on this in Subsection 3.2.3.)

Why the product rule? Because we choose each type of book inde-
pendently, we multiply the 6 math choices, 5 philosophy, and 3 religion
to get the total number of different 3-tuples or 3-sets that have one
book of each type.

P
ro

of
&

R
ef

u
ta

ti
o
n

s

C
ri

ti
q
u

e
o
f

P
u
re

R
ea

so
n

W
h
y

is
th

er
e

a
ir

?

S
op

h
ie

’s
W

o
rl

d

D
is

co
u

rs
e

on
th

e
M

et
h

o
d

C
a
lc

u
lu

s

H
ow

to
S

o
lv

e
It

1,
2,

3,
∞

H
ow

to
P

ro
ve

It

W
in

n
in

g
W

ay
s

C
o
n

cr
et

e
M

a
th

em
at

ic
s

P
en

sé
es

C
o
n

fe
ss

io
n

s

O
rt

h
o
d

ox
y

×

×

6 · 5 · 3
r

m

p

The product rule tells us that |A× B| = |A| · |B|;
that the number of elements in a Cartesian product
is the product of the numbers in the defining sets. So,
for example, |Ak| = |A|k, which is why truth tables for
k variables with all possible assignments from {T, F}
need 2k rows.

Note how the product rule is consistent with what
we observed for concatenation with the empty set ;
or with the set consisting of the empty tuple:

|L × ;|= |L| · |;|= |L| · 0= 0= |;|, and

|L × {()}|= |L| · |{()}|= |L| · 1= |L|.

Consistency is one sign of a good definition; applicability is an-
other. We can apply the product rule to count permutations, which
are all ways to put distinct items in order, and combinations, which
are all ways to choose a set of distinct items. I introduce these con-
cepts in the next two subsections. Factorial and choose notations
count the numbers of permutation and combinations, respectively.

As you read, ask yourself, “What are we counting?” and, “How is
the counting task broken into smaller pieces using the sum rule (for
an either/or choice) or product rule (for sumultaneous independent
choices)?”

The skills of precise statement of problems and of breaking complex
problems into simpler ones are essential in computer science. The set
and tuple notation will help you as you become more familiar with
it. There is always more than one way to state or solve a problem,
so the goal is not for you to memorize formulas, but to understand

the principles and practice with the notation. Remember the problem
solving steps of Section 1.2.

3.2.2 Permutations and factorial

The permutations of n distinct items are the set of all n-tuples that
never repeat any item. This is the set of all ordered lists that contain
each of the n items exactly once.

The number of permutations (different orders, no repeats) of n
items is n factorial∗, written n!. You are probably already familiar
with the fact that n! =

∏

1≤i≤n i = n · (n− 1) · · ·2 · 1. This counts
permutations by the product rule: for the first element we choose
from n items, for the next element we choose from the n−1 remaining
. . . , and for the last element only one item remains. Each choice
produces a different permutation—knowing the permutation, you
can work out the choices that produced it. The number of choices
at each step does not depend on which choices were made before,
so repeated application of the product rule says that the number of
permutations of n items is n!. By convention, 0!= 1; there is only
one possible order for the 0 items in the empty tuple.

rm p

rm p

rmp

r mp

r m p

r mp

3! = 6

For example, if I have chosen math book m,
philosophy book p, and religion book r, then I
can choose one of 3!= 6 orders to shelve them,
{mpr, mrp, pmr, prm, rmp, rpm}, where I use
string notation to avoid having to type parenthe-
ses and commas for these triples. The product

∗n! is read as ‘n factorial,’ or as ‘N’ very loudly.

rule, therefore, says that the number of ways to arrange three of the
14 books on the shelf and get one of each type is 6 · 5 · 3 · (3!) = 540,
since choosing one of the 3! orders of book types is independent of
the choice of which book of each type.

For 14 books we have 14! = 87,178,291,200 permutations
(orders) in which they can be placed on the shelf. In how many
ways can we shelve the 14 books so that books of the same type
are together? Here we combine permutations by the product
rule. We can choose how we permute the math (6!), the phi-
losophy (5!), and the religion books (3!) in their own groups,
then choose one of the 3! orders to shelve the groups. Each way
gives a different shelving order, with 6! · 5! · 3! · 3! = 3,110,400.

C
al

cu
lu

s

H
ow

to
S
ol

ve
It

1,
2,

3,
∞

H
ow

to
P

ro
ve

It

W
in

n
in

g
W

ay
s

C
on

cr
et

e
M

at
h
em

at
ic

s

P
ro

of
&

R
ef

u
ta

ti
on

s

C
ri

ti
q
u
e

of
P

u
re

R
ea

so
n

W
h
y

is
th

er
e

ai
r?

S
op

h
ie

’s
W

or
ld

D
is

co
u
rs

e
on

th
e

M
et

h
o
d

P
en

sé
es

C
on

fe
ss

io
n
s

O
rt

h
o
d
ox

y

6! · 5! · 3!

· 3!

When communicating to others, I like to first
present the factorials unexpanded, so it is
easier to see where the numbers come from,
then the final value to show how large the
count is. If you are going to omit one, omit
the final value, since the factorials are more
informative.

In how many ways can we shelve any three of the 14 books, of
any type? We just stop early: 14 · 13 · 12 is the number of ways,
which can be written as 14!/11!. Since order on the shelf matters,
we count tuples. In general, the k-permutations from n items are the
k-tuples of those n elements that have no repeats, and their number,
by the product rule, is the first k terms of n!, namely

∏

n≥i>(n−k)

i = n · (n− 1) · · · (n− k+ 1)
︸ ︷︷ ︸

k

= n!/(n− k)!.

Some mathematics texts define falling power notation, nk = n!/(n−
k)!; calculators typically use Pn

k or nPk for the number of k-
permutations of n items.

The number of k-tuples from n items, allow-
ing repetition, is nk by the product rule (we make
k independent choices from n items.) We can
calculate the number of these k-tuples that have
at least one item repeated, R= nk − n!/(n− k)!.
Here we use the sum rule as subtraction: the set of all k-tuples
from n items can be split into the k-tuples with no repeats (the k-
permutations, counted by n!/(n− k)!), and the k-tuples with at least
one repeat (counted by R). Thus, by the sum rule, n!/(n−k)!+R = nk.
This calculation works whenever n > 0 or k > 0. Since 00 is unde-
fined, we should avoid trying to make 0-tuples out of no elements.

3.2.3 Combinations and choose

A k-combination is a set with k elements chosen from a set of n
possible items. Since these are sets, no repeats are allowed. The
number of possible k-combinations of n items is denoted

�n
k

�

, which
can be read as n choose k or as the binomial coefficient n, k. On
a regular keyboard it can also be written as C(n, k); calculators
sometimes use nCk or COMB(n, k). As we shall see later in this
section, it can be calculated using factorial as

�n
k

�

= n!/(k!(n− k)!),
but I recommend getting used to it as “n choose k.”

For example, if you want to choose 3 out of 14 books, you can

do so in
�14

3

�

= 364 ways.∗ A 3-combination does not put the books
in order; it just gives a set of three books.

I can combine chosen sets by sum and product rules. Want to
know how many sets of three books have only one type of book? For
math

�6
3

�

= 20, for philosophy
�5

3

�

= 10, and for religion
�3

3

�

= 1, so
the sum rule says a total of 31 sets have a single type. How many
ways can I choose two math books and one non-math? Take the
product of the ways to choose the two math books with the number
of non-math to choose from:

�6
2

�

· 8 = 40. The number of sets of
three that don’t have all three types of books?

�14
3

�

− 6 · 5 · 3= 274.

r

m

p

set

rm p

tuple

That last calculation looks a little strange. It is
clear that

�14
3

�

counts an unordered set that chooses
3 out of 14 books, but isn’t the calculation 6 · 5 ·
3 calculating in order, like the product rule counts
tuples? In fact, what we are doing is transforming
each set with one math, one philosophy, and one
religion book, {m, p, r}, into a single corresponding
tuple (m, p, r) by putting the books in order by type.
(We can do this only for sets with one of each type!) We can turn
each such tuple back into a single set by ignoring the order. This
invertible function (a bijection, as defined in Subsection 6.2.2) shows
that we have the same number of sets with one of each book type
as we have tuples from math×phil×relig. This set of tuples is easily
counted by the product rule. Many counting problems are solved by
transforming to some set that is easier to count; the last section of
this chapter uses three transformations to count multisets.

∗This is not (14/3), so don’t put in the division operation!

Ok, so we have notation for the number of k-combinations
of n items as

�n
k

�

, but what is this number? Just like we can
twist the sum rule to subtract, we can twist the product rule
to divide. I state the result as a lemma∗ because its proof
demonstrates the common mathematical trick known as com-
binatorial proof: observing that two formulae give equal val-
ues because they count the same set in two different ways.

Lemma 3.2.1. For 0 ≤ k ≤ n, the number of
k-combinations of n distinct items,

�n
k

�

, equals
n!

k!(n−k)! .

Proof. We have already seen one way to count
all k-permutations from n distinct items: We
have n choices for the first element, n−1 for the
second, . . . , so the product rule says there are nk = n!/(n− k)! k-
permutations. Here is a different way to get the same count: choose
a k-combination – a set of k of n items – then choose the order for
those k elements. Those choices are idependent, so the product
rule says the number is

�n
k

�

· k!. More importantly, we get every
k-permutation exactly once, because from a k permutation we can
read off both the k-combination chosen and the permutation of those
k elements. Therefore, n!/(n− k)! =

�n
k

�

k!, and since k!> 0 we can
divide to get the claimed result. QED

∗A “lemma,” from a Greek word meaning “supposition,” is a little theorem proved
on the way to something bigger.

QED, the traditional end-
of-proof mark, is Latin,
“Quod Erat Demonstran-
dum,” (“which was to
be proved”), or English,
“Quite Easily Done.”

Let’s check the boundary cases. The for-
mula correctly says that there is one way to
choose a set of 0 out of n ≥ 0 items, the
empty set, and only one way to choose n,
the entire set. (Recall that order of choosing
doesn’t matter for sets, just whether I choose
something or not.) For any integer k < 0 or k > n, let’s say that
�n

k

�

= 0, since that is there are no ways to choose a k element set in
these cases.

The ‘choose’ numbers (binomial coefficients) can be
tabulated using Pascal’s triangle, where the numbers

1
1 1

1 2 1
1 3 3 1

1 4 6 4 1
1 5 10 10 5 1

1 6 15 20 15 6 1

in each row after the first are the sum of the
two numbers above. (We don’t print the ze-
ros so the triangle is more easily seen.) The
defining formula

�n
k

�

=
�n−1

k−1

�

+
�n−1

k

�

comes
directly from the sum rule, because we can
choose k of [1..n] either by choosing ele-
ment n and then choosing k − 1 elements
from [1..(n − 1)], or by not choosing ele-
ment n and instead choosing k elements
from [1..(n− 1)]. (These two cases are exclusive, and order doesn’t
matter, so it is fine for us to decide about the last element first.)
Pascal’s triangle has many wonderful properties.

Why are the ‘choose’ numbers called binomial coefficients? Because they
are the coefficients of the two-variable polynomial in the binomial theorem:

Theorem 3.2.2. For any non-negative integer n ∈ N and reals a, b, the nth

http://www.khanacademy.org/cs/pascals-triangle/803149756
http://www.mathsisfun.com/algebra/binomial-theorem.html

power of the binomial a+ b, is the sum over all integers:

(a+ b)n =
∑

k

�

n
k

�

an−k bk.

The campus tour leader
said, “This is our binomial
cafeteria.” A bright high
schooler asked, “Is that
because there are so many
combinations to choose
from?” She replied, “No,
you should buy no meal
here.”

Why is this true? First, note that I can sum
over all integers since

�n
k

�

= 0 for any k < 0
and k > n. Next, consider fully expanding the
product

(a+ b)n = (a+ b)(a+ b) · · · (a+ b)
︸ ︷︷ ︸

n terms

.

There are a total of 2n terms, if you don’t com-
mute “a”s and “b”s, because n times you choose
to multiply either “a” or “b.” The coefficient of
an−k bk is the number of terms with n − k “a”s and k “b”s, which is the
number of ways to choose k positions for the “b”s from [1..n] and fill in the
rest with “a”s. This number is

�n
k

�

.

Let’s check the boundary cases. The only way to get an is to choose no
“b”s, and

�n
0

�

= 1. The only way to get bn is to choose n “b”s, and
�n

n

�

= 1.
So these work, too.

Several nice observations about binomial coefficients and their sums

come from plugging in values for a and b in Theorem 3.2.2, including:
∑

0≤k≤n

�

n
k

�

= 2n. pluging in a, b = 1

∑

0≤k≤n

(−1)k
�

n
k

�

= 0. plug in a = −1, b = 1(3.1)

∑

0≤k≤n

(−2)k
�

n
k

�

= (−1)n. plug in a = 1, b = −2

�

n
k

�

=
�

n
n− k

�

by swapping a and b.

3.3 A mixed example: distributing donuts

Three friends want to share an assortment of a dozen donuts (all
different). Each one secretly has a favorite and a least favorite donut.
Consider these questions about the number of ways they can choose
favorites and least-favorites, and how they can distribute the donuts.

These questions are frivolous, but have a serious point: it is not
easy to communicate precisely, or count carefully, but well-chosen
notation can help. This can be of vital importance when you and a
client are trying to agree on the specification of code to be written
to solve a problem.

Q1. In how many ways can they share the assortment, with each getting
the same number of donuts and none left over? ?

Q2. In how many ways can the favorite donuts be chosen so that it is
possible for each to get their favorite? ?

Q3. In how many ways can the least-favorite donuts be chosen so that
it is possible for each to avoid their least favorite? ?

Q4. In how many ways can both favorites and least-favorites be chosen
so each can get their favorite and none get their least favorite? ?

Q5. If the favorites and least-favorites happen to be six different donuts,
how many ways can they share the assortment so each gets their
favorite and avoids their least favorite? ?

A1. How many ways are there to give four donuts each to A, B and C;
denote donuts by [1..12] with no repetition.

Here we assume that the order the donuts arrive is not important;
after all, I get to decide what order I eat my donuts. Since all that
matters is who gets what donuts, A gets a set, B gets a set, and C
gets a set. We might as well first chose the set for A, in

�12
4

�

ways,
then the set for B in

�8
4

�

ways, then the set for C in
�4

4

�

= 1 way,
since C gets the donuts remaining. Because the number of choices
are independent, the product rule applies. I’m happy to leave the
answer as a product of binomial coefficients, because it makes it
easier to see where the number came from, but for completeness
�12

4

��8
4

�

= 34, 650.

We can obtain the same answer from the number of permutations
of donuts, 12!. Let K denote the number of different assignments
of sets of donuts to A, B, and C. Each permutation of the 12 donuts
can be made into an assignment by simply giving the first four
donuts to A, the next four to B, and the rest to C .

Each assignment actually comes from many permutations: We can
list donuts of A in 4! ways, then those of B in 4! ways, then those of
C in 4! ways. In fact, the K assignments give K(4!)3 permutations
of the 12 donuts, and because we can recover the assignment from
any permutation, we learn that 12!= K(4!)3. Solve for K to get
the same count: K = 12!/(4!)3 = 34,650.

There is always more than one way to count, if you know the basic
rules.

A2. In how many ways can the favorites be chosen so that it is possible
for each friend to get his or her favorite?

Note that the question is not how many ways can the donuts be
distributed after the favorites are chosen, but how many ways can
the favorites be chosen. Take a minute to understand the question
and doodle a diagram for what is happening: A, B, and C are
each going to choose from donuts [1..12]. Does the word “choose”
mean we are looking for a combination? Does the order matter?
Can a favorite be repeated?

If two people choose the same favorite, then not everyone can
get his or her favorite. The inverse is also true: If no two people
choose the same favorite, then everyone can get his or her favorite.
So, we are looking for choices in which no favorite is repeated.

The order that A, B, and C choose is unimportant, but who makes
the choice is important. If A and B swap favorites, then that is the
same set of favorites chosen, but a different way to choose.

So a choice is not a set but a tuple; not a combination, but a
permutation. We count the ways for A, B, and C to choose with
no repetition, which is 12 · 11 · 10= 1320.

Let’s also answer three questions that weren’t asked to see the
contrast. Suppose that, before anyone takes a donut, A, B, and C
each independently decide on their favorite type.

a. What fraction of choices do not have repeats?

A, B, and C would have 123 ways to choose with repetition.
This means that 12 · 11 · 10/123 = 110/144 > 75% of the
possible choices of favorites are conflict-free.

b. How many sets of donuts could be the set of chosen favorites?

The set of favorite donut types may contain 3, 2, or 1 types.
The number of possible sets of their favorite types is

�12
3

�

+
�12

2

�

+
�12

1

�

= 298.

c. How many ways can donuts can be distributed so everyone
gets their favorite?

There are two cases:

c.i) if two friends have the same favorite: 0 ways.
c.ii) if no two friends have the same favorite: 1,680, since we

hand out the favorites, then choose 3 of 9 remaining for A,
3 of 6 for B, and 3 of 3 for C, for a total of

�9
3

��6
3

��3
3

�

ways.

A3. In how many ways can least-favorite donuts be chosen so that it
is possible for each friend to avoid his or her least favorite?

Again, we are asking about choosing donuts, not distributing them
yet. We fail only if everyone dislikes the same donut, which can
happen in 12 ways out of the 123 choices allowing repetition. (So
143/144 if this was a random choice.)

We could also count how many ways to distribute the donuts so
no-one gets their least favorite. Here we have three cases:

A3.i) if all three friends have the same least favorite, someone has
to get it: 0 ways.

A3.ii) if two have the same least favorite: 8,400. Suppose A,B
agree that they dislike donut 12, so give 12 to C. C dislikes
something else, so choose whether to give that to A or B.
Then C chooses 3 of 10, the one who got C’s least-favorite
chooses 3 of 7, and the other gets the remaining 4. All choices
are independent, so the product rule applies. The total is
2
�10

3

��7
3

��4
4

�

.
A3.iii) if three different donuts are least favorites: 10,920. We use

the sum rule to break this into two subcases, depending on
whether 3 or 2 people eat the three least favorites. In each
subcase the product rule will apply.
First subcase: we can give each friend another’s least favorite

in two ways, and then give each friend 3 more donuts, for a
subtotal of 2 · 1, 680.
Second subcase: one friend can take the other two’s least
favorites (3 ways) and another take theirs (2 ways). The first
friend needs 2 more, the second 3 more, and the last takes
the remaining 4, for a subtotal of 6

�9
2

��7
3

��4
4

�

= 7, 560.

Note that we don’t add the numbers from the three main cases,
because only one of the cases occurs, depending on the friends’
prior choices. In case A3.iii) we do add because there we are using
the sum rule to count different ways of distributing donuts after
the friends have chosen.

A4. In how many ways can both favorites and least-favorites be cho-
sen so each friend can get their favorite and none get their least
favorite?

Again, we are talking about friends’ choices, not distributing
donuts yet. Let everyone chose favorites first, in 12 · 11 · 10 ways.
A can’t pick his or her own favorite as a least favorite, but could
pick B’s or C’s, so let’s split the cases by the number of people
whose least favorite overlaps with someone else’s favorite.

0: No-one’s least favorite overlaps the favorites. Each chose from
9 non-favorites, so there are 93 possibilities minus the 9 ways they
might all choose the same least favorite.
1: Choose who disliked one of the favorites (3 ways), which
favorite they dislike (2 ways), and the non-overlappers have 92

choices.
2: Choose which two disliked favorites (3 ways), which favorites

they dislike (22 ways), and the non-overlapper has 9 choices.
3: Choose which favorites each of the three dislike (23 ways).

Working the cases was getting tedious until I wrote it as a sum-
mation and recognized that it simplifies by the binomial theorem:
�

∑

i∈[0..3]

�3
i

�

2i93−i
�

− 9= (2+ 9)3 − 9= 113 − 9.

Whenever a complicated count gives a short formula like this,
check if there is a simpler way to count. Here, A, B, and C each
choose their least favorite from 11 donuts (to each avoid their
favorite). If they happened to all three choose the same donut
(which must be one of the 9 non-favorites) then throw that choice
out. Final answer: 12 ·11 ·10 ·(113−9) = 1, 745, 040, which is just
over 58% of all 126 choices, or over 75% of the (12 · 11)3 ways if
each pick separate favorite and least-favorite (as you would expect
them to do).

A5. If the favorites and least-favorites happen to be six different donuts
of the dozen, how many ways can they share the assortment so
each gets their favorite and avoids their least favorite?

Here we combine cases c.ii) and A3.iii) by the sum rule to dis-
tribute donuts: We first give each of the friends their favorites.
Next, we decide if each gets one of their friends’ least favorite (2
ways), or if we give 2 to one, 1 to another, and 0 to the third (6

ways). Then we complete each set of four by making independent
choices that multiply by the product rule. Total number of ways:
2
�6

2

��4
2

��2
2

�

+ 6
�6

1

��5
2

��3
3

�

= 540.

Notice how the sum and product rules have
helped us break complex counting problems into sim-
pler steps.

3.4 Counting multisets

For selecting k from n items, we have counted the num-
bers of possible sets (unordered, no repeats;

�n
k

�

), tuples
(ordered, repeats allowed; nk), and k-permutations (ordered, no repeats;
n!/(n−k)!). For completeness, we should count the bags or multisets, which
are unordered but allow repeats. Here is how we can transform from multi-
sets, to special tuples, to special k-permutations of more items, and back to
k-combinations to show that the correct count is

�n+k−1
k

�

. Get your scratch
paper ready.

We better start with some examples of sets of all possible multisets from
[1..3] for different k. Remember, a multiset can have repeats, but order
doesn’t matter.
k = 1 is boring: Only three {{1}, {2}, {3}}.
k = 2: Only three sets, but six multisets: {{1,1}, {1,2}, {1,3},
{2, 2}, {2, 3}, {3,3}}
I’m quickly tiring of typing set braces, so allow me to type these as sets of
strings:
k = 2 again: {11,12, 13,22, 23,33}; six ways.
k = 3: {111,112, 113,122, 123,133, 222,223, 233,333}; ten ways.

Recognize that strings are tuples, so I have essentially transformed

each multiset into a unique tuple of numbers in non-decreasing order.
From such a tuple, I can recover the unique multiset by simply ignor-
ing the order of elements. Thus, multisets are paired one-to-one with
k-tuples from n items that are in non-decreasing order. We can use
this to make the fifteen multisets of [1..3] with k = 4: extend each 3-
letter string into one or more non-decreasing 4-letter strings. Note that
111 extends to 1111,1112, and 1113, but 113 extends only to 1133.

Now, consider a tuple (t0 ≤ t1 ≤ · · · ≤ tk−1)
where each t i ∈ [1..n]. For each i ∈ [0..k − 1],
let ui = i + t i . I claim that this makes a strictly
increasing k-tuple (u0 < u1 < · · · < uk−1) where
each ui ∈ [1..n+ k− 1]. Moreover, this transfor-
mation is reversible: starting with any increas-
ing k-tuple (u0 < u1 < · · · < uk−1) where each
ui ∈ [1..n+ k − 1], simply let t i = ui − i for all
i ∈ [0..k − 1]. Thus, non-decreasing k-tuples
from n items are paired one-to-one with increas-
ing k-tuples from n+ k− 1 items.

But now we have eliminated the repetition, so these increasing k-tuples
are clearly paired one-to-one with the k-combinations chosen from [1..n+
k− 1].

So, rather than count the set M of all multisets of k from [1..n], transform
them to the set N of non-decreasing k-tuples from [1..n]. Transform that to
the set I of increasing k-tuples from [1..n+ k− 1], and that to the set S of
k-combinations from [1..n+ k− 1]. Each set M , N , I , and S has the same
number of elements, because we can pair up the elements in adjacent sets.
But S is easy to count; it has

�n+k−1
k

�

elements.

That was pretty dense, so let’s do it again, using a different view of the

transformations that involves throwing balls into cups or bins.

Figure 3.1: Counting
multisets; the ‘beer
pong’ view

Think of the initial problem as throwing k
identical balls into bins labeled [1..n]. Each
choice of k elements with repetition corresponds
to exactly one result of throwing balls into bins,
and vice versa: 111 means three balls in the first
bin, and 123 means one ball each in bins 1, 2,
and 3. It is clear that this transformation can be
inverted, so we have a bijection from the multi-
sets of k elements from [1..n] to the results of
throwing k balls into n bins.

Transform again: imagine the bin boundaries
as n − 1 vertical bars, and consider all mixed
sequences of k balls and n−1 bars. For example,
the sequence 111 is ◦◦◦||, 123 is ◦|◦|◦, and 233
is |◦|◦◦. Again, this is clearly invertible, so we have another bijection.

But counting ball/bar sequences is easy by a third transformation—we
choose the positions of the k balls from the set [1..n−1+k] with no repeats,
and fill in the other positions with bars.∗ This can be done in

�n+k−1
k

�

ways.
Because this transformation is also invertible, the composition of the three is
a bijection. Thus, the number of k-element multisets from [1..n], allowing
repetition, equals the number of k-element sets from [1..n− 1+ k] without
repetition.

So, suppose that you have 14 books and three shelves (each of which
can hold all the books). How many ways can you put the books on shelves,
where the number and order on each shelf matters? ?

∗This balls and bars trick is worth remembering.

http://en.wikipedia.org/wiki/Beer_pong
http://en.wikipedia.org/wiki/Beer_pong

Separately choose the order of the books from 14! orders and the number
of books on each shelf from

�16
2

�

multisets. The product rule gives 14!
�16

2

�

=
10, 461,394,944, 000 ways.

3.5 Summary

This chapter gives basic definitions for sets and tuples, then explores
what these definitions imply by checking ordinary examples, by
checking extreme examples (like the empty set or empty tuple), and
by counting how many things are defined.

Each of the structures and concepts defined in this chapter is
extended in later chapters. After the next chapter formally defines
quantifiers, Chapter 5 defines more operations for sets, Chapter 6
returns to counting, and Chapter 8 introduces recursive definitions
to formally define sets, tuples, lists, strings, series, and summations
of arbitrary size.

Here is how the counting rules and concepts will be restated
using notation and operations from upcoming chapters:

Sum rule For disjoint sets A and B, the size of the union is the sum of the
sizes of each set, |A] B|= |A|+ |B|.

Product rule For counting pairs, |A× B| = |A| · |B|. This is why there are nk

k-tuples from n elements allowing repetition, and why a set S has 2|S|

subsets.
Factorial n! = n(n−1) · · ·2·1 counts the orders of n items without repetition.
Permutations aka Falling powers nk = n!/(n− k)! counts the orders of k

of n items without repetition.

Combinations aka Binomial coefficients
�n

k

�

= C(n, k) = n!/
�

(n− k)!k!
�

counts the ways to choose an unordered set of k of n types of item
without repetition.

A frivolous example of figuring out the number of ways three
friends can select from a dozen donuts illustrates that careful count-
ing can clarify questions stated in English. The next chapter enriches
our logic with predicates and quantifiers to allow us to say more in
unambiguous mathematical notation.

3.6 Exercises and Explorations

Quiz Prep 3.1. Answer these questions on sets and tuples:

1. Let A= {a,;}. Are these statements true (T) or false (F)?

? a ∈ A ? {a} ∈ A ? a ⊆ A ? {a} ⊆ A
? ; ∈ A ? {;} ∈ A ? ; ⊆ A ? {;} ⊆ A

2. What is the smallest set that contains, as an element and a subset, both
the empty set ; and the set {a, b}? {;, a, b, {a, b}}.

3. Which of these can be the Cartesian product of two sets A× B? For each
that can, give an example A and B.

(a) S = {(a, 1), (b, 1), (a, 2), (b, 2), (a, 3), (b, 3)}. A= {a, b}, B = [1..3].
(b) T = {(1, 1), (1, 2), (2, 2), (3,2), (3,1), (2,1)}. A= [1..3], B = [1..2].
(c) U = {(a, 1), (b, 2), (c, 3)}.

A= U , B = {()} or vice versa. So any set is a Cartesian product.

Quiz Prep 3.2. What are the following counts?

1. How many elements are in the set {t, o, y, o, t, a}? ?

2. How many different sets can be made using up to n given elements? ?

3. How many different k-tuples can be made from n types of elements? (Re-
peats are allowed in a tuple.) ?

4. How many k-tuples made from n types of elements use at least two types?
?

5. How many k-tuples can be made from n elements with no repeats? ?

6. How many sets of size k can be made from n elements? (A set has no
repeated elements.) ?

7. How many bags of size k can be made from n elements? (A bag or multi-set
is an unordered collection that allows repeated elements.) ?

8. How many k-tuples from [1..n]k have their elements in increasing order?
?

9. How many k-tuples from [1..n]k have elements in non-decreasing order?
?

Quiz Prep 3.3. In a universe U with n elements,

1. In how many different ways can you make a set, A⊆ U ?

2. In how many different ways can you make a pair of sets (A, B), with A⊆ U
and B ⊆ U?

You can choose A in 2n ways and B in 2n ways, so (2n)2 = 22n = 4n.
Whenever you see an answer like 4n for a counting problem, ask yourself if
there is a simple way to see that—here you could, for each element, decide
if it goes into A, B, both, or neither. This gives you an easy way to solve
the next problem.

3. How many ways can you choose a pair (A, B) so that A is a subset of B?

3n, since you have only 3 choices for each element—you can’t put an
element into just A anymore.

4. How many ways can you choose a set of two sets {A, B}? ?

5. How many ways can you choose a set of two sets {A, B} so A is a subset of
B? ?

Exercise 3.4. Assume that sets A and B do not contain tuples. Under
what conditions does A× B = B × A? Be complete. É

Exercise 3.5. Combinatorial Pizza offers small, medium, and large
pizzas with 14 possible toppings from 3 categories:
• Cheese (2): Mozzarella, Feta
• Veggie (7): Mushrooms, Peppers, Onions, Olives, Capers, Artichoke,

Pineapple
• Meat (5): Salami, Pepperoni, Ham, Salmon, Anchovies
Combinatorial Pizza has five specials:
• Sampler: three different toppings from any categories.
• Balanced Diet: one topping from each of the three categories.
• Carnivore: You may choose one to four different kinds of meat.
• Vegan: Any size pizza with three Veggie toppings. (You can order more

than one of a topping—my daughter likes triple pineapple.)
• Gut-buster: A large pizza with up to five toppings. (Ever had quintuple

anchovies?)
Let’s assume that you don’t care in what order the pizza chef puts

the toppings on your pizzas. (E.g., They put the cheese first, even if
you ask otherwise.) So, what you are ordering is a set of toppings
(possibly a multi-set for the Vegan and Gut-buster).

In answering a question like this, the formula is more informative
than the number, so be sure you show the formula. Each letter has a
pop-up with the correct number so that you can check yourself.

1. How many different ways can you order a medium or large “Sampler”
pizza? ?

2. How many different ways are there to order a large “Balanced Diet”
pizza — one topping from each of the three categories? ?

3. How many different ways are there to order two small “Balanced Diet”
pizzas? ?

4. How many different “Carnivore” pizzas can be made? ?

5. How many different small “Vegan” pizzas are there? ?

6. How many different “Gut-buster” pizzas are there? ?

É

Exercise 3.6. On a common single dial padlock, with numbers 1-40,
a combination∗ is a 3-tuple.
How many combinations does such a lock have? ?

Since you can test all third digits with a single slow turn, how many pairs of
the first two digits are there? ?

On some locks, it is enough to dial the first and second digit to within ±2.
In that case, how many “slow turns” suffice to try all combinations? ?

É

Exercise 3.7. In activity games, board games, and card games, play-
ers are often arranged in a circle. Sometimes the capability or person-
alities of the players to your left or right (or both) make a difference
∗Should be called a “3-tuple” lock, because order is important and repeats are

allowed.

in your chances to win the game. See if you can get the same answer
as the pop-up before looking at the reasons.

1. How many different orders are there for n players? Two orders are consid-
ered the same if and only if every player has the same player to their right.
?

2. What if n = 2m players come as m pairs that want to sit next to each other?
Now how many orders? ?

3. You need to choose a set of k of the n people to help you; in how many
ways can you do so if order does not matter? ?

4. You want to pick the k of n= 2m people that came in pairs so you take at
most one of any pair; now how many ways? ?

É

Exercise 3.8. In how many ways can I choose k numbers from [1..n],
disregarding order, so that no two chosen numbers are consecutive
(differ by 1)? É

Exercise 3.9. The number of possible subsets with r elements in
a set S of n elements is denoted

�n
r

�

. All the formulas below come
from counting these sets in different ways.

1. Why is
�n−1

r−1

�

+
�n−1

r

�

=
�n

r

�

?

To choose r elements, you can either decide to take the last and choose
r − 1 from the remaining n− 1, or decide not take the last and choose r
from n− 1. The sum rule applies.

2. Why is
�n

r

�

=
� n

n−r

�

?

Each way of keeping r of n is a way of discarding n− r of n.

3. Why is n
�n−1

r−1

�

= r
�n

r

�

?

You can choose one of n elements, then choose r−1 of the remaining n−1,
and you will have r elements from n, with one of the r distinguished. You
can achieve the same effect by choosing r of n, then choosing which of the
r to make special.

4. Why is
∑

0≤k<n

� k
r−1

�

=
�n

r

�

?

Choose r of n elements by picking the largest, k + 1, then choose the
remaining r − 1 elements from [1..k]. This uses the convention that for all
n< r,

�n
r

�

= 0.

5. Why is
�n

r

�

= n!
(n−r)!·r! ?

Choose r of n by putting all elements in order in one of n! ways, then
making a set from the first r. Now, the number of orders that give the same
set is r!(n− r)!, since neither the order of the first r nor remaining (n− r)
change the chosen set.

Puzzle 3.10. “On the first day of Christmas, my true
love gave to me, a partridge in a pear tree.” In the
song, “The 12 days of Christmas,” how many gifts does
the singer receive on each day and how many total?

http://www.41051.com/xmaslyrics/twelvedays.html

Hint:
One gift on the first, three
gifts on the second, and
the total is one for every
day except Christmas.

Puzzle 3.11. How many positive integers have the property that
their digits are strictly increasing as you read them from left to right?
(Examples: 1, 128, 123,456,789.) How many positive integers have
digits that are strictly decreasing from left to right? (Examples: 1,
42, 9630.) É

Puzzle 3.12. A good exercise is to count the number of 5-card poker
hands of different values. Let’s assume a standard 52-card deck, with
13 cards (A, 2–9, 10, J, Q, K, A) in each of 4 suits (♥, ♦, ♣, ♠) and
no jokers or wild cards. Ace is listed twice as it can be either low or
high in straights, but not both in the same hand. See if you get the
same counts as I do. As a warm-up, the number of possible hands is
�52

5

�

= 2,598, 960.

royal straight flush 10, J, Q, K, A of the same suit: 4 ways
straight flush 5 consecutive cards of the same suit, minus the royal straight

flush: 36 ways.
four of a kind 624 ways.
full house Three of one card, two of another: 3,744 ways.
flush All five cards of the same suit, minus all straights: 5,108 ways.
straight 5 consecutive numbered cards of any suit, minus all flushes: 10,200

ways.
triple 54,912 ways.
two pair 123,552 ways.
single pair 1,098,240 ways.
none of the above 1,302,540 ways.

É

Puzzle 3.13.

1. Paths in a grid: In how many ways can I go from the origin (0, 0) to (x , y)
in a grid if each move increases x by one or y by one, but not both?

�x+y
x

�

2. What if I may not step on (i, j), which is in [0..x]× [0..y] but not at the
origin or (x , y)?

�x+y
x

�

−
�i+ j

i

��x−i+y− j
x−i

�

Extension 3.14. We often use an ordered pair, (x , y), to represent a
point in Cartesian coordinates. Two ordered pairs are equal, (a, b) =
(x , y), if and only if a = x and b = y. Suppose that we represent
an ordered pair (x , y) by the set {x , {x , y}}. Argue that we have
the property that {a, {a, b}} = {x , {x , y}} iff a = x and b = y.
(Remember that a, b might be sets themselves.) Extend this to k-
tuples.

Chapter 4

First Order Logic:
Quantifiers

Civilization advances by extending the number of opera-
tions we can do without thinking about them. Operations of
thought are like cavalry charges in a battle - they are strictly
limited in number, they require fresh horses and must be made
only at decisive moments.

—Alfred North Whitehead

In propositional logic, we started by translating into mathematical
notation specific statements, such as, “If it did not rain this morning,
I commuted by bike.” First order logic adds quantifiers so that we
can translate more general statements like, “For every weekday last
month, if it did not rain in the morning, then I commuted by bike.”
The mathematical notation is precise, unambiguous, and can be
manipulated with little thought, once you know the rules.

That is not to say this is easy – only the first section of this chapter
is easy, because it introduces the vocabulary. The second section
practices using the vocabulary – notice how translating statements
into notation forces us to recognize and resolve ambiguities in the
English. Saying exactly what you mean is hard work, but that is
what we need to do to give instructions to computers, so it is good

98

to have notation to help us.

Objectives: By working through this chapter and the exercises,
you will be able to precisely interpret statements using predicates
and the quantifiers for all, ∀, and there exists, ∃. You will be able to
identify free and bound variables in statements, to express complex
statements about sets or tuples using nested quantifiers, and to
negate quantified statements, revealing connections between ∀ and
∃, and connections to de Morgan’s laws for logic.

4.1 Quantified statements

Before defining quantifiers, we need one special type of function: A
predicate is a function that maps each possible input to either T or F,
true or false. As examples, here are two predicates each taking their
input x from a set of days, D:

p(x) = “It rained in the morning on day x ,” and
q(x) = “I commuted by bike on day x .”

Combining these, we can write the statement “If it did not rain
in the morning on day x , then I commuted by bike on day x” as
p(x)→ q(x). This statement has a free variable x; pick a day from
D for x to get a statement that is true or false for that day. Thus,
predicates can be used as propositions in a logical statement if we
supply an input x ∈ D.

Suppose that I want to claim this statement is true for many
days, not just one day. Restrict the set of days D = {d1, d2, . . . , dk} to
those days in which I have a job to commute to, since the statement

p(x)→ q(x) would be false, for example, on any sunny morning
in the 1800s. Here are three equivalent ways to write the state-
ment, “For every day in D, if it did not rain in the morning, then I
commuted by bike.” The first uses a big and (

∧

x∈D) much like
∑

summation notation. The second expands this as many little ands (∧),
using ellipses (· · ·) and trusting the reader to complete the pattern.

Three logicians walk into
a bar, and the bartender
asks, “Does everyone want
beer?” The first says, “I
don’t know.” The second
says, “I don’t know.” The
third says, “Yes.”

The third introduces ‘for all’ (∀x∈D), the uni-
versal quantifier, and is the most common
(although my use of a subscript for x ∈ D to
match the big-and notation is not common).

∧

x∈D

p(x)→ q(x)≡
�

p(d1)→ q(d1)
�

∧ · · · ∧
�

p(dk)→ q(dk)
�

≡ ∀x∈D

�

p(x)→ q(x)
�

.

In words, my claim is true if and only if the conditional is true for
every x in D. The first and third notations apply even if D is an
infinite set.

To say, “There was a day in D that it rained in the morning,” we
introduce ‘there exists’ (∃), the existential quantifier:

∨

x∈D

p(x)≡ p(d1)∨ p(d2)∨ · · · ∨ p(dk)≡ ∃x∈D (p(x)).

In words, the claim is true if and only if it is true for at least one x
in the quantification domain D.

4.1.1 Writing a quantified statement

Let’s look at the four parts of a quantified statement:

∀x∈D

�

p(x)
�

First we have the quantifier symbol: the universal quantifier ‘for
all,’ ∀, or the existential quantifier ‘there exists,’ ∃.

Second we have a variable, which is x in this example. We may
choose any variable name that is not already in use; x should be a
free variable in the expression inside the outer parentheses. We can
rename the variable, replacing it with another name that is not in
use, without changing the meaning of the statement.

Third we have the quantification domain, D, which is the set
of all values that the variable can take on. A quantified statement
is incomplete without a quantification domain, though we often
omit the symbols when the set can be understood from context. For
example, if we know we are speaking of the set of reals, the set of
integers, or the set {1, . . . , n}, we may simply write ∀x p(x), rather
than ∀x∈R p(x), ∀x∈Z p(x), or ∀x∈[1..n] p(x).

Fourth we have an expression that by itself has x as a free
variable—the expression is a predicate in x . The outer parentheses
are often omitted, but when you begin to work with quantifiers,
include them to remind yourself that x is valid only within the outer
parentheses. We say that this is the scope of the variable x , and that
within its scope x is no longer free, but is bound by the quantifier.

To establish that statement ∃x∈D p(x) is true, it is enough to find
any x ∈ D that satisfies p(x). To establish that ∀x∈D p(x) is true, we
must check all x ∈ D, and report ‘false’ if any x does not satisfy p(x).

One way to do this is to assume an adversary gives us a generic
x ∈ D and show that p(x) is true.

Let’s check the boundary cases: What if the quantification domain
is empty? For consistency, we say that ∀x∈; p(x) is trivially true and
∃x∈; p(x) is trivially false, no matter what the predicate p(x). What
if the quantification domain has a single element, D = {d}? Then
∀x∈D (p(x)) ≡ ∃x∈D (p(x)) ≡ p(d), but this is the only case where
the quantifiers are logically equivalent.

As computer scientists, we can think of a quantified statement
∀x∈D

�

p(x)
�

as a ‘for’ loop. The variable x is like a loop variable
created in the loop statement, which is valid only within the body
of the loop.∗ The set D contains the values that we loop over, and
predicate p(x) is the body of the loop. A ‘for all’ quantifier returns
true unless unless it finds a p(x) that is false, in which case it returns
false. A ‘there exists’ returns false unless it finds a p(x) that is true,
in which case it returns true. The only difference from a ‘for’ loop
is that we don’t know the order of evaluation, since D is a set. But
order doesn’t matter since we are computing ‘and’ or ‘or, ’ which are
both commutative and associative.

The notation for quantifiers has many variations and abbrevia-
tions. I’ve already mentioned suppressing the domain D and omitting
parentheses around the expression. I should mention that using sub-
scripts for the variable and domain is not usual; I do that to more
clearly separate the variable and domain from the predicate and to
match the notation for summation, big-and, and big-or. Some people
put parentheses around the quantifier itself, writing (∀x)p(x) in-

∗Java and C++ have this scope limitation for variables defined inside a loop.

stead of ∀x

�

p(x)
�

, but I find that silly because the quantifier by itself
is incomplete, whereas p(x) by itself makes sense as a statement
about a free variable x . Others separate the quantifier and predicate
with a comma, writing ∀x , p(x), but this also gives the misleading
impression that the parts are separate and equal, when really the
quantifier is wrapped around a predicate that could stand on its own.

In English, note the difference between the three statements “x
is positive,” “Every x in the set S is positive,” and “Some x in S is
positive.” The first, written mathematically as (x > 0), claims that
the number someone has given us is positive. This claim is true
or false, depending on x , so this is a predicate with input x . The
second, written ∀x∈S (x > 0), claims that that every number in S is
positive. This claim may be true or false, depending on S, so this is
a predicate with input S. Similarly, the third, written ∃x∈S (x > 0),
claims that there is a number in S that is positive. Again, this may
be true or false, depending on S, so we have a predicate with input
S. In the first statement, x is a free variable; in the second and third,
x is bound by the quantifier, and set S is the free variable.

For statements about a k-tuple, the quantification domain is often
the set of element positions or indices, [1..k]. For example, suppose
that we want to formally say (without ellipses) that the k-tuple
(a1, a2, . . . , ak) has its elements in increasing order, a1 < a2 < · · ·<
ak. We can quantify over indices and say ∀i∈[2..n] (ai−1 < ai). We
would not write ∀x∈(a1,a2,...,ak) . . . – first, because a tuple is not a set,
and second, because without indices we cannot refer to the element
before or after x or identify a specific element in the case of a repeat.
We also would not write ∀ai

(ai−1 < ai), because the quantifier needs

to be able to change the value of its variable, and ai is input that we
should not modify. We’ll consider an extended example with tuples
in Section 4.2.

Remembering that ∀ is a big ‘and’ and that ∃ is a big ‘or’
we can use associative, commutative, and distributive properties
of and/or to pull quantifiers out to the front: a statement like
p(x)�

�

∀y q(y)
�

, where � is ‘and’ (∧) or ‘or’ (∨) and y is not a
free variable in p(x), is equivalent to ∀y

�

p(x)�q(y)
�

. Likewise,
p(x)�

�

∃y q(y)
�

≡ ∃y

�

p(x)�q(y)
�

. For conditionals or bicondi-
tionals, we can rewrite as equivalent and/or statements and move
quantifiers forward, and should do so if the interpretation remains
clear.

4.1.2 Negation and inference for quantifiers

Since ‘for all’ is a big ‘and,’ and ‘exists’ is a big ‘or,’ de Morgan’s laws
say that the negation of one is the other (with its statement negated.)
That is, ∀x p(x) ≡ ∃x p(x), and >x p(x) ≡ ∃x p(x) ≡ ∀x p(x).∗ In
words, the first equivalence says that to disprove ∀x∈D p(x), it is
enough to show a single counterexample—an x0 ∈ D with p(x0).
To prove it, however, we must be able to demonstrate that p(x) is
true for any value of x ∈ D that our malevolent opponent gives us.
The second string of equivalences says that to disprove ∃x∈D p(x),
we must be able to demonstrate, for any x given by our malevolent
opponent, that either x 6∈ D or p(x). To prove it, however, a single

∗Most math fonts include >, which means ¬∃, but have no symbol for ¬∀. We
seem to be more concerned with non-existence than non-universality.

example x0 ∈ D with p(x0) is enough. This is consistent with the
definitions from the previous section.

The definitions for quantifying over an empty domain are also
consistent with negation, since ∀x∈; p(x) ≡ ¬∃x∈; p(x) ≡ T , no
matter what p is.

You must remember to swap quantifiers when you negate, just
as you must remember to swap ‘and’s and ‘or’s in de Morgan’s laws.
Saying, “I don’t always ride my bike (¬∀x∈D q(x)),” is quite different
from “I always don’t ride my bike (∀x∈D ¬q(x)).” For me, the first
is true and the second false. The first is equivalent to “There was a
day I didn’t ride my bike (∃x∈D ¬q(x)),” and the second to “On no
day did I ride my bike (¬∃x∈D q(x)).”’ Again, for me, the first it true
and the second false.

The rules of inference for quantifiers also come from the connec-
tion to ‘and’ and ‘or.’

Universal generalization says that if we know p(x) is true for whatever
element x of X that our adversary may challenge us with then we may
conclude ∀x∈X p(x); it is an application of conjunction from Table 2.4.

Existential generalization says that if we can choose a specific element a ∈
X for which p(a) is true, then we may conclude ∃x∈X p(x); it is an
application of absorption.

Universal instantiation says that if we know ∀x∈X p(x) then we can con-
clude p(a) for any specific choice of a ∈ X ; it is an application of
simplification.

Existential instantiation is not in the table; it says that if we know ∃x∈X p(x)
we can conclude p(y) for a variable y that is not currently in use, but
whose value now becomes fixed so that p(y) is true.

These rules of inference are how we prove that a quantified state-
ment is true; see the answer to Exercise 4.6 for a brief example.
To convince someone that ∃x∈D p(x), we most often choose a sin-
gle example, x0, and demonstrate that p(x0) is true. We conclude
∃x∈D p(x) by Existential generalization. To convince someone that
∀x∈D p(x), we must demonstrate that p(x) is true for all x ∈ D.
Unless your examples cover all of D, you cannot prove ‘for all’ by
doing a few examples; only by covering all of D.∗ The typical way
to convincingly demonstrate ‘for all’ is to assume that our adversary
gives us x ∈ D, and we demonstrate that p(x)must be true for that x .
If this demonstration is generic, and applies to all elements of D,
then we may conclude ∀x∈D p(x) by Universal generalization.

4.1.3 Scope and nested quantifiers

Recall that a quantifier ∀x or ∃x defines the variable x only for the
statement immediately following. You should not use a variable
name x that is already defined, or that you wish to keep free; you
also should not use the value of x outside the scope of the quantifier—
outside the immediately following statement.

To illustrate scope, we can translate “There was a day it rained
and I rode my bicycle,” as ∃x∈D

�

p(x) ∧ q(x)
�

and see that both
happened on the same day. We can translate “There was a day it
rained, and there was a day I rode my bicycle,” as

�

∃x∈D p(x)
�

∧
�

∃x∈D q(x)
�

, which allows the two quantifiers to use different days

∗Do start by writing examples on your scratch paper, however; they often suggest
important ideas for a proof.

for their different x variables. Because of the potential for confusion,
it is better to write

�

∃x∈D p(x)
�

∧
�

∃y∈D q(y)
�

, but the mathematics
is the same.

To explicitly name a value for use outside a quantified statement,
we could say one of the following:

1. “Since ∃x p(x), we can let x be a day satisfying p(x).”
2. “Since ∃y p(y), we can let x be a day satisfying p(x),”
3. “Since ∃x p(x), we can let x0 be a day satisfying p(x0),”
4. “Choose x to satisfy p(x),”

These are mathematically the same, so the choice depends on which,
in context, is the least of four evils: 1’s potential confusion due
to re-use of x as a placeholder in the quantifier and as a defined
variable, 2’s switch from y to x , which some find disorienting at first,
3’s introduction of an avoidable subscript on x0, or 4’s not explicitly
saying that there exists an x that can be chosen.

In English, we sometimes omit the ‘for all,’ or put it at the end.
In math, please develop the habit of including the quantifiers at
the beginning of a statement for two reasons: First, quantifiers give
much-needed context: naming the variable whose value will be
chosen from a named, or understood, set, either by an adversary
(∀) or by us (∃). Second, in statements with nested ‘for all’ and
‘there exists’ quantifiers, the order is significant. For a set of peo-
ple, P, compare “Everyone loves somebody,” ∀e∈P ∃s∈P loves(e, s),
to “There is somebody that everyone loves,” ∃s∈P ∀e∈P loves(e, s).

In chess, Alice moves and
announces, “Mate in two,”
because it’s harder to say,
“For all of your possible
moves, there is a move
for me (Alice) so that for
all your moves, there is a
move for me so that for
all your moves, there is a
move for me to take your
king.” ∀∃∀∃ alternation
makes the game.

In the first, your adversary gives you an ar-
bitrary e and asks, “Who does this person
love?” You may pick s depending on e. In
the second, however, you pick s and then
your adversary gets to challenge you with
e—all es must love the same s for you to
succeed. Nested quantifiers are not difficult
if you take them one at a time.

For practice, consider the negations. For
the first, if “everyone loves somebody” is
false, then ∃e∈P ∀s∈P loves(e, s), or “There is someone that loves
nobody.” The negation of the second, ∀s∈P ∃e∈P loves(e, s), means
“Everyone has somebody that doesn’t love them.”

For “Everybody loves everybody,” ∀e∈P ∀s∈P

�

loves(e, s)
�

, it does
not matter which quantifier comes first: ∀s∈P ∀e∈P

�

loves(e, s)
�

is
equivalent. (This is again because ∀ is a big ‘and.’) Similarly, for
‘Someone loves someone,” ∃e∈P ∃s∈P

�

loves(e, s)
�

, the quantifiers can
occur in either order because ∃ is a big ‘or.’ Thus, we can abbreviate
these statements as ∀e,s∈P

�

loves(e, s)
�

and ∃e,s∈P

�

loves(e, s)
�

. But
when ‘for all’ and ‘there exists’ quantifiers alternate, we change the
meaning if we reorder the quantifiers.

4.1.4 Idioms and abbreviations

It is important to remember that two variables quantified over the
same set may take on the same value. Each quantifier just tries
setting its variable to each element of the set, one by one, completely

decoupled from what other quantifiers are doing. This is good,
because it allows us to look at each piece of a quantified statement
independently. When we need pieces to be coupled, we add the
coupling to either the logic or the quantification domains.

For example, to write a statement about a pair of different days,
we need to ensure that the days are different. In a universal quantifier,
we can do this with a conditional: ∀x∈D ∀y∈D

�

(x 6= y)→ (p(x)∨
p(y))

�

says, “Pick any two different days, and one of them it rained.”
This is equivalent to saying that there was at most one day without
rain. If we left off the condition that x 6= y , then we are saying that
it always rained: ∀x ,y

�

p(x)∨ p(y)
�

≡ ∀x∈D p(x) because all cases
with x = y must be true for the statement to be true. In an existential
quantifier, we do this with ‘and’: ∃x∈D ∃y∈D

�

x 6= y ∧ (p(x)∧ p(y))
�

says, “There are at least two days when it rained.” Notice that a
conditional no longer works here: ∃x ,y∈D

�

(x 6= y)→(p(x)∧p(y))
�

≡
(D 6= ;), because if there exists any x ∈ D, we simply also choose
y = x , and the conditional becomes vacuously true.

Another way to write a statement about a pair x 6= y is to break the
symmetry between x and y: first choose x , then quantify y over a domain
that has x removed. The next chapter defines set subtraction, D \ {x} = {d |
d ∈ D ∧ d 6= x}, which lets us restate “Pick any two different days, and one
of them it rained” as ∀x∈D ∀y∈D\{x}

�

p(x)∨ p(y)
�

, and “There are at least
two days when it rained” as ∃x∈D ∃y∈D\{x}

�

p(x)∧ p(y)
�

. The same change
applies to ∀. Changing the domain makes it harder to reorder or negate the
quantified statements, so move the conditions into the logic before doing
that.

We often abbreviate by putting a condition in the quantifier,
writing ∃x 6=y

�

p(x)∧ p(y)
�

. If we are talking about pairs of distinct

integers, i, j ∈ [1..n]with i < j, we may even write ∀1≤i< j≤n r(i, j)≡
∀i, j∈[1..n]

�

(i < j)→ r(i, j)
�

. Here n must be known, so it can be
understood that i and j are the new integer variables being defined.

The ‘there exists’ quantifier makes it easy to formally write, “There
is at least one x in set S satisfying p(x),” as ∃x∈S p(x). To formally
write “exactly one” or “at most one” is less easy, but these expressions
are common enough that you should memorize how to do this.

The common way to write, “There is at most one x in set D
satisfying p(x),” essentially says, “If you think you have two elements
of D satisfying p, then they are really the same element.” Formally,
∀x ,y∈D (p(x)∧ p(y))→ (x = y). Notice that this allows zero or one
xs—if no x ∈ S satisfies p(x), then each ‘implies’ is trivially true, so
the ‘for all’ is true. For practice, check your understanding of the
negation, ∃x ,y∈S p(x)∧ p(y)∧ (x 6= y), which asserts that you can
find two different values (and possibly more) that satisfy p.

If we wish to write “There is a unique x . . . ” or “There is exactly
one x in set D satisfying p(x),” we are making two separate claims:
that there is an x with p(x), and, if you think you’ve found a second,
then it’s actually the same x again. Formally, ∃x∈D ∀y∈D p(x) ∧
�

p(y)→ (x = y)
�

. Here the negation says that there are either none

or at least two. ∀x∈D ∃y∈D p(x)∨
�

p(y)∧ (x 6= y)
�

.

Expressions for “There is a unique x . . . ” or “There are at least
two. . . ” are examples of mathematical idioms—phrases so common
that we read their intent rather than the literal words or symbols. So
‘hit the books’ and ‘learn by heart’ the idiom for “there is a unique.”

4.2 Event-time logic using quantifiers

Logic and quantifiers help us precisely state complex properties
or requirements without the ambiguity of English. Here we’ll use
event-time logic to illustrate how to translate English statements
that involve nested quantifiers, negations, and conditionals. We’ll
also see notational abbreviations that are common for longer expres-
sions. Later examples include partitions, Subsection 5.3.1, and big-O
notation, Subsection 6.3.1.

Consider a file system that has a set of files F that are accessed
by a set of processes P. The system records its stream of events as
an n-tuple, called a trace, t = (t1, t2, . . . , tn). Each trace element
records one of three types of events:

t i =

a(p, f) process p accesses file f ,

l(p, f) process p locks file f , or

u(p, f) process p unlocks file f (undoes all previous l(p, f) ops).

(It will be equivalent to say “file f is accessed/locked/unlocked by
process p.”) The stream of events is a discrete view of actions over
time. The idea is that if a processor locks a file, then it should have
sole access to the file; no other process should lock, unlock, or access
it.

What should we look for in a trace to verify that the system is
behaving as it should? Let’s convert the following nine statements
into mathematical notation, quantifying over processes P, files F ,
and event times [1..n]. The first six statements are information
we might want to know about a particular trace; the last three are

properties that we would want every trace to have.

Q1. Every process accesses file f at some time. (Here, assume that a specific
file f has already been chosen.)

Q2. File f is accessed by at least two different processes.
Q3. Some process accesses every file.
Q4. Every file is accessed by some process (maybe a different one for each file.)
Q5. Some process never locks a file.
Q6. There are no lock or unlock operations in the trace; every operation is an

access.
Q7. Every file that a process locks is later unlocked by that process.
Q8. Any process that unlocks a file must have previously locked it, and not

unlocked it in-between.
Q9. Any file that is locked by a process must be unlocked by that process before

a different process accesses it.

Try translating each of these into quantified statements before
you look at the answers below. Use the problem-solving steps from
Section 1.2; on scratch paper make simple examples of lock, unlock,
and access sequences like the one in the margin, and decide whether
the statements should be true or false for your examples.

A1. Every process accesses file f at some time.

This example has quantifiers at both the beginning and the end, which can
lead to ambiguity. Do we mean:

(a) “Every process, at some time, accesses file f :
∀p∈P ∃i∈[1..n] t i = a(p, f).”

(b) “There is a time at which every process accesses file f :
∃i∈[1..n] ∀p∈P t i = a(p, f).”

Mathematically, these are different. For (a), our adversary challenges us
by choosing a process p, then we must find a time i at which the trace has
recorded p accessing file f ; that is, t i = a(p, f). For (b), we first choose
time i, then all processes must access the file f at that time. Since we know
that each trace event records the action of a single process, the only way
(b) can be true is if P contains less than two processes. In fact, we may be
tempted to read the English statement in (b) as ∀p∈P ∃i∈[1..n] t i = a(p, f),
once we recognize that the notation in (b) does not make sense. The lesson
here is, since you can talk yourself into different interpretations of the
English, you should always translate into unambiguous notation before
you check equivalence or do negation.

A statement with nested quantifiers is like an onion, as adding parenthesis
to (a) can show: ∀p∈P

�

∃i∈[1..n]

�

t i = a(p, f)
�

�

. Breaking (a) into separate
predicates reveals where values are chosen for the variables:

α(i, p, f) ..= (t i = a(p, f))

β(p, f) ..= ∃i∈[1..n] α(i, p, f)

γ(f) ..= ∀p∈P β(p, f)

Reading from the bottom, the whole statement γ(f) has f as a free variable
and will be true or false depending on the specific file name that replaces f .
Statement γ(f) is true iff no choice of processor p makes β(p, f) false. We
can think of looping over all p ∈ P and checking that β(p, f) is always true,
or of having our worst adversary choose the value of p.

When β(p, f) is evaluated, specific values have been chosen for both p

and f ; β(p, f) is true if we can find at least one time i where α(i, p, f) is
true—that is, if trace event t i is a(p, f). If we fail to find any i, then β(p, f)
is false. Notice that the processor p is already chosen when we look for the
time i, so different processors can (and will) have different times.

Reversing the order of universal and existential quantifiers changes the
order of who makes choices. To see that (a) and (b) are different statements,
let’s translate the negation of (b) back into English:

6 ∃i∈[1..n] ∀p∈P (t i = a(p, f))

≡ ∀i∈[1..n] ∃p∈P (t i 6= a(p, f)),

which says, “For any time, we can choose a process that was not accessing
file f at that time.” This must be true if there is more than one process
in P.

A2. File f is accessed by at least two different processes.

∃p,q∈P ∃i, j∈[1..n]

�

(p 6= q)∧ (t i = a(p, f)∧ (t j = a(q, f)
�

.

Here ∃p,q∈P is an abbreviation for ∃p∈P ∃q∈P or ∃q∈P ∃p∈P . Since all quan-
tifiers are existential, it doesn’t matter what order we choose values for
the process and time variables. We can further abbreviate as ∃p,q,i, j if the
quantification domains can be understood from context.

The predicate (p 6= q) ensures that picking the same value for p and q
never makes the statement true; the quantifier ∃p,q would otherwise allow
that. Sometimes we write ∃p 6=q to force a choice of two unequal values.

Since the processes must be different and the trace cannot have two differ-
ent processes in one trace entry, neither the English nor the notation needs

to mention that the accesses are at different times. On the other hand, to
say that file f is accessed at least twice (possibly by the same process), we
would make the times different, but allow the processes to be the same:

∃p,q,i, j

�

(i 6= j)∧ (t i = a(p, f))∧ (t j = a(q, f))
�

.

A3. Some process accesses every file.

To me, this says a single process accesses every file: ∃p ∀ f ∃i (t i = a(p, f)),
where the quantifiers are over processes P, files F , and times [1..n]. It can
be argued, however, that the English statement actually means that every
file is accessed by some process, considered next (A4).

A4. Every file is accessed by some process.

Here a different process may access each file: ∀ f ∃p ∃i (t i = a(p, f)).
Note that this is not equivalent to my expression in A3. because there are
situations where A4 is true but A3 is false. (A4 is a necessary, but not
sufficient condition for my A3 to be true.)

A5. Some process never locks a file.

There is a process that, for all files and times, does not lock:
∃p∈P ∀ f ∈F ∀i∈[1..n] (t i 6= l(p, f)).
Equivalently, there is a process for which there does not exist a time and
file that it locks: ∃p ∃ f ∃i (t i = l(p, f)).

A6. There are no lock or unlock operations in the trace; every operation is an
access.

In the context of this problem, these statements mean the same thing, but
they are two different logical expressions:

∀i ∀p ∀ f

�

(t i 6= l(p, f))∧ (t i 6= u(p, f))
�

is not equivalent to
∀i ∃p ∃ f (t i = a(p, f))

unless you add the information that each t i is exactly one of the three
operations applied by one process to one file; see Exercise 9.6. Imagine
adding a new operation, c(p, f), in which processor p checks that file f is
available and not locked. Then it becomes possible for a trace to have no
lock or unlock operations, but not have every operation be an access.

A7. Every file that a process locks is later unlocked by that process.

Here we quantify over every process, file, and time, and use a conditional
to restrict our attention to those times of the relevant lock operations.

∀p, f ,i

�

�

t i = l(p, f)
�

→
�

∃ j∈(i,n] t j = u(p, f)
�

�

.

I restricted the quantification domain for j so t j is after t i; I can drop
that restriction, and move the quantifier earlier, by including ∧(i < j) in
the innermost parentheses and replacing the conditional α→ β by the
equivalent α∨ β:

∀p, f ,i ∃ j

�

�

t i 6= l(p, f)
�

∨
�

(i < j)∧
�

t j = u(p, f)
�

�

�

.

Recall that in this system a processor’s unlock operation removes all previ-
ous locks that this processor placed on that file. This behavior is important
for this and the following answers; if lock and unlock operations had to
be paired, like balanced parentheses, the expressions become much more
complex. The next expression checks for unlocking files that are already
unlocked, which may indicate processes that don’t understand this system
behavior.

A8. Any process that unlocks a file must have previously locked it, and not
unlocked it in-between.

∀p, f ,k (tk = u(p, f))→
�

∃i∈[1,k) (t i = l(p, f))∧
�

∀ j∈(i,k) (t j 6= u(p, f))
�

�

.

I can use the commutative, associative, and distributive properties of ‘and,’
‘or,’ and ‘implies’ to move all quantifiers to the front, obtaining:

∀p, f ,k ∃i∈[1,k) ∀ j∈(i,k) (tk = u(p, f))→
�

(t i = l(p, f))∧ (t j 6= u(p, f))
�

.

A9. Any file that is locked by a process must be unlocked by that process before
a different process accesses it.

∀ f ,p,q ∀i,k∈[1,n]

�

�

(t i = l(p, f))∧ (tk = a(q, f))∧ (i < k)∧ (p 6= q)
�

→
�

∃ j∈(i,k) (t j = u(p, f))
�

�

.

I would shorten this by moving some of the variable restrictions from the
predicates to the quantification domains and abbreviating:

∀ f ,p 6=q,i<k

�

(t i = l(p, f))∧ (tk = a(q, f))→
�

∃i< j<k (t j = u(p, f))
�

.

4.3 Summary

Working with quantifiers is an important skill. In mathematics, all
important theorems involve quantifiers as they talk of existence,
non-existence, or properties of mathematical constructs. Even the

innocent-looking claim that “
p

2 is irrational” is saying that there
does not exist integers p, q 6= 0 for which (p/q)2 = 2. In computer
science we make many quantified claims: that no set of simultaneous
update commands can corrupt our database, that every network
client will receive a response within the timeout value, or that, for
each possible input, our computer program computes the right result
or stops with an appropriate error message. The rest of the book
uses quantified logic statements to define new structures and their
operations precisely.

Because there are many ways to state quantifiers in English, it
takes practice to become proficient at translating statements into no-
tation that correctly pins down their meanings. One way to practice
is to negate quantified formulae and translate back to English to see
what becomes true if the original statement is false.

4.4 Exercises and Explorations

Quiz Prep 4.1. Write the following conditions in notation using
quantifiers.

1. The largest element in a set S is x .
x ∈ S and ∀y∈S y ≤ x .

2. All the elements in the tuple (a1, a2, . . . , an) are distinct.
∀1≤i< j≤n ai 6= a j .

3. The element x occurs exactly once in tuple (a1, a2, . . . , an).
∃1≤i≤n ai = x and ∀1≤ j≤n (a j = x)→ (i = j).

4. The tuple (a1, a2, . . . , an) is in increasing order.
∀1≤i<n ai < ai+1.

5. The tuple (a1, a2, . . . , an) is in non-decreasing order.
∀1≤i<n ai ≤ ai+1.

6. The maximum value in (a1, a2, . . . , an) first occurs at position j.
∀1≤i< j ai < a j and ∀ j≤k≤n ak ≤ a j .

Quiz Prep 4.2. Convert between quantified expressions and English
statements. Let P be the set of all people, and D the set of dorms
on campus. Define lives in and dated predicates, l : P × D→ {T, F}
and δ : P × P → {T, F}, so that l(p, d) is true iff p ∈ P lives in dorm
d ∈ D and δ(p, q) is true iff p ∈ P has dated q ∈ P.

1. What are the English meanings of the following? (Note: > means ¬∃)

(a) ? ∃p∈P ∀q∈P δ(p, q).
(b) ? ∀p∈P ∃q∈P δ(p, q).

(c) ? >p∈P ∀q∈P δ(p, q).
(d) ? ∃p∈P ∀d∈D ∃q∈P (δ(p, q)∧ l(q, d)).
(e) ? ∀c,d∈D ∃x ,y∈P (l(x , c)∧ l(y, d)∧δ(x , y)).
(f) ? ∀c,d∈D ∀x ,y∈P

�

((c 6= d)∧ l(x , c)∧ l(y, d))→δ(x , y)
�

(g) ? ∀d∈D ∃p∈P ∀q∈P

�

δ(p, q)→ l(q, d)
�

(h) ? ∀d∈D ∃p∈P ∀q∈P

�

l(p, d)∧ (l(q, d)→δ(p, q))
�

2. What quantified statements represent these English sentences?

(a) No-one has dated themselves.
(b) No-one has dated anyone.
(c) Someone has dated every resident from some dorm.
(d) Someone has dated some resident from every dorm.
(e) There is a dorm in which every resident has dated someone.
(f) There is a dorm whose residents have not dated anyone from another

dorm.
(g) There are two people who, between the two of them, have dated

someone from every dorm.
(h) There are two dorms where no resident of either has dated a resident

of the other.

Quiz Prep 4.3. Match the each of the following quantified state-
ments with a logically equivalent statement on the right that uses
only the “and” (∧) and negation (overline) operations. Assume x
and y are quantified over integers and R(x , y) is a predicate that is

either T or F .
1. ∀x∀y

�

R(x , y)∨ R(y, x)
�

2. ∀x∀y

�

R(x , y)∧ R(y, x)→ (x = y)
�

3. ∀x ,y,z

�

R(x , y)∧ R(y, z)→ R(x , z)
�

4. ∃x∀y

�

(x 6= y)→ R(x , y)
�

5. ∀x∀y

�

R(x , y)∨ R(y, x)
�

a. ∃x∃y(R(x , y)∧ R(y, x)∧ (x 6= y))

b. ∃x∃y(R(x , y)∧ R(y, x))

c. ∀x∃y(R(x , y)∧ R(y, x))

d. ∃x∃y∃z

�

R(x , y)∧ R(y, z)∧ R(x , z)
�

e. ∃x∃y∃z

�

R(x , y)∧ R(y, z)∧ R(x , z)
�

f. ∀x∃y

�

(x = y)∧ (R(x , y))
�

g. ∀x∃y

�

(x 6= y)∧ R(x , y)
�

Exercise 4.4. Find the mistake(s) in each of the following.∗

1. Given sets A and B with elements from the universe U , to show that A⊆ B,
we must show that ∃x∈U (x ∈ A)∧ (x ∈ B).

2. Given sets A and B, to show that A⊆ B, we must show that for all x , both
x ∈ A and x ∈ B.

∗Warning: incorrect statements in this problem!

3. Since a · 1= a for all integers a, if we know b ·m= b, where b and m are
integers, then m= 1.

É

Exercise 4.5. Negate ∃x∈; p(x) to argue that ∀x∈; p(x) should be
defined as true, no matter what the predicate p. Note that ; repre-
sents the empty set—the quantification domain with no elements.

Puzzle 4.6. Jack Palmer’s 1924 jazz lyric says, “Everybody loves my
baby, but my baby don’t love nobody but me.”

1. If we think the double negative is for emphasis, we might say, “Everybody
loves my baby, but my baby doesn’t love anybody but me.” Translate this
into an expression quantified over a set P of people with my baby b ∈ P
and me m ∈ P. Denote a loves b by the predicate `(a, b).

2. Show that this leads to the narcissistic conclusion, “I am my baby.”

3. What genre of music best fits the original lyric?

4. How might you write the lyric to convey the intended meaning?

É

Extension 4.7. There is no general “distributive rule for quantifiers.”
In these questions, assume that all quantifiers are over the integers,
and p and q are predicates.

1. Show that
�

∀x p(x)
�

∧
�

∀y q(y)
�

≡ ∀x

�

p(x)∧ q(x)
�

.

2. Show that
�

∃x p(x)
�

∨
�

∃y q(y)
�

≡ ∃x

�

p(x)∨ q(x)
�

.

3. Show that
�

∀x p(x)
�

∨
�

∀y q(y)
�

→∀x

�

p(x)∨ q(x)
�

.

4. Give an example of predicates p, q for which ∀x

�

p(x)∨ q(x)
�

is true but
�

∀x p(x)
�

∨
�

∀y q(y)
�

is false.

5. Given x , show that p(x)∨
�

∀y q(y)
�

≡ ∀y

�

p(x)∨ q(y)
�

.

6. Show that
�

∃x

�

p(x)∧ q(x)
�

→
�

∃x p(x)
�

∧
�

∃y q(y)
�

.

7. Give an example of predicates p, q for which
�

∃x p(x)
�

∧
�

∃y q(y)
�

is true,
but ∃x

�

p(x)∧ q(x)
�

is false.

8. Given x , show that
�

∃y

�

p(x)∧ q(y)
�

≡ p(x)∧
�

∃y q(y)
�

.

Chapter 5

Set Operations and Properties
The student’s task in learning set theory is to steep him[or
her]self in unfamiliar but essentially shallow generalities till
they become so familiar that they can be used with almost no
conscious effort. In other words, general set theory is pretty
trivial stuff. . . read it, absorb it, and forget it.

—Paul Halmos, preface to Naive Set Theory [10]

With the notation of logic, we can precisely define and specify oper-
ations and properties of discrete structures. In this chapter we do
this for sets, which are the most basic. We also begin to show how
proof, which reasons from definitions, can establish properties that
are consequences of the definitions.

Objectives: Above, Paul Halmos states the overall goal of this chap-
ter: the student will learn these definitions and properties as base
vocabulary for talking about discrete structures.

You will be able to use logic and the basic definition of element
inclusion, ∈, to define operations of union, intersection, complement,
difference, symmetric difference, disjoint union, cardinality, power
set, and Cartesian product, and their accompanying notation (com-
mon |A|, ∪, ∩, ×, A, and less common \, ⊕,], P (A)). You will be
able to recall, or to check from the definitions, which operations have

124

common properties (associative, commutative, distributive, identity,
idempotent, and so forth), and use these properties to simplify ex-
pressions, as in logic. You will also continue to see how proof can
be used to establish properties by using logic to reason from the
definitions to the desired conclusions. You will be able to count
sets by inclusion/exclusion. Finally, you will be able to define and
recognize a partition of a set.

5.1 Set operations

Here are the definitions of several set operations. Although this
coverage is brief, it is important, and you should either commit to
memory the definitions or the pictures that illustrate them so that
you can reproduce the definitions if asked.

After the definitions we note several properties that they imply.
(You are encouraged to generate new pictures to make sure that you
understand and agree with the properties.) We then look at some
simple examples of proving properties from the definitions. More is
said about proof in Chapter 9, but notice how the proofs given here
proceed from what is known to provide new information.

5.1.1 Definitions for set operations

We’ve seen in Subsection 3.1.1 the definition of a set—a collection
of elements from some universe U in no particular order—and the
primitive test of whether an element is in a set. Logic lets us extend
these to several set operations, which are defined as functions in

Table 5.1 and illustrated with Venn diagrams. We include counts as
a check on understanding.

Some operations in the table, notably ⊆ and =, have both a
definition and an equivalent statement. We can prove that these
really are equivalent by applying the definitions and properties of
logic.

Table 5.1: Summary of set operations, including diagrams, symbols,
names, types, and formal definitions.

a ∈ B
Set membership: element, set→ T/F.
True iff a is in set B.

|A|
Cardinality: set→ {0,1, 2, . . . ,∞}.
The number of elements in A, possibly∞.
E.g., |;|= 0, |{a, b}|= 2, and |Z+|=∞.

A⊆ B

Subset: set,set→ T/F.
True iff ∀x∈U if x ∈ A, then x ∈ B.
Equivalently, ∀x∈A x ∈ B; Every A is in B.
Note: if A⊆ B, then |A| ≤ |B|.

A= B
Set equality: set,set→ T/F.
True iff ∀x∈U (x ∈ A)↔ (x ∈ B).
Equiv., A⊆ B and B ⊆ A.

A
Complement: set→ set.
The elements not in A, that is, U \ A.
Note: |A|+ |A|= |U |.

A∪ B
Union: set, set→ set.
The elements in either A or B:
A∪ B = {x | x ∈ A∨ x ∈ B}.

A∩ B

Intersection: set, set→ set.
The elements in both A and B:
A∩ B = {x | x ∈ A∧ x ∈ B}.
Note: |A|+ |B|= |A∪ B|+ |A∩ B|.

A\ B

Set difference: set, set→ set.
The elements in A that are not in B:
A\ B = {x | x ∈ A∧ x 6∈ B}.
Sometimes written A− B or A	 B.
Note: |A\ B|+ |A∩ B|= |A|.

A⊕ B

Symmetric difference: set, set→ set.
The elements in A or B, but not both:
A⊕ B = {x | x ∈ A⊕ x ∈ B}.
Note: |A⊕ B|+ |A∩ B|= |A∪ B|.

A] B

Disjoint union: set, set→ set or error.
if intersection A∩ B is empty,
return union A∪ B, otherwise ‘error’.
If no ‘error’, |A] B|= |A|+ |B|.

A× B

Cartesian product: set, set→ set of pairs.
The set of pairs of an element from A with
one from B in all ways (see Sec. 3.1.2):
{(a, b) | ∀a∈A b ∈ B}. Note |A×B| = |A| · |B|.

{a, b, c}

{a, c}{a, b} {b, c}

{c}{b}{a}

{ }

P (A)
or 2A

Power set: set→ family of sets.
The collection of all subsets of A:
P (A) = {S | S ⊆ A}. Note: |P (A)|= 2|A|.

�A
k

�

k-subsets: set, integer→ family of sets.
The collection of all k-element subsets of
A:
�A

k

�

= {S | S ⊆ A∧ |S| = k}. Note: |
�A

k

�

| =
�|A|

k

�

.

Since I am a computer scientist, I want to remind you to pay
attention to the types in Table 5.1. Many ‘typo’s (and ‘thinko’s) can be
caught by realizing that an operation is being applied to a type that
does not support it. Computer languages (like C++, Java, Python)
use types∗ to help programmers catch many of their mistakes early.
Physicists and engineers check units for the same purpose. When
you are writing mathematics you should get in the habit of checking
types: check that both operands for a union operation are sets, that
the result of a subset operation is being treated as true or false, and
so on.

Be aware that sets can be elements themselves. Notice the dif-
ference between the types of the ; in ; ∈ A and in ; ⊆ A; it is an
element in the former, and a (sub)set in the latter. In fact, three of
the four following expressions are always true: for the one that is
not, give an example set A for which it is true, and an example for
which it is false. ; ∈ A ; ⊆ A ; ∈ P (A) ; ⊆ P (A)

5.1.2 Properties for set operations

From the definitions of set operations we can derive many properties.
As in logic, you don’t need to memorize any of these properties
because you can always go back to the definitions and re-derive
them, but memorizing some can save work and allow for easier
communication. The formal proofs for most properties are character-
building (aka boring) exercises that simply recall corresponding

∗Strongly typed languages are checked mostly at compile time; others at run time.
You should check your types at write-up time and rewrite time.

properties of logic; we’ll do some examples below.

Equality and subset: A= B iff (A⊆ B) and (B ⊆ A).

Idempotence: A= A∪ A= A∩ A= A
Commutativity: A∪ B = B ∪ A and A∩ B = B ∩ A.
Associativity: A∪ (B ∪ C) = (A∪ B)∪ C and A∩ (B ∩ C) = (A∩ B)∩ C .
Distribution: A∪(B∩C) = (A∪B)∩(A∪C) and A∩(B∪C) = (A∩B)∪(A∩C).
Complement: A∪ A= U , A∩ A= ;, ;= U , U = ;.
de Morgan’s laws for sets: A∪ B = A∩ B and A∩ B = A∪ B
Absorption and identity: A∪ ; = A, A∩ ; = ;, A∪ U = U , and A∩ U = A.

A⊆ B iff A∩ B = A iff B ∪ A= B. H

5.1.3 Proofs for set operations

As we mentioned in the introduction, the process of writing down
the reasons a property is true is often of more value than the property
itself—it can give deeper understanding of the underlying concepts
and can make remembering the property easier.

When you are verifying or deriving properties, go back to the
formal definition or to previously established properties to avoid
circular reasoning. Don’t rely on your intuitive understanding of
the underlying concept; intuition can often guide you to the ideas
to derive a property, but there is no substitute to going back to the
definitions for a convincing demonstration.

In Chapter 9 we go into more detail on proof formats and what
is a proof, but let’s already begin to look at informal demonstrations
and formal proofs of some properties of set operations. I’ll write

the statements as lemmas∗. Whenever you read a lemma, first try
understand what it claims (what would be the opposite of the claim?),
then whether you believe it (where do you become stuck if you try to
build a counterexample?) Having done this, you may already have
ideas that you could flesh out into a proof that would convince you.
Then see if the given proofs are convincing. Does the proof supply
too much detail or too little? The latter is common in written proofs,
partly due to lazy authors, but more due to the fact that different
readers come with different knowledge and experience, and do not
have direct interaction with the author to ask him or her to fill in
gaps.

Lemma 5.1.1. The empty set is a subset of every set: ; ⊆ S.

What is this claiming? That no matter what set S I am given,
every element that is in the empty set can be found in S. That is
what the definition of subset says.

What is the opposite? That someone can give me a set S such
that some element b in the empty set is not in S.

But, of course, there are no elements of the empty set, so this is
basically the proof. Let me write the proof in three ways: first, in a
relatively formal two-column style, second, in paragraph style with
definition details, and third, as a brief sketch of the key idea(s) that
should convince a reader who knows the definitions well.

Two column, formal proof. The following are tautologies:

∗The Greek plural should be “lemmata.”

1. ∀x∈U x /∈ ; Defn of empty set
2. ∀x∈U (x ∈ ;→Q) Trivially true ∀Q

3. ∀S⊆U ∀x∈U (x ∈ ;→ x ∈ S) Substitution for Q

This proves the lemma. QED

Long narrative proof. The proof must work for all sets S ⊆ U , so
assume that your worst adversary gives you S. We want to show that
∀x∈U x ∈ ;→ x ∈ S, since this is the definition of subset.

But ∀x x ∈ ; is false, because the empty set has no elements. So,
∀x the implication (x ∈ ;→ x ∈ S) is vacuously true, regardless of
set S. QED

Proof sketch. ∀x (x ∈ ;→ x ∈ S) is vacuously true. QED

Ok, that one was too trivial to really need a proof once we under-
stood the statement. (But notice how struggling to evaluate proofs
clarified the statement!) Here is another:

Lemma 5.1.2. Union preserves subsets: that is, for all sets A, B, C, if
A⊆ B then A∪ C ⊆ B ∪ C.

What is the claim? If A⊆ B, then adding the same elements to
both sets doesn’t destroy this property.

What would be the opposite? There is some A⊆ B and some C
so that some element of A∪ C is not in B ∪ C .

Truth table proof. For a generic element of x ∈ U , the lemma is a
tautology, as can be seen in Table 5.4. QED

Table 5.4: A truth table proving Lemma 5.1.2, that if A⊆ B then A∪ C ⊆
B ∪ C .

x∈A x∈B x∈C (x∈A→ x∈B) → (x∈A∪ C→x∈B ∪ C)

T T T T T T T T

F T T T T T T T

T F T F T T T T

F F T T T T T T

T T F T T T T T

F T F T T F T T

T F F F T T F F

F F F T T F T F

Short proof. For a generic x ∈ A∪ C , we have x ∈ A∨ x ∈ C . But
if x ∈ A then x ∈ B, so we know that x ∈ B ∨ x ∈ C , which is the
definition of x ∈ B ∪ C . QED

If we attempt to prove the converse of the union property—
for all sets A, B, C , if A ∪ C ⊆ B ∪ C then A ⊆ B—then we
better fail, since this is false. Stop and try to create an ex-
ample of sets A, B, and C for which the converse is not true.
One example: A= {1,3}, B = {2,3}, C = {1,2}. What is an example
in which each set has as few elements as possible?

The truth table for the converse is not a tautology; when x ∈ A,
x 6∈ B, and x ∈ C , you find that (x ∈ A∪ C → x ∈ B ∪ C)→ (x ∈
A→ x ∈ B) is false. This attempt at a narrative proof finds the same
type of counterexample:

Proof. Suppose we know that A∪ C ⊆ B ∪ C . That is, for all x ∈ U ,
if x ∈ (A∪ C) then x ∈ (B ∪ C), or equivalently, either x 6∈ (A∪ C) or
x ∈ (B ∪ C). Then every x is in one of three places: outside both A
and C , inside B, or inside C .

We want to show that every x is either outside of A or inside B.
Thus, a counterexample would have x in A and outside of B. This
means that x would have to be inside C . And now it is easy to build
such an example: a minimum one is A= {1}, B = ;, and C = {1}.
One counterexample is enough to show that a “for all” statement is
false. QED

Let’s briefly prove one more important lemma: Two sets are equal
iff each is a subset of the other.

Lemma 5.1.3. A= B if and only if A⊆ B and B ⊆ A.

Proof. We could do the two directions (‘if’ and ‘only if’) separately,
but we don’t have to since the definitions of =,↔, ∀ and ⊆ give the
following chain of logically equivalent statements:

A= B iff ∀x (x ∈ A↔ x ∈ B) Defn =

iff ∀x (x ∈ A→ x ∈ B)∧ (x ∈ B→ x ∈ A) Defn↔

iff ∀x (x ∈ A→ x ∈ B) and ∀y (y ∈ B→ y ∈ A) Defn ∀ as ∧

iff A⊆ B and B ⊆ A. Defn ⊆

QED

5.2 Inclusion/exclusion counting

The sum rule said that if finite sets A and B are disjoint, meaning
A∩ B = ;, then we can count the elements in the union by counting
the sets separately: |A∪ B| = |A|+ |B|. But what if the sets are not
disjoint? Then the left side counts every element of the intersection
two times, and we should subtract off one of those counts:

|A∪ B|= |A|+ |B| − |A∩ B|.

We can extend this to three finite sets. To count the total, we
can add up the elements in each set, then subtract off the elements
common to a pair of sets. Elements in all three sets will have been
added three times, then subtracted three times, so we must put them
back again.

|A∪ B ∪ C |= |A|+ |B|+ |C | − |A∩ B| − |B ∩ C | − |A∩ C |+ |A∩ B ∩ C |.

These are called inclusion/exclusion rules.∗

Let’s do a particular example where we can count the union and
want to know the intersection. The rules for choosing computer
account passwords at UNC Chapel Hill require at least 8 characters
from a menu of 95 choices:

A. At least one is a letter (upper or lower case, so 52 choices per character).
B. At least one is a digit (10 choices per character).
C. At least one is a punctuation symbol from a list of 16, !@#$%&*+={}?<>"’.

If double quote is used, it must be last.

∗Proof can use Equation 3.1.

D. May also contain any of 17 other symbols, \/()[].,;:|^_-~‘ and space. Space
may not be first or last, and \ may not be last.

Let’s count 8 character passwords. First, ignore the “At least” rules in
A–C, but obey all restrictions on symbols. The first and last character
have 93 choices (no quote for first, no \ for last, and no space
for either), and the rest have 94 (no quote) so the total is 932946.
We can subtract from this total the numbers of passwords with no
letters (412426), with no digits (832846), and no special symbols
(78 · 796 · 77, since no \ first, and no space first or last). But then
we’ve subtracted some passwords more than once, so we add back
in the numbers of passwords with neither letters nor digits (312326),
those with neither letters nor special symbols (26 · 276 · 25), and
those with neither digits nor special symbols (68 · 696 · 67). Finally,
the passwords with no letters, digits, or special symbols were initially
counted, then subtracted three times and added back three times,
so we need to subtract their number (16 · 176 · 15). This gives the
number of permitted 8-character passwords.†

932 · 946 − 412 · 426 − 832 · 846 − 78 · 796 · 77

+ 312 · 326 + 26 · 276 · 25+ 68 · 696 · 67− 16 · 176 · 15

= 2,570, 334,323, 521,120

Another example arises in the next chapter: counting surjections.

†Going from 8 to 10 characters gives 11,227 times more passwords. The rules
allow 43% of all 8 character strings, and 54% of all 10 character strings.

5.3 Families of sets

Not everything about sets is easy, especially when we begin to look at families
of sets, which are sets whose elements are sets.

5.3.1 Partitions

One example of a useful family is a partition of a set S, which is a collection
of non-empty subsets of S so that every element of S is in exactly one subset.
Simple examples include the partition of integers into the even and odd
subsets, or the partition into Pk = { j | j ∈ Z∧ j2 = k2}, for k ∈ N.

The notation for partitions is not easy to grasp due to alternation of
quantifiers: Π= {P1, P2, . . . , Pn, . . . } is a partition of S iff ; /∈ Π, ∀P∈Π P ⊆ S
and

∀s∈S ∃P∈Π ∀Q∈Π s ∈ P ∧ (s ∈Q→ P =Q).

Using a big operator for disjoint union, which produces an error if any
element is shared by any two sets, we can write this more concisely: Π=
{P1, P2, . . . , Pn} is a partition of S iff ; /∈ Π and S =

⊎

P∈Π P. We’ll derive a
formula to count partitions in Subsection 8.2.2.

5.3.2 Further questions

Can a set contain a copy of itself? This leads to an infinite regress and to
statements that we can write in notation but that do not have a valid inter-
pretation. Consider the family A of the sets that do not contain themselves:
A= {X | X is a set and X /∈ X }

Figure 5.2: From blig-
blug, c©by Tom Canel.
(used by permission)

Is A ∈ A? If not, then the rule says it must
be, and if so, then rule says it can’t be. The self-
reference here has no valid interpretation; we
avoid defining such sets in this book.

http://bligblug.blogspot.com/2008/03/set-theory.html
http://bligblug.blogspot.com/2008/03/set-theory.html
http://bligblug.blogspot.com/2008/03/set-theory.html

Figure 5.1: Genji-mon are the tradi-
tional crests marking the 54 chapters of
the 11th century Japanese novel, “Tale
of Genji.” The central squiggle in this
photo from fujiarts.com marks the final
chapter; all other Genji-mon are possible
answers for an incense game in which
guests must identify, in a sequence of
five scents, which scents repeat.
Starting at the upper right, as the
Japanese would traditionally do, the
first marker indicates a play of the game
with three scents, which induce a par-
tition {{1,4,5}, {2}, {3}}, abbreviated
145|2|3. In other words, the first scent
is reused as the 4th and 5th. What other
partitions has the artist represented?
(Mouse over for answers in pdf.)
The 52 partitions of {5,4,3,2,1}, plus
the squiggle, are not enough for 54
Genji-mon; two Genji-mon must rep-
resent the same partition. (This claim
depends on the pigeonhole principle,
stated in the next chapter.) Can you find
them in the list linked here? ?

There are also statements that do have
valid interpretations, but we do not yet know

http://www.metmuseum.org/toah/works-of-art/JP2187
http://www.metmuseum.org/toah/works-of-art/JP2187
http://www.fujiarts.com
https://viewingjapaneseprints.net/texts/topics_faq/genjimon.html

whether they are true or false. A family of
sets A= {A1, A2, . . . , Ak} is closed under union iff
∀1≤i, j≤k Ai ∪ A j ∈ A. The power set A= P (S) is
closed under union, with every element of S in
exactly half of the sets of A. A smaller example is

A= {;, {b}, {a, b}, {a, c}, {a, b, c}}.

The Union Closed Conjecture, originally stated by Frankl in 1979, is open,
meaning that the answer is not known.

Conjecture 5.3.1. If A is a union closed family of sets, then there exists
an element x that is contained in at least half of the sets of the family:
∃x∈U |{i | x ∈ Ai}| ≥ |A|/2.

In discrete mathematics there are many puzzles like this that are easy
to state and hard to solve. Even for unsolved puzzles, one can always begin
by looking at special cases: e.g., if there is some set in A of size one, two, or
three, then it is not too hard to show the conjecture holds true.

5.4 Summary

From simple definitions come a plethora of operations and properties
that form the basic vocabulary for defining structures in computer
science and mathematics. Learn the definitions (or remember the
pictures that suggest the definitions) and you will be able to derive
the properties that you need. Then learn the terms for the properties
that you use most so you can communicate easily with others. After
that you won’t refer back to the definitions much, because they will
have become second nature to you.

http://www.math.uiuc.edu/~west/openp/unionclos.html

Using sets we were able to precisely state the rules for count-
ing, although the informal rules are often sufficient for back-of-the-
envelope checking.

Even discrete structures as simple as sets have puzzling questions
that remain unsolved.

5.5 Exercises and Explorations

Quiz Prep 5.1. Shade areas to make Venn diagrams for these sets:

(A∩ B)∪ C (A∩ B)− C (A∩ B)∪ (B ∩ C)∪ (A∩ C)

Quiz Prep 5.2. Answer the following:

1. In the universe of the real numbers, what is complement of the open interval
from a to b:

(a, b) = {x | (a ≥ x)∨ (x ≥ b)}.

2. Write the power set (set of all subsets) for each set

A= {a, b} P (A) = {;, {a}, {b}, {a, b}}
B = {a,;} P (B) = {;, {a}, {;}, {a,;}}
C = {{a, b, c}} P (C) = {;, {a, b, c}}

3. Find a set A for which A∩P (A) 6= ;. ?

4. A group of six people ordered sandwiches. Two wanted no lettuce and three
wanted no tomatoes. If two wanted everything (including both lettuce and
tomatoes), how many wanted neither? ?

Two people then decided they didn’t want mayonnaise, which happened
to make each sandwich unique. Of the eight subsets of {T, L, M}, which
two were not ordered? ?

Exercise 5.3. Draw Venn diagrams to illustrate properties from
Subsection 5.1.2.

Exercise 5.4. Here are two statements that are true for a family of
setsA that partitions a set S. They are very close to the definition,
but are different, because they are also true of some families that are
not partitions. For each, give an example of a set S of integers and a
family that is not a partition of S for which the statement remains
true.

1. Every element x ∈ S is in exactly one set of the familyA . In notation,

∀x∈S

�

∃B∈A
�

∀C∈A (x ∈ B)∧ (x ∈ C→ B = C)
�

�

.

2. Element x is in S if and only if it is in exactly one set of the familyA :

∀x∈U

�

x∈S↔
�

∃B∈A ∀C∈A (x∈B)∧ (x∈C→ B=C)
�

�

.

É

Puzzle 5.5. Updating a Charles Dodgson (Lewis Carroll) puzzle: in
a particularly aggressive paintball game with 20 combatants, 85%
got hit in a leg, 80% in an arm, 75% upside the head, and 70% in the
facemask. What is the minimum number of combatants that were
hit in all four places? ? Maximum? ?

É

Puzzle 5.6. On Settled Island, every native is either a “knight,” who
always tells the truth, or a “knave,” who always lies. Natives of
Settled know all about sets, which they denote {PQR . . . } (without
commas). When counting, however, they primarily distingush even
{0,2, 4, . . . } and odd {1,3, 5, . . . } numbers.

You meet 5 natives, A–E who made the following statements:

A said: In the set {B} there is an even number of knights.
B said: In the set {C} there is an even number of knights.
C said: In the set {D, E} there is an odd number of knights.
D said: In the set {A, C} there is an even number of knights.
E said: In the set {B, C} there is an odd number of knights.

Who are the knights and who are the knaves?

Exploration 5.7. Suppose that three sets, A, B and C , satisfy two
conditions, (A∪ C) ⊆ (A∪ B) and (A∩ C) ⊆ (A∩ B). Demonstrate,
however you wish, that C ⊆ B.

Chapter 6

Relations and
Functions

Mathematicians are like Frenchmen: whatever you say to
them, they translate it into their own language, and at once
it means something completely different.

—Johann Wolfgang von Goethe

You have been introduced to many functions in your math classes,
like sin(θ) and f (x) = x2. What functions have in common is that
they assign, or map, each input value from some domain set to a
unique output value from a range set.

By using quantified statements about sets of tuples, we capture
the familiar concept of a function in a precise manner using the ab-
stract concept of a relation. We also define special types of functions
and relations. These formal, sometimes abstract, definitions per-
fectly illustrate the Goethe epigram above, because they supersede
our prior ideas of functions and become the authority on what is
and is not a function.

Objectives: By working through this chapter and the exercises,
you will be able to define relations from Cartesian product, and
identify whether example relations are binary, reflexive, symmetric,

143

or transitive. You will be able to define functions, to write notation for
function definition with domain and range, f : A→ B, and function
use, f (a), and to identify whether functions are predicates, injections,
surjections, or bijections. You will be able to count the number of
possible functions and relations of different types, and begin so
see how proof can formally show that certain functions satisfy the
definitions. You will learn the pigeonhole principle, which is about
the existence of bijections. Finally, you will see how quantified
statements in the definitions of big O, big Ω, and big Θ characterize
the growth of functions, such as bounds on the resources required
by algorithms.

6.1 Relations

The abstract concept of a relation appears throughout computer
science (from relational databases to entity-relationship diagrams)
so it is a little surprising that the definition is a simple statement
about sets.

A relation on two sets, A and B, is a subset of pairs A× B; a
relation R ⊆ A×B. When B = A, we have a binary relation, R ⊆ A2. A
first example relation is “less than” on integers, R= {(m, n) | m, n ∈
Z∧m< n}. Pair (1, 2) ∈ R, but (2, 2) 6∈ R; which we can abbreviate
as 1 R 2, but 2 6R 2.∗ A second example is the squaring relation
S = {(x , x2) | x ∈ R}, which contains pairs (2,4) and (−2,4), but
not (2,−4) or (2, 2). Non-numeric examples of relations on people

∗Just as we write 1< 2 and 2 6< 2.

include “is a child of,” “is in the same class as,” or “has sent email
to.” A non-binary relation on people and vehicles is “owns,” and on
students and numbers is “has a current GPA of.”

To specify a relation, we can simply list its set of pairs. For
example, let’s represent a set of seven people (alice, bob, chris, dana,
eve, fern, and gary) by their lowercase initials: P = {a, b, . . . , g}.
Define the child-of and class-with relations:

C = {(c, a), (c, b), (d, a), (d, b), (f , d), (f , e), (g, c)}

W = {(a, a), (a, e), (b, b), (b, g), (c, c), (d, d), (e, a), (e, e), (f , f), (g, b), (g, g)}.

For the emails relation, E, Grandma Alice broadcasts to everyone,
every time, Grandpa Bob never emails, Chris and Dana exchange
business email, cc’ed to themselves, Dana and Eve also email each
other and their child, and the young ones, Fern and Gary, have each
emailed everyone else, but neither emails themselves.

We can draw a relation R ⊆ A× B by making a dot or vertex for
each element of A and B, and drawing an edge as a straight or curved
arrow for each (a, b) ∈ R.∗ Chapter 13 explores these diagrams,
known as graphs. Draw each of the three relations C , W and E.

Another way to specify a relation is as an |A| × |B| matrix of T/F,

∗An arrow for an edge (a, a) ∈ R is called a self-loop.

indicating which pairs are in the relation. Create the matrices for
the relations =, <, and ≥ on [0..2]× [0..3].

= 0 1 2 3
0 T F F F
1 F T F F
2 F F T F

< 0 1 2 3
0 F T T T
1 F F T T
2 F F F T

≥ 0 1 2 3
0 T F F F
1 T T F F
2 T T T F

To check our understanding, how many different relations are
possible for a pair of sets of size |A| and |B|? ?

Well, there are |A| · |B| pairs in the Cartesian product A× B, and for each pair
we decide to include it in a subset or not. The product rule says the total
number of subsets is 2|A|·|B|, so this is the number of possible relations.

Every relation R ⊆ A×B has a complement relation R ⊆ A×B and
an inverse relation R−1 ⊆ B × A:

Complement: R consists of all pairs from A×B that are not in R: R = {(x , y) |
x ∈ A∧ y ∈ B ∧ (x , y) /∈ R}. The complement of the “sends email to”
relation is the “does not send email to” relation. The complement of
the “less than” relation on integers, <, is the “greater than or equal to”
relation on integers, ≥. Complementing the relation complements the
set of arrows in the corresponding drawing, and the Boolean entries in
the matrix.

Inverse: R−1 is obtained by simply swapping the order of every pair: R−1 =
{(y, x) | (x , y) ∈ R}. As you would expect, the inverse of the “sends
email to” relation is the “receives email from” relation. The inverse of
the “less than” relation on integers, <, is the “greater than” relation on
integers,>. Going from a relation to its inverse reverses the direction of
every arrow in the corresponding drawing, and transposes the matrix.

6.1.1 Binary relations

Many special properties of relations are defined by quantified state-
ments, so I want to make some of those definitions here to practice
with quantifiers and prepare for defining functions. We won’t see
the full power of these special relations until Chapter 12.

Here are five properties for binary relation R ⊆ A× A. It is good
practice to write the negation for each. How could you recognize
each property from a drawing of a relation?

Reflexive: Binary relation R is reflexive iff ∀x∈A (x R x).
Every vertex has a self loop.

Irreflexive: R is irreflexive iff ∀x∈A (x 6R x).
No self loops.

Symmetric: R is symmetric iff ∀x ,y∈A (x R y→ y R x).
Every edge is paired with its reverse.

Antisym: R is antisymmetric iff ∀x 6=y∈A (x R y→ y 6R x).
No edge appears with its reverse.

Transitive: R is transitive iff ∀x ,y,z∈A

�

(x R y ∧ y R z)→ x R z
�

.
Every 2-edge path has a 1-edge shortcut.

Fill in Table 6.1 to identify the properties for the example binary
relations from above: relations on integers (=, <, 6=, ≥), the subset
relation on sets (⊆), and the relations on people (C , W , E).

Notice that reflexive and irreflexive are not opposites. Although
it is true that no relation can be both reflexive and irreflexive, there
are relations like E that are neither. In fact, if n = |A|, then of the 2n2

relations, 2n2−n are reflexive and 2n2−n are irreflexive,∗ so as n grows,
∗Can you explain these counts? See quizprep 6.5.

Table 6.1: For each binary relation, give two example pairs in the rela-
tion, and two pairs not in the relation. Then check off the properties the
relation has. The first is done as an example; answers can be revealed
below.

= 6= < ≥ ⊆ C W E

Reflexive T
Symmetric T
Transitive T
Irreflexive ·

Antisym ·
Pairs in (0,0) (,) (,) (,) (,) (,) (,) (,)
relation (1,1)

Pairs not (0,1)
in relation (2,0)

= 6= < ≥ ⊆ C W E

Reflexive T · · T T · T ·
Symmetric T T · · · · T ·
Transitive T · T T T · T ·
Irreflexive · T T · · T · ·

Antisym · · T T T T · ·
Pairs in (0,0) (0,1) (0,1) (0,0) (;, {1}) (c,a) (a,a) (a,b)
relation (1,1) (0,2) (0,2) (1,0) ({1}, {1}) (f,e) (a,e) (c,c)

Pairs not (0,1) (0,0) (0,0) (0,1) ({1},;) (a,c) (a,f) (b,d)
in relation (2,0) (1,1) (1,0) (0,2) ({1}, {2}) (a,a) (c,d) (g,g)

the fraction of all binary relations that are reflexive or irreflexive
becomes vanishingly small.

The same holds for symmetric and anti-symmetric: there are
relations that are neither. There are 2n(n+1)/2 symmetric relations
because when we choose, for each a ≤ b ∈ A whether (a, b) is in
the relation, we are making the same choice for (b, a). There are
a few more choices for anti-symmetric relations: For the n repeat
pairs (a, a), we independently choose in or out. For the pairs with
a ≤ b ∈ A, we independently choose to include (a, b), (b, a), or
neither; we cannot choose both. Thus, there are 2n3n(n−1)/2 anti-
symmetric relations.

By the way, counting transitive relations is hard; there is no
closed form expression. An expression is said to be in closed form if it
can be calculated using a fixed number of mathematical operations
on input values (addition, multiplication, exponentiation, factorial,
choose). A summation is not considered closed form, because the
number of inputs and additions in a sum can be arbitrarily large.

Relations with similar properties behave somewhat similarly. For
example, = and W have the same properties; both are reflexive,
symmetric, and transitive. Relations like these, called equivalence
relations, always partition their sets into equivalence classes, as we
will see in Section 12.3.

Also in the table, ⊆ is similar to ≥. Relations that are anti-
symmetric and transitive, and either reflexive or irreflexive, are
partial orders, as we will see in Section 12.2. Relations ≥ and < are
total orders because ∀a 6=b, either (a, b) or (b, a) is in the relation,
but not both. On the other hand, we can find a pair of sets A, B with

http://oeis.org/A006905

neither A⊆ B nor B ⊆ A, so ⊆ is not a total order.

6.2 Functions

A function f is a relation on A and B that pairs, or maps,
each element a from the domain A to exactly one element
b = f (a) from the range B. For example, the predi-
cates used in quantified statements are functions whose range
set is {T, F}, since they map each input to true or false.

Old mathematicians never
die; they just lose their
functions.

In notation, relation f ⊆ A× B is a func-
tion iff

∀a∈A ∃b1∈B

�

(a, b1) ∈ f
�

∧
�

∀b2∈B ((a, b2) ∈ f → b2 = b1)
�

.

In English, this says that every element of the domain a ∈ A is paired
with an element of the range b1 ∈ B, and if we think it is paired with
a second element b2 ∈ B, then we have actually rediscovered the
first, because b2 = b1. (This is the idiom for “there is a unique b ∈ B”
that was introduced in Subsection 4.1.4.)

a
b
c
d
e

function

1
2
3
4
5

When this definition is satisfied, we
change from relation notation to the famil-
iar function notation: writing f : A→ B to
identify the domain and range, and writing
f (a) for the unique value that is paired with
a. Mixing the notation, ∀a∈A, (a, f (a)) ∈ f
and ∀a∈A,b∈B

�

(a, b) ∈ f → (b = f (a))
�

. We depict a function by

drawing a single arrow from each element of the domain to some
element of the range.

How many functions from A to B are possible? For each element
of A we choose exactly one element of B, so we have |B||A| functions
by the product rule.

We extend the f () notation to tuples for functions of more than
one variable: if the domain of a function is a set of tuples, we
suppress an extra set of parentheses. For example, the Pythagorean
theorem gives the length of a vector (x , y), which is a function
f : R×R→ R that we write as f (x , y) =

p

x2 + y2, suppressing the
extra parentheses of f ((x , y)).

We also extend the f () notation to sets. For a subset of the do-
main, X ⊆ A, we get a subset of the range, f (X) = { f (x) | x ∈
X }, called the image of X under f . In the function illustrated,
f ({2,3,4}) = {b, d}. In mathematical texts, B is called the co-
domain, and the term range is reserved for the image of the domain,
f (A), which need not cover the entire co-domain, B. In computer
science we tend to use range to mean co-domain.

In the other direction, the pre-image of Y ⊆ B under f is a subset
of the domain: f −1(Y) = {a ∈ A | f (a) ∈ Y }. In the illustrated
function f −1({a, b}) = {1,3,4} and f −1({c, e}) = ;. Using the no-
tation f −1 to define pre-image does not imply that the inverse of
f is a function, but it is consistent with the definition of inverse
of a relation. (This type of offhand remark is what makes reading
mathematics slow. To get it, you must disentangle the related but
different concepts of ‘inverse’ for relations and for functions. If you
do, feel proud. If not, ask.)

We can compose functions whose domain and range match to
make a new function: given f : A→ B and g : B→ C , the composition
h = g ◦ f is a function from A to C defined so h(a) = g(f (a)). Notice
that composition applies the functions from the side closest to the
parameter first.

6.2.1 Some numerical functions

The operations on sets in the previous chapter are functions that
apply to sets of any type of elements. Here are six functions on
sets of numbers. The first three are defined with nested quantifiers
(using a mathematical idiom for “smallest”) before they are restated
in words. The remaining three are defined from logic notation.

min For a set or tuple A, if (x ∈ A)∧(∀a∈A a ≥ x), then min(A) = x , otherwise
min(A) is undefined. In words, min(A) is the smallest value among the
elements in A, if a smallest exists. For a finite set or tuple, min(A) is
always defined, but infinite sets like Z or the real interval (0,1) need
not contain a minimum element.

liminf For a set A ⊆ R define lim inf(A) = x , for x ∈ R iff ∀a∈A

�

(x ≤

a)∧
�

∀z>x∈R ∃b∈A (x ≤ b < z)
�

�

. The value of lim inf(A) need not be
in A, but no greater number is less than or equal to all elements of A.
For finite sets or tuples, lim inf(A) =min(A).

argmin For a tuple A = (a1, . . . , an), arg min(A) = i iff ∀ j∈[1..n] (ai < a j) ∨
�

(i ≤ j) ∧ (ai ≤ a j)
�

. In words, argmin(A) is the index of the first
occurrence of a minimum element in tuple A.

Iverson bracket An expression in brackets, like [x > 0], evaluates to ‘1’ if
the expression is true and ‘0’ if the expression is false. In this example,

[x > 0] is a function from reals to {0, 1}.
sgn: signum For all x ∈ R, sgn x = [x > 0]− [x < 0] returns the sign of the

number (0 for zero).
absolute value For all x ∈ R, the absolute value, |x | = sgn(x)x , changes the

sign if and only if x is negative.

In your algebra and calculus classes, continuity is an important
property and most functions are continuous,∗ at least over most of
their domain. In discrete mathematics, we don’t even need to define
continuous and many of our most important functions here and in
the next chapter are not continuous.

Is square root a function? If we look at the definition of function,
we see that the question is incomplete, because we need to identify
the domain and range sets. What we choose makes a difference:
p

x : R→ R is not a function, because
p
−1 is not defined among the real

numbers. (Proof: (
p
−1)2 = −1, but the square of any real number

is non-negative. It was to avoid this difficulty that complex numbers
were invented in the 16th century.)p

x ⊆ R≥0 ×R , the inverse relation of squaring, is also not a function. The
squaring relation S = {(x , x2) | x ∈ R} is a function with range R≥0.
Its inverse relation S−1 = {(y, z) | z2 = y}, however, is not a function
because both (4, 2) ∈ S−1 and (4,−2) ∈ S−1.p

x : R≥0→ R≥0 is a function that restricts the range to the non-negative
branch, giving what is called the principal square root of x . This is howp

x is implemented in many calculators and computer languages. It

∗Topology has a succinct definition of continuous: the pre-image of every open set
is open.

is no longer the inverse of squaring reals, but is the inverse for non-
negative reals, which, for example, is enough for the Pythagorean
theorem.p

x : R≥0→ R2 can also be a function if we define
p

x = (−|y|, |y|)whenever
y2 = x , returning a unique pair. Note that if we defined

p
x = (−y, y)

we would not have a function, because
p

4 would need to map to two
different pairs, (−2, 2) and (2,−2).

In conclusion, the squaring function, S : R→ R, defined by S(x) =
x2, is a relation and a function. It’s inverse relation, the square root,
is not a function. By restricting the domain and range of S to non-
negative reals, S : R≥0→ R≥0 becomes a bijection (defined shortly),
and its inverse, the principal square root, satisfies the definition of a
function.

Notice how the formal definition encourages us to be more com-
plete and precise (aka more pedantic and anal-retentive) about what
is meant by ‘square root.’ This can be a good thing when coding
or specifying what is to be coded, because the earlier an error or
ambiguous specification is caught, the easier and cheaper it is to fix.

6.2.2 Types of functions

Quantified statements let us define special types of general functions
as well. The most important of these are the bijections.

Partial function: A relation R ⊆ A× B is a partial function iff no x ∈ A maps
to more than one y ∈ B. I.e., ∀x∈A y,z∈B (x R y ∧ x R z)→ y=z. This
drops one of the conditions of the definition of a function. In computer

science, many of our programs are partial functions that give outputs only
for legal inputs and give appropriate error messages (or inappropriate
crashes) for illegal inputs. How many partial functions from A to B are
possible? (|B|+ 1)|A|

Surjection: A function f : A → B is a surjection, or onto, if and only if
f (A) = B. In a drawing of a surjection, every element of B is the target
of one or more arrows from A. Say this in notation: ∀y∈B ∃x∈A f (x) = y .
Counting surjections is tricky. Start by listing all surjections for small
domain and range sets, A= [1..m] and B = [1..n]. When m < n there
can be no surjections. Do you agree with my counts in Table 6.2?

a
b

d

surjection

1
2
3
4
5

We can create an inclusion/exclusion formula. Start with the set of all nm

possible functions, then subtract out those that miss one of the elements
of the range: we choose which element to miss in n ways, then create a
function in (n− 1)m ways. Now, those that choose to miss two elements
have been subtracted out twice, so we add that count back in: choose the
pair to be missed in

�n
2

�

ways, and map in (n− 2)m ways. But now any
that misses a triple has been added back too often, so we need to subtract
them out. . . . The resulting formula can be written as a summation:

nm−
�

n
1

�

(n− 1)m +
�

n
2

�

(n− 2)m − · · ·+ (−1)n−1
�

n
n− 1

�

=
∑

0≤i≤n

(−1)i
�

n
i

�

(n− i)m.

Table 6.2: Numbers of
surjections of m onto n

m\n 1 2 3

1 1 0 0
2 1 2 0
3 1 6 6
4 1 14 36
5 1 30 150

Injection: A function f : A → B is an injection, or one-to-one,
iff each element of B is hit by mapping at most one element
of A. We can express this using the ‘at most one’ idiom:
∀x1,x2∈A

�

f (x1)= f (x2)
�

→ (x1=x2). Replacing the conditional with its
contrapositive, ∀x1,x2∈A (x1 6=x2)→

�

f (x1)6= f (x2)
�

, suggests that two-to-
two should be the alternate name, since an injection maps two different
elements of A to two different elements of B. (The definition of function
already maps each element of A to a single element of B.)
How many injections from A to B are possible? Since no element of B
can be reused, we get falling powers |B||A| = |B|(|B|−1) · · · (|B|− |A|+1).
Note that this correctly tells us that there are no injections if |A|> |B|.

a
b
c
d
e

injection

1
2
3

Bijection: A function f : A→ B is a bijection if and only if it is an injection
and a surjection. In a drawing of a bijection, every element of B has
exactly one incoming arrow from A.
We can use quantifiers and write this as a single statement: a function
f : A→ B is a bijection (a one-to-one and onto function) iff

∀b∈B ∃a1∈A

�

f (a1) = b
�

∧
�

∀a2∈A (f (a2) = b)→ (a2 = a1)
�

.

Notice that this essentially says that the inverse relation f −1 is a function;
bijection are exactly the set of functions that have inverses.
How many bijections from A to B are possible? Well, we must have
|A|= |B| to have any, and then we can apply the injection count to see
that it is |A|!.

We will increasingly derive consequences from definitions and
prove new statements about discrete structures. For example, here is
a type of function that we can prove is a bijection using the definition.

Suppose that f : A → A is its own inverse, meaning that
∀a∈A f (f (a)) = a. Examples of functions with this property include
negation (for logic or numbers), bitwise-XOR, 1/x for non-zero reals,
and some cyphers like rot13.

Lemma 6.2.1. Any function f : A → A that is its own inverse is a
bijection.

Proof. We are given a function f satisfying ∀a∈A f (f (a)) = a.
To show that f is surjective, we want to show that

∀y∈A ∃x∈A f (x) = y. For any given y, choosing∗ x = f (y) works,
since f (x) = f (f (y)) = y .

To show that f is also injective and thus a bijection, we want to
show that ∀x1,x2∈A

�

f (x1)= f (x2)
�

→ (x1=x2). So, suppose that we
are given x1, x2 ∈ A satisfying f (x1)= f (x2). Apply f to both sides:

∗Note: ∀y ∃x so we are given a y , then can pick an x .

f (f (x1)) = f (f (x2)). But this means x1 = x2 since f is its own
inverse. QED

We can also show that the composition of two bijections is a
bijection:

Lemma 6.2.2. The composition of two bijections is a bijection.

Proof. Let f : A→ B and g : B → C be bijections. I want to show
that the composition g ◦ f is a bijection—that it is a function that is
both a surjection and an injection.

The function notation makes it easy to see that g ◦ f is a function,
since each a ∈ A, is paired with g ◦ f (a) = g(f (a)) as its unique
value in C .

To show g ◦ f is a surjection, consider any c ∈ C . Since g is a
surjection, ∃b∈B g(b) = c; since f is a surjection, ∃a∈A f (a) = b. But
this a satisfies g(f (a)) = c, so g ◦ f is a surjection.

To show g ◦ f is an injection, suppose that we are given a1, a2 ∈ A
with g(f (a1)) = g(f (a2)). I want to show that a1 = a2. Note that
because g is a bijection, we know that f (a1) = f (a2). But then,
because f is an injection, a1 = a2. QED

6.3 Bijections and counting

We can now formally define what we informally stated in Chapter 3:
a set B has |B| = n if and only if there is a bijection f : [1..n]→ B.
We can generalize this definition to infinite sets as well: |A| = |B|

iff there is a bijection f : A→ B. Let’s first look at consequences for
counting finite sets, then briefly at infinite sets.

We first met the sum and product rules before we had notation
for quantifiers, set operations, and functions; here is how they can
now be stated for finite sets.

Theorem 6.3.1 (sum rule). For disjoint, finite sets A and B, |A] B| =
|A|+ |B|.

Theorem 6.3.2 (product rule). For finite sets A and B, |A×B| = |A|·|B|.

Proofs are by building bijections; see Exercise 6.6.

The pigeonhole principle has a silly name and sounds obvious:
you cannot put n+ 1 pigeons into n pigeonholes without having at
least two share. Stated more mathematically, if I have two finite sets
with |A| > |B|, then there is no bijection f : A→ B. Sometimes its
consequences are not completely obvious; we’ve already used it with
Genji-mon and counting surjections.

a
b
c
d
e

bijection

1
2
3
4
5

• An airport with 1,500 or more landings a day must be able to accom-
modate two planes landing in the same minute.

• In a class of 35 students, if a majority are female and a majority are
majoring in computer science, then at least one is both.

• Lossless compression cannot reduce the file size of all possible data
files.

And NUH is the letter I
use to spell Nutches

Who live in small caves,
known as Nitches, for
hutches

These Nutches have
troubles, the biggest
of which is

The fact there are many
more Nutches than
Nitches.

—Dr. Seuss, On Beyond
Zebra

In general, with |A| = m and |B| = n, for
any function f : A→ B, there is some b ∈ B
for which | f −1(b)| ≥ m/n. That is, for at
least one b ∈ B, the number of incoming
arrows is at or above average. Let’s prove
this:

Lemma 6.3.3. For any function f : A→ B
on finite sets, there is some b ∈ B with
| f −1(b)| ≥ |A|/|B|.

Proof. Let m = |A| and n = |B|. Since
each element of A appears in f −1(b) for
exactly one b ∈ B, the sum rule says
∑

b∈B | f
−1(b)| = m. If | f −1(b)| < m/n for

each b ∈ B, then the n terms of the sum would total less than m.
Thus, at least one b ∈ B has | f −1(b)| ≥ m/n. QED

There are some unexpected consequences of the definition that two
infinite sets have the same cardinality iff there is a bijection between them.
Some can be amusingly described as the movement of guests in Hilbert’s
Infinite Hotel, which has one room per positive integer in Z+, all occupied.

A bus drives up with an infinite number
of new guests, one per positive integer. David
Hilbert broadcasts to the existing guests that each
guest in room i should move to 2i, and that each
new guest numbered j should proceed to room
2 j − 1 and move in. The number of integers is
the same as the number of evens, by the bijection

http://www.youtube.com/watch?v=faQBrAQ87l4
http://www.youtube.com/watch?v=faQBrAQ87l4

f (i) = 2i. Even with no vacancy, there is no problem in doubling the number
of guests in this hotel.

Buses numbered by Z+ drive up, each with infinitely many
people, numbered by Z+. Hilbert tells each person to add
their bus and person numbers, n = b + p, and proceed to
room

�n
2

�

+ p. (Current guests are to use bus number zero.)

b\p 1 2 3 4 5. . .

0 1 3 6 10 15
1 2 5 9 14 20
2 4 8 13 19 26
3 7 12 18 25 33
4 11 17 24 32 41
5 16 23 31 40 50
...

The table in the margin suggests that this pat-
tern gives each person a room, filling the hotel!
This sets up a bijection between N×Z+ and Z+

by using
�n

2

�

to count people with sums smaller
than n, and adding p. The pairs of integers, the
rational numbers, and even the number of finite
length computer programs are all countably in-
finite, like the integers.

Some sets of people can not be accommo-
dated, however. Suppose Hilbert tries to find rooms for a set of people
labeled with all possible infinite sequences of coin flips {H, T}∞. We can
prove that there is always someone who is not assigned to a room. Make the
sequence whose ith symbol (H or T) differs from what the person in room i
has as their ith symbol. (If there is no person in room i, then pick either
symbol.) The resulting sequence belongs to a person P who does not have
room j because room j is empty or is occupied by a person whose sequence
differs in the jth symbol from P ’s.

This is Cantor’s diagonalization argument, which shows that the number
of H/T sequences is uncountably infinite, as are the real numbers and the
number of functions on the integers. These have implications when you
consider what functions are computable by programs, but that goes beyond
the scope of this book.

6.3.1 Resource bounds and asymptotic notation

Computer scientists frequently report bounds on the resources (par-
ticularly time and memory) used by an algorithm as the problem size
grows. Time and memory for any specific implementation depend
on the underlying hardware and on programmer decisions. Because
Murphy’s law applies in a special way to computers, we are often
interested in bounding the worst possible inputs, as a function of
some measure of problem size. Furthermore, these bounds are of-
ten given in asymptotic notation, which hides specific constants and
low-order terms and records only the relative growth of the time
or memory. By comparing growth rates we can qualitatively com-
pare resource requirements for different algorithms. And with a few
experiments we can estimate implementation-dependent constants
and extrapolate resource requirements over a larger range.

In this book I have chosen to use exact counts rather than asymp-
totic notation, but for those who are interested, I wanted to show how
computer scientists use nested quantifiers and functions to precisely
define the imprecision for reporting resource requirements.

Let’s consider an example problem whose input consists of a
chosen integer x ∈ Z and an n-tuple of integers in non-decreasing
order, (a1 ≤ a2 ≤ · · · ≤ an) ∈ Zn. The desired output has two cases:
If x is found in the n-tuple, that is, if ∃1≤i≤n such that x = ai , then
report i, the index where it is found. Otherwise report, “x is not in
the tuple.” (You could instead report the position where x belongs
if it is not in the list.) We can imagine two different algorithms to
solve this problem.
Linear search checks each element of the list in turn, starting with i = 1, and

http://en.wikipedia.org/wiki/Murphy%27s_law

stopping when ai ≥ x .
Binary search compares x with the middle element of the tuple and continues

the search in either the first or the second half of the tuple. (We’ll derive
a streamlined version of this algorithm in Section 11.3.)

Linear search

Binary search

Let fA(x , a1, a2, . . . , an) denote the num-
ber of element comparisons performed by
an algorithm A on a particular input. When
the algorithm A is clear from context, we
omit the subscript. We’ll use this as a proxy
for running time. The actual running time of
an implementation of algorithm A depends
on many things: the language of the implementation, the quality of
the compiler and the programmer, the underlying hardware, and the
processor load conditions. But most costs can be applied either to a
specific comparison or to overhead. For a specific implementation of
algorithm A, by doing a few timing tests with different inputs, we
could determine constants c and d such that c fA(x , a1, a2, . . . , an)+d
is a good estimate of running time, even for extrapolating to larger
inputs.

It takes work to calculate the number of comparisons for each
possible input; often knowing the maximum is enough. Of course,
as problems grow larger, the maximum is greater, so we define a
function of n, the tuple size:

fA(n) = max
x ,a1≤...≤an∈Z

fA(x , a1, a2, . . . , an).

Spelling out the quantifiers and logic,

fA(n) = y iff ∃x ,a1≤...≤an∈Z y = fA(x , a1, a2, . . . , an)

and ∀x ′,a′1≤...≤a′n∈Z y ≥ fA(x
′, a′1, . . . , a′n).

Thus, fA(n) is the upper bound on the number of comparisons in
A for any input (x value and non-decreasing n-tuple). By also
bounding the time per comparison and overhead, we get the worst-
case time for the algorithm A. We could also find the best-case,
minx ,a1≤...≤an∈Z fA(x , a1, a2, . . . , an).

In the linear search algorithm A, the worst case is n and best
case is 1 comparison. It is tempting to say that the average case
is n/2 comparisons, but that would require defining a probability
distribution on the set of all possible inputs, so we delay that until
after Chapter 14.

For binary search, should we check for equality (x = A[i]) in the
loop, or only after, as suggested in Section 11.3? If we do it in the
loop, then the best case is 1 comparison, and worst is 2dlog2 ne, using
the ceiling notation of Chapter 7 to round up to the nearest integer.
If we do it after, the best is 1+ blog2 nc and worst 1+ dlog2 ne. Since
half of the inputs take the maximum and a quarter take one less, if
we average over all possible inputs, checking after is less work. But
this is a slight difference compared to the exponential improvement
of using binary instead of linear search—an improvement that gets
better as n grows larger.

Whether we consider worst, best, or some type of average case,
there is another issue in reporting the times. Since we are using
comparisons as a proxy for running time, we don’t need to know

the exact number of comparisons∗ To suppress the constants, and
just look at the growth of functions, we define asymptotic notation,
including big O for upper bounds, big Ω for lower bounds, and big
Θ for both.

In English, a function f : N→ R is said to be in the set O(g(n))
iff we can find a constant c > 0 so that, once n becomes large
enough, f (n) is positive, but always less than or equal to cg(n).
The quantified statement below makes this precise. Choosing c
suppresses a constant factor; considering n large enough (choosing
an N and considering all n> N) suppresses any initial overhead to
focus on the growth of f (n) as n grows. The linear search algorithm
is in O(n), so it runs in worst-case linear time, and the binary search
is in O(log n), so it runs in worst-case logarithmic time.

big O f ∈ O(g(n)) iff ∃c∈R+,N∈N ∀n>N 0 ≤ f (n) ≤ cg(n). Examples of func-
tions in O(n2) include (pop-ups give possible values for c and N) 5n
? , n
p

n ? , and 3n2 + 2n+ 99 ? . On the other hand, n3 6∈ O(n2), be-
cause no matter what N and c you choose, pick n =max(N , c)+1, and
n3 > c3 = cn2. For practice, what is the negation of f ∈ O(g(n))?

f ∈ O(g(n)) iff ∀c∈R+,N∈N ∃n>N f (n) < 0 or f (n) > cg(n). In words,
no matter what c and N you choose, there is always a bigger n where
f (n) goes below 0 or above cg(n).

In this notation, n looks like a free variable in f ∈ O(g(n)), but in fact
n is bound by a hidden “for all” quantifier. It would be better if the

∗Although, for this book, I have chosen to focus on exact counts, since it is easier
to move from exact to approximate than the reverse.

notation were On(g(n)), but O(g(n)) has become so entrenched that
most computer scientists won’t even notice this issue.

big Ω f ∈ Ω(g(n)) iff ∃c∈R+,N∈N

�

∀n>N

�

0 ≤ cg(n) ≤ f (n)
�

�

. Examples of

functions in Ω(n2) include n3 ? and 3n2 + 2n+ 99 ? . Notice that big
O and big Ω are not opposites. In real analysis, a different definition
is used : f ∈ Ω(g(n)) iff ∃c∈R+ ∀N∈N

�

∃n>N

�

cg(n) ≤ f (n)
�

�

. That is,
f (n) goes above cg(n) infinitely often.

big Θ f ∈ Θ(g(n)) iff ∃cH ,cL∈R+,N∈N

�

∀n>N

�

0 ≤ cL g(n) ≤ f (n) ≤ cH g(n)
�

�

.
That is, a function f ∈ Θ(g(n)) iff f is in both O(g(n)) and Ω(g(n)). In
English, for all sufficiently large n, the function f is trapped between
two scaled copies of g.

N

f(n)

cLg(n)

cHg(n)

f ∈ Θ(g(n))

Can you create a function that is neither
O(n2) nor Ω(n2)? This would be a func-
tion that, for any chosen c1 > 0, is greater
than c1n2 infinitely often and, for any cho-
sen c2 > 0, is less than c2n2 infinitely often.
The easiest way is to define function that behaves differently on even
and odd inputs:∗ e.g.,

f (n) =

¨

n3 if n is even

0 if n is odd
.

∗For a continuous, non-negative function: n3(1+ sin(n)).

6.4 Summary

This chapter has built notation on the simple, but abstract concept
of a relation. We define relation R ⊆ A× B to emphasize that a
relation is just a set of pairs. We write a R b as an abbreviation for
(a, b) ∈ R to emphasize the predicate defined by R and do formal
proofs. In Chapter 13 we define a graph G = (A, B, R) to emphasize
the connections between related elements. There are several special
types of relation this chapter has defined the most basic (a relation
can be reflexive, symmetric, transitive, irreflexive, or anti-symmetric)
and the most important (a relation can be a function).

Functions have their own notation for definition, f : A→ B in-
stead of f ⊆ A× B, and use, b = f (a) instead of a f b or (a, b) ∈ f ,
but underneath they are simply special relations. Special types of
functions include surjections, injections, and bijections; bijections
are important for counting and other lossless transformations. The
pigeonhole principle is one simple example.

6.5 Exercises and Explorations

Quiz Prep 6.1. Write the following conditions in notation using
quantifiers.

1. Function f : R→ R is bounded from above in the interval [a, b].
∃M∈R∀x∈[a,b] f (x)≤ M .

2. Function f : R→ R is strictly increasing.
∀x ,y∈R (x < y)→ (f (x)< f (y)).

3. Function f : R→ R is non-decreasing.
∀x ,y∈R (x < y)→ (f (x)≤ f (y)).

4. There is a non-empty interval of the domain in which f : R→ R is always
smaller than g : R→ R.
∃a<b∈R ∀x∈[a,b] f (x)< g(x).

5. Interval [c, d] ⊆ R is a maximal interval∗ in which g : R→ R is less than
or equal to h: R→ R.

Two of the many possible ways: (can you find one simpler?)
∀x∈[c,d] g(x) ≤ h(x) and ∀a<c ∃b∈[a,c) with g(b) > h(b) and ∀ f>d ∃e∈(d, f]

with g(e)> h(e).
∀a≤c,b≥d

�

�

∀x∈[a,b] (g(x)≤ h(x))
�

↔
�

(a = c)∧ (b = d)
�

�

6. Relation R ⊆ A× B is a function.
∀x∈A ∀y1,y2∈B (x , y1), (x , y2) ∈ R→ y1 = y2.

7. Function f : A→ B is an injection.
∀x1,x2∈A f (x1) = f (x2)→ x1 = x2.

∗[c, d] is a maximal interval with a property if any interval containing [c, d] does
not have the property.

8. Function f : A→ B is a surjection.
∀y∈B∃x∈A f (x) = y .

9. Function f : A→ B is a bijection.
Combine previous two conditions.

Quiz Prep 6.2. Be able to specify a relation as a set, draw the graph
of a relation, and fill in a table of properties like Table 6.1.

Quiz Prep 6.3. Let S = {a, b}. Fill in the table with the numbers of
the following: Please leave expressions like products or factorials
unevaluated, to make it is easier to see where they came from.

{1} {1,2} {1,2, 3} {1, 2,3,4}
Relations on S × ? ? ? ?

Functions from S to ? ? ? ?

Injections from S into ? ? ? ?

Surjections from S onto ? ? ? ?

Bijections between S and ? ? ? ?

Exercise 6.4. A binary relation R ⊆ A× A has an inverse, R−1 =
{(b, a) | ∀a,b a R b}, and a complement, R= (A× A) \ R. Show that

1. The inverse of a reflexive relation is reflexive and inverse of an irreflexive
relation is irreflexive

2. The inverse of a symmetric relation is symmetric and inverse of an anti-
symmetric relation is antisymmetric.

3. The inverse of a transitive relation is transitive.

4. The complement of a reflexive relation is irreflexive and complement of an
irreflexive relation is reflexive.

5. The complement of a symmetric relation is symmetric.

6. The complement of a transitive relation may or may not be transitive.

7. The inverse is never equal to the complement: R−1 6= R.

Exercise 6.5. How many of each of the following binary relations
on [1..3] are there? Be able to explain these counts. It may help
to use a 3 × 3 Boolean matrix to represent all ordered pairs and
determine which pairs are in the relation.

1. All relations ?

2. Reflexive relations ?

3. Irreflexive relations ?

4. Relations that are neither reflexive nor irreflexive ?

5. Reflexive relations that are symmetric ?

6. All symmetric relations ?

7. All antisymmetric relations ?

8. Relations that are neither symmetric nor antisymmetric ?

9. Relations that are not reflexive, not irreflexive, not symmetric, and not
antisymmetric ? ∗

10. Is there a good way to count the transitive relations, except by brute
force? I know of none.

∗

Use inclusion/exclusion or count Boolean matrices: diagonal must be TFF or FTT in
some order, above has free choice, then below is ECC or CEE (equal or complement)
in some order.

Exercise 6.6. Build bijections to demonstrate the sum and product
rules, as stated in Subsection 3.2.1:

sum rule For disjoint, finite sets A and B, |A] B|= |A|+ |B|.

Assume that we are given bijections fA : [1..|A|]→ A and fB : [1..|B|]→ B.
Define g : [1..|A|+ |B|]→ A] B as a bijection.

product rule For sets A and B, |A× B|= |A| · |B|.

Again, assume that bijections fA : [1..|A|] → A and fB : [1..|B|] → B are
given. Let’s build the inverse, g−1 : A× B→ [1..|A| · |B|], because to build
the function itself takes floor and mod functions, which are introduced in
the next chapter.

É

Exercise 6.7. Let (a1, a2, . . . , an) be a sequence from [1..n] with no
repeated number. Show that if n is odd, then the product

∏

(ai − i)
is even. É

Puzzle 6.8. This riddle was called old a hundred years ago: A man
looking at a picture of an individual says, “Brothers and sisters have
I none, but that man’s father is my father’s son.” How must the
pictured individual be related to the speaker? Draw a graph of either
the “son of” or “father of” relation to help explain your answer.

Extension 6.9. A classic game theory scenario is the prisoners’
dilemma: Police spot a car that looks like the stolen vehicle reported
at the scene of yesterday’s bank robbery, and turn on their sirens.
The two friends in the car, Alan and Bob, want to avoid a three-year

robbery sentence, so they quickly agree that they will claim to have
stolen the car today, which carries a one-year sentence.

B
A 1(co-op) 0(defect)
1(co-) 〈−1,−1〉 〈−3, 0〉
0(def) 〈0,−3〉 〈−2,−2〉

Figure 6.1: Prisoners’
dilemma payoff matrix

The police really want to solve the rob-
bery, so they separate the pair and offer each
their freedom (a year off the one-year sen-
tence) if either gives evidence on the other.
(Of course, if both give evidence, then the
police will seek two-year sentences for each,
so neither will be freed.) This can be summa-
rized by a 2× 2 matrix for a payoff function,
p : A× B→ R2, that maps A and B choices to co-operate (1) or defect
(0) to the corresponding pair of prison sentences.

1. A must choose between co-operate (1) or defect (0), and wants to maximize
his payoff (since prison time is a negative.) We say that one choice a ∈ A
dominates the other if, no matter what B chooses to do, A is no worse off
for having chosen a. Does cooperate, defect, or neither dominate in the
prisoners’ dilemma? ?

2. For a payoff function, p : A× B → R2, in which A and B may have many
options, write an expression that is true iff some a ∈ A dominates all others.

∃a∈A ∀b∈B ∀c∈A p(a, b)≥ p(c, b).

3. Explore what happens with other payoff matrices.

Extension 6.10. A logic function with n variables has domain
{T, F}n and range {T, F}. In other words, for each possible way
to input an n-tuple of T and F , it must choose a T or an F .

1. How many different logic functions are possible on two input variables?
(and, or, xor, if, iff are five familiar ones.) ?

2. How many different logic functions are possible on n input variables? ?

3. How many of the logic functions with two input variables actually use both?
For example, f (p, q) = (p ∧ q)∨ (p ∧ q) does not really depend upon q. ?

4. What is a good definition for a logic function on n variables using the ith
variable?

5. How many of the logic functions with three input variables actually use all
three? ?

6. Determine a formula for counting the number of logic functions with n
input variables that use all n.

É

Exploration 6.11. Garrison Keillor closed his monologues with,
“Well, that’s the news from Lake Wobegon, where all the women
are strong, all the men are good looking, and all the children are
above average.” Formulate the last claim mathematically, using
quantifiers and functions, and discuss under what conditions it might
be possible.

You’ll need to define a function mapping a set of children to real numbers.

Chapter 7

Math Review
If people do not believe that mathematics is simple, it is only
because they do not realize how complicated life is.

—John von Neumann

We need to be familiar with the properties of division, floor, re-
mainders (mod), summation, exponentiation, and logarithms, so
we review these in this chapter. But let’s do this with a purpose.
All of these combine to give public key encryption by the RSA al-
gorithm∗ [21], which is the main method of encryption protecting
all your secrets on the Internet—from passwords to authentication
of financial transactions. So let’s consider the story of how I can
announce publicly two numbers (my public key) that anyone can
use to send me a message that only I can read. In the process, we’ll
also review bases, binary numbers, fractions, primes, and vectors.

Objectives: On completion of this chapter, the student will be
able to do the following operations. Each operation reviews several
concepts:

1. Convert a message string to a number, and numbers to binary. (Reviewing
numbers represented as strings, summation notation, binary numbers

∗The algorithm creators, Ron Rivest, Adi Shamir, and Len Adleman, founded RSA
Data Security in 1982, which Verasign bought in 2006 for $2.1 billion.

174

(base 2) and other bases, Horner’s rule)
2. Convert a number back to a message, or to another base. (Reviewing

logarithms, floor, mod, ceiling, geometric series)
3. Hide information inside a published number. (Reviewing divisors, primes)
4. Keep numbers that we work with small even though we raise numbers to

very large exponents. (Reviewing exponentiation, properties of mod)
5. Develop a family of bijections that are one-way functions: easy to compute

but hard to invert unless you know some hidden information. (Reviewing
fractions, vectors, slope, greatest common divisors)

In the process, we’ll develop some of the number theory of integers
mod a prime. You’ll understand this best if you work out the material
yourself,∗ so as you read, be ready with scratch paper, a notebook,
or a fine-point pencil for marginal notes.

7.1 Messages and bases

First, let’s see how to convert a message string to numbers, and
numbers to binary.

7.1.1 Strings to numbers

An integer can be written as a string on the alphabet [0..9]. The
string of decimal digits dkdk−1 · · · d1d0 is the number

(7.1) d =
∑

0≤i≤k

di10i = dk10k + dk−110k−1 + · · ·+ d110+ d0.

∗Math is not a spectator sport
—Jerry Mortensen

Notice that when we talk about the place values (ones, tens, hun-
dreds, thousands), we are talking about powers of ten, starting from
zero (100, 101, 102, 103). A number with dk as the highest non-zero
digit has k+ 1 digits.

By generalizing Equation 7.1, a string from an alphabet of b
elements can be written as a number:∗ Assign each symbol of the
alphabet a unique number from [0..b − 1], then, in Equation 7.1,
replace the ‘10’s with ‘b’s and each di with the number of the ith
symbol in the string. When the alphabet is of size two, you have the
binary numbers.

A better way to convert a string to a number does not need
powers of b: process the string one character at a time, from dk

down to d0, distributing multiplication by b across addition:

d = (· · · ((dk b+ dk−1)b+ dk−2)b+ · · ·+ d1)b+ d0.

The calculation starts with the value of the first character, then
repeatedly multiplies by b and adds the next character. This is
Horner’s rule for evaluating a polynomial, although in our application
of the rule the polynomial is evaluated only at b, the base of the
number system. (More in Subsection 8.2.3.)

To convert a number d back to a string, or equivalently to get the
string of digits in base b, we can reverse the process using division,
floor, and mod, which are described in the next three subsections.

∗Base-16, or hexidecimal, uses the alphabet 0–9,A–F. So what are the decimal
values of ACE16, CAFE16, and DEC0DE16?

7.1.2 Floor and ceiling

Floor rounds a real number down to the next integer, and ceiling
rounds up. Formally, for all x ∈ R, the floor bxc is the greatest integer
less than or equal to x . The ceiling dxe is the smallest integer greater
than or equal to x .

Let m = bxc; we know that m ≤ x and that m + 1 > x , since
m is the largest integer less than or equal to x . Subtract 1 from
both sides of the inequality to see that, for all reals x ∈ R, we have
x − 1< bxc ≤ x . Similarly, ∀x∈Rx ≤ dxe< x + 1, with equality iff x
is an integer.

These inequalities let us prove many properties about floor and
ceiling Exercise 7.3. For example, we can pull integers from inside
floors or ceilings: For any x ∈ R, n ∈ Z, we have bx + nc = bxc+ n
and dx + ne = dxe+ n. Also, for all integers n ∈ Z, n = bn/2c+ dn/2e
and b(n+ 1)/2c= dn/2e.

7.1.3 Length of a given message

By the way, given an integer n ∈ Z+, how many digits are in its
decimal string? How many bits∗ if I write n in binary? If n encodes
a message in an alphabet of b symbols, how long is the message?
The answers come from logarithmic functions, which we review in
this section.

Recall that the base-b logarithm, logb x , is the exponent on b
that gives x . That is, x = blogb x . The natural log function uses base

∗bits = binary digits, each 0 or 1.

e ≈ 2.71828: ln x = loge x . In computer science we use log base 2
often enough to give it its own notation: lg x = log2 x .

Back to digits: in base b,

There are 10 types of peo-
ple in the world: Those
who understand ternary,
those who don’t, and
those who thought this
was a binary joke.

a non-negative integer with m-digits—those
with dm−1 as the leading non-zero digit—
are bm−1 through bm − 1. (Check base 10:
the single digit numbers, m = 1, are 1–9.)
Thus, the first non-zero digit of n in base b is
at position blogb nc+ 1. (Note that logb 0 is
undefined—zero has no non-zero first digit.)
For all n ∈ Z+, blogb nc+ 1 = dlogb(n+ 1)e since log is a (slowly)
increasing function.

You can remember the important properties of the log functions
over x > 0 by thinking of lg x as roughly the number bits to write
down dxe∗. For other bases b, logb x is roughly the number of digits
from [0, b) to write x .

• If you double x in binary, you need just one more bit. If you multiply
by b in base b, you need one more digit: logb(bx) = 1+ logb x .

• If you multiply x y , you need to add digits: logb(x y) = logb x + logb y .
• If you divide x/y , you can take away digits logb(x/y) = logb x−logb y .
• Powers (repeated multiplication inside) come out as multipliers (re-

peated addition outside): logb(x
y) = y logb x .

• Negative powers work, too: logb(1/x) = − logb x .
• Change the base from a to b by dividing by loga b because that is how

many digits from [0, a) are replaced by each digit from [0, b) giving:

∗dlg ne is also how many “x ≤? a” questions are necessary and sufficient to guess
any x ∈ [1..n].

logb x = (loga x)/ loga b.
The last gives the relationship between the number of characters in
a message and bits in the number: logb x = (lg x)/ lg b, since

2lg x = x = blogb x =
�

2lg b
�logb x

= 2lg b·logb x .

So if your calculator does not have log to some base, use any other log
and remember to divide by log of your desired base. This justification
used properties of exponents, which are usually taught before logs
but which fit into my story later, in Subsection 7.2.3.

Let’s return now to encoding and decoding.

7.1.4 Mod for decoding

Figure 7.1: Decimal to
binary: remainders on
dividing by 2.

For all pairs of reals, x , y ∈ R, with y 6= 0,
define x mod y to be x −bx/yc · y . For pos-
itive integers, x mod y is just the remain-
der when dividing x by y. By the defini-
tion of bx/yc as the greatest integer less
than x/y we can see that for positive y
values, x mod y is non-negative and 0 ≤
(x mod y) < y. (For negative y values,
y < x mod y ≤ 0.)

Using mod we can convert a positive in-
teger d into its string of digits in base b,
starting with the least significant digit d0. We can think of this as
decoding d to recover its `-symbol message d` · · · d1d0 in right-to-left
order. Initialize ` = 0. While d > 0, assign d` = d mod b, increment

` = `+ 1, and update d = bd/bc. Note that each d` ∈ [0, b), as it
should be.

Mod can also be used to create bijections for encoding and de-
coding. The classic ‘Caesar cypher’ chooses a key value k ∈ [1, b)
and shifts each character of the message, substituting mi = (di + k)
mod b for each di .

∗ This is a private key encryption method—the
sender and receiver must each know, and keep secret, the key
value k, because anyone who discovers it can decode by calculating
di = (mi − k) mod b.

With only b− 1 possible keys to choose from, this is very weak
encryption. You can do a little better by grouping ` symbols of the
message, converting to a number d, and choosing key k ∈ [1, b`).
But even this is weak. For one thing, it falls to a known cypher-text
attack: if I trick you into encoding d as m for me, I can calculate
your private key k = (m− d)mod b and read all your messages.

I want to allow anyone to encode a message for me using public
information, yet be the only one who can decode using my private
information. Seems impossible, but the next section shows how, by
hiding large prime numbers in a published composite number. If
what you’ve already read is not yet clear to you, however, this would
be a good point to take a break and then review.

∗What key k, in a 27-symbol alphabet (‘blank’, A–Z), shifts IBM to HAL?

7.2 Encoding by exponentiation mod hid-
den primes

First, let’s look at divisibility and primes, then review exponentiation.
Then we’ll state a 17th century theorem that ties these together and
that has a beautiful, short proof by counting necklace sequences. The
result gives an idea for using hidden primes to encode and decode
messages.

7.2.1 Divisibility

For all integers a, b ∈ Z, we say that a divides b, denoted a|b, iff
∃m∈Z am = b. Some use as equivalent expressions that a is a divisor
of b, that b is divisible by a, that b mod a = 0, or that b is congruent
to 0 (mod a).∗

For example, 2 divides 6 (that is, 2|6 is true) because 2 · 3= 6.
Note that divides is a function Z2→ {T, F} and that the definition is
based on multiplication—we do not say that 2|6 because 6/2 = 3.
This allows the definition to apply in situations where division is not
defined. Check what this definition says about -1, 0, and 1: Zero
divides only itself, every number divides 0, and both -1 and 1 are
divisors of every number.

Convince yourself, or (even better) a skeptical classmate, of the
truth of these properties of divides for all integers a, b, c ∈ Z. The
most convincing demonstrations go back to the definition of divides.

∗Sorry for the many ways to say the same thing. Many different people have
invented different terms for these concepts over the centuries.

• If a|b and b|c, then a|c.
• If a|b then ac|bc.
• If a|b and b 6= 0 then |a| ≤ |b|.
• If a|b and b|a then |a|= |b|.
• If a|b and a 6= 0, then b/a is an integer.
• If a 6= 0, then b mod a = c mod a iff a|(b− c).

The first few of these properties give the classic demonstration
that
p

2 is not a rational number; that no p, q ∈ Z satisfy p/q =
p

2.

Theorem 7.2.1.
p

2 is irrational.

Proof. Suppose, for the sake of deriving a contradiction, that there
exist positive integers p and q with p/q =

p
2. Choose p and q to

have no common factor.∗ But p2 = 2q2, so 2 divides p2, and must
also divide p. But then 4 divides p2, so 2 divides q2 and must also
divide q. Thus, p and q have 2 as a common factor, which contradicts
our choice. Therefore, there is no pair of positive integers such that
p/q =

p
2. QED

7.2.2 Hiding two primes in a composite number

A positive integer N is composite if it can be written as the product
of two smaller, positive integers; if there exist integers 1< a, b < N
with N = ab. An integer p > 1 is prime if it is not composite; if p’s
only positive divisors are 1 and itself. Zero and 1 are neither prime
nor composite.

∗Equivalently, choose the smallest positive p and q such that p/q =
p

2.

The fundamental theorem of arithmetic is that every integer
can be written as a product of primes uniquely, up to order of the
factors. It follows from the first of these properties, which apply for
all integers a and b, and for all distinct primes p and q:

• p|ab iff (p|a or p|b).
• (p|a and q|a) iff pq|a.

For a composite number N > 0, let a be the smallest possible
factor greater than 1 (one) for which N = ab. We can observe two
facts: First, a must be prime, or one of its own factors would be a
smaller factor of N . Second, a ≤

p
N since b ≥ a ≥ 2. Thus, one

way to demonstrate that an integer N is composite is to test divide
by all primes p ≤

p
N .

Directly testing all primes up through
p

N can still be a lot of
work. The Prime Number Theorem says that up through x there are
roughly x/ ln x primes. Thus, if we create N by multiplying two 512-
to 1024-bit prime numbers, someone directly testing would check
more primes than there are atoms in the universe before factoring N .
With today’s algorithms and technology, composite numbers can be
published and still hide two large primes.

How do you use a hidden prime and how can you find large
primes to hide anyway? The answers to both of these questions
come from exponentiation, so here is another digression.

7.2.3 Messages of given length

With an alphabet of b symbols, how many possible messages are there
of length k? This is the reverse to the problem of Subsection 7.1.3,

and we’ve already seen the solution in Chapter 3: the product rule
says bk, since we choose one of b symbols, k separate times. If we
don’t allow leading blank symbols, or leading zeros in decimal or
binary strings, then we have bk − bk−1 by the sum rule.

Knowing the number of messages of length x is bx can help
us remember the properties of exponentiation even for non-integer
b and x . (We will assume that b ≥ 0 whenever x 6∈ N.) In these
properties, for ‘number’ read “number of possible message strings
using a b-symbol alphabet” and for ‘exponent’ read “message length,”
so the second says, “To make each message string of length x + y
from b symbols, there is exactly one way to concatenate a string of
length x with one of length y. Thus the number of strings is the
product, bx+y = bx b y .”

• Multiplying a number by the base adds 1 to the exponent: b · bx = bx+1.
• Multiplying numbers adds exponents: bx b y = bx+y .
• Dividing numbers subtracts exponents: bx/b y = bx−y .
• Powers multiply exponents: (bx)y = bx y = (b y)x .
• Reciprocals are negative powers: (1/b) = b−1.
• Exponents distribute over multiplication of bases: (ab)x = ax bx .
• For base b, log and exponentiation are inverses: for all reals x = logb bx ,

and for positive reals y = blogb y .

Many interesting combinations of logs and exponents come up that
are probably easier to derive than to memorize. Here’s a cute
one; you can trade exponent bases through log powers: bloga x =
(aloga b)loga x = (aloga x)loga b = x loga b.

Exponential functions of integers grow very quickly, even when
the base is small. You should know your first ten powers of two, and

remember that 210 is a little over∗ a thousand (103), so 220 is over a
million, 230 is over a billion. The number of atoms in the universe is
estimated at 1081 or 2270.

If we are taking exponents or doing other arithmetic with integers
mod N , we can avoid storing numbers above N by taking mod before
and after each calculation. Suppose that c, d, N ∈ Z with N 6= 0 and
e ∈ N; can you convince yourself that these are true?

• (c + d)mod N =
�

(c mod N) + (d mod N)
�

mod N .
• cd mod N =

�

(c mod N)(d mod N)
�

mod N .
• ce mod N = (c mod N)e mod N .

Encoders and decoders both compute functions like x = me mod
N . To use the second and third properties to keep the magnitudes of
intermediate numbers manageable, write the exponent in binary as

e = (· · · ((ek · 2+ ek−1)2+ ek−2)2+ · · ·+ e1)2+ e0,

where each ei ∈ {0,1}. Start with x = 1 and, for i = k down to 0,
set x = (x · x mod N) · (mei)mod N . This repeatedly squares x and,
for each 1 bit in the binary expression of e, multiplies by m. This
calculation is easily encoded into a spreadsheet, since all numbers
are kept below N . It ends in dlg de steps with x = me mod N , as
desired. Table 7.1 works through three examples.

∗A programmer buys cheese by the kilo because he thinks he’ll get 24 extra grams.

7.2.4 The unexpected power of counting

A 17th century theorem, known as Fermat’s Little Theorem,∗ is crucial
to both finding and using hidden primes. It has a 20th century proof
based on counting p-tuples [7] that is so short and clever that I’d like
to convince you that the theorem is true before I explain how it can
be used. So for now, just notice that this gives a way to start with a
message m ∈ [0, p), calculate an exponential, and get the message
back.

Theorem 7.2.2 (Fermat’s little theorem). For all integers m and
primes p > 1, mp mod p = m mod p.

Let’s count possible necklaces—circular sequences of p beads,
each of which is one of m different colors. With p = 3, for example,
a single color gives the single necklace aaa. Two colors give four:
aaa, aab, abb, and bbb: other 3-tuples, like aba, are just alternative
ways to write the second or third circular sequences as a straight
sequence. Three colors give eleven sequences: 3 using one color,
6 using two, and 2 using all three colors: abc = bca = cab and
cba = bac = acb. Note that these two are different because we may
circularly rotate necklaces, but not flip them over.

1 4 4

1 4 2

1 5 5 5

1 5 5 5

Figure 7.2: All 4-bead
and all 5-bead neck-
laces with 2 colors,
each with the number
of straight sequences.

Necklaces that have a repeating color
pattern, like aaa or abab = baba, produce
fewer than p straight sequences when cut,
but I claim that, for all primes p, the only

∗Fermat is famous for stating theorems and letting others find the proofs; his “Last
Theorem” was proved only in 1995.

p-bead necklaces that don’t produce p differ-
ent straight strings when cut are the single-
color necklaces. If you’ve (unexpectedly)
studied abstract algebra or group theory,
then you already know that the number of
straight strings from a p-bead necklace di-
vides p. If not, try examples until you find
this plausible, and remember that we should
return to verify this formally (Cor 7.3.4)
once we are sure that it is worth the effort. Mathematics outside
of textbooks invariably proceeds like this, jumping ahead and later
backfilling with the details.

Proof of Thm. 7.2.2. Let n be the number of necklaces∗ (circular
sequences) of p beads from m colors that use at least two colors.
Each can be cut in p ways to form a different straight sequence. Thus,
np = mp −m, where the right side is the number of all p-tuples of
m elements chosen with repetition, minus those tuples with a single
color. We conclude that p divides mp −m. QED

Fermat’s little theorem can help us reject composite numbers in
a search for large primes: if we find some m ∈ [0, p) for which mp

mod p 6= m, then p cannot be prime. The theorem doesn’t say that
composite numbers must fail this test, but many do fail for many
m. A few composites, known as the Carmichael numbers, actually
pass for all m; the smallest is 561. There are many fewer Carmichael

∗This is our second combinatorial proof by counting a set in two ways. In mathe-
matics, any trick used three times becomes a method.

numbers than primes, so there is a good chance that if a number
passes the Fermat test for many m, then it is prime.

Table 7.1: Encryption with public key N = 10403, E = 209 and decryp-
tion with private D = 2489 for 1337, 42, and 9876. Binary representa-
tions of E and D give the steps of the encoding and decoding functions,
x = mE mod N and y = x D mod N , as described in Subsection 7.2.3.

Encoding (all ops mod N = 10403)
E step values

1 m1 = 1337 42 9876
1 m2 = m2

1 ·m1 4936 1267 7027
0 m3 = m2

2 270 3227 6091
1 m4 = m2

3 ·m1 1593 5292 7845
0 m5 = m2

4 9720 388 10280
0 m6 = m2

5 8757 4902 4726
0 m7 = m2

6 4536 9077 10238
1 x = m2

7 ·m1 8105 7098 8565

Decoding (all ops mod N = 10403)
D step values

1 y1 = 8105 7098 8565
0 y2 = y2

1 6483 10278 7672
0 y3 = y2

2 1169 5222 9813
1 y4 = y2

3 · y1 6835 2475 7909
1 y5 = y2

4 · y1 9752 4451 2697
0 y6 = y2

5 7681 4089 2112
1 y7 = y2

6 · y1 3453 3093 9995
1 y8 = y2

7 · y1 1551 537 1801
1 y9 = y2

8 · y1 10281 897 2199
0 y10 = y2

9 4481 3578 8609
0 y11 = y2

10 1571 6394 3909
1 y = y2

11 · y1 1337 42 9876

Perhaps more importantly, the theorem gives us an idea for public
key cryptography: Let’s find three numbers E > 1, D, and N so that
the composite E · D has a Fermat-like property that for all m ∈
[0, N), the mED mod N = m. We publish N and E so that anyone
can compute an encoded message y = mE mod N . I decode with
y D mod N to recover m. Our N will actually hide two primes that

will determine D from our choice of E, as described in the next
section.

As an example, Table 7.1 encodes and decodes three 4-digit
numbers using N = 10403, E = 209 and D = 2489. These numbers
are much smaller than would be used in a real encryption scheme,
and are chosen so you should be able to factor this N rather easily
to discover the hidden primes. Note that it would not be good to
use the factors of N as the encoding and decoding exponents, even
if they had the Fermat property, because then anyone could recover
D = N/E. Thus, it will take some more work, via a digression into
fractions, vectors, and invariants, to complete this.

7.3 Finding the encoding and decoding ex-
ponents

We need another theorem to support the calculation of the encoding
and decoding exponents, E and D. This calculation is even older,
dating back to Euclid, but I’m going to develop it from a 19th century
look at fractions and vectors on a Cartesian grid so that we can
review those. If your brain is full with Fermat’s little theorem, this is
a good place to break and review before continuing.

7.3.1 Fun with fractions

I trust that you recall the proper way to add fractions, by putting them
over a common denominator before adding: a

b+
c
d =

ad
bd+

cb
bd =

ad+cb
bd .

Just for fun, though, define an operation that adds two fractions the
wrong way, giving what is called their mediant:

a
b
⊕

c
d
=

a+ c
b+ d

,

Start with the following sequence of three fractions on the num-
ber line, representing −∞, 0, and +∞:∗
−1
0
··

0
1
··

1
0

Repeatedly choose two adjacent fractions and insert the mediant
between them. Does it belong between? That is, if a/b < c/d do we
know that a/b ?< (a+ c)/(b+ d) ?< c/d? Can we get every fraction
in this way? Do we ever get a fraction more than once, for example,
do we see 1/2 again as 3/6 or 42/84? How could we find fractions
close to

p
2? We know from Theorem 7.2.1 that we won’t find

p
2

itself as a fraction.
As you probably recall, a fraction p/q is in lowest terms if there

is no integer c > 1 that divides both p and q. That is, ∀c ∈ Z+ if
(c|p) ∧ (c|q) then c = 1. The pair p, q is then said to be relatively
prime.

Let’s demonstrate that starting with the sequence
(−1/0,0/1,1/0), repeatedly choosing any two adjacent frac-
tions a/b < c/d, and inserting their mediant (a+ c)/(b+d) between

∗Sequences between 0/1 and 1/1 that have all fractions with denominators less
than n are known as Farey sequences because Cauchy learned of them from a short
letter of John Farey in 1816, even though the mediant algorithm was published by
Chuquet in the 1400s, and fully analyzed by Haros in 1802. Many mathematical
results and structures are not named for their originators.

them gives every rational number exactly once, in lowest terms. To
make the demonstration convincing, we can observe some invariants
– statements that always remain true during the procedure.

Lemma 7.3.1. The following are invariants of generating mediants
starting from (−1/0, 0/1, 1/0):

1. For adjacent fractions a/b < c/d, we have bc − ad = 1.
2. Except for the initial −1/0 and 1/0, all denominators are positive.

Key idea. The formal proof of these invariants is by induction, which
we study in depth in Chapter 10. See Exercise 10.12.

Invariant 1 holds for the initial sequence. It remains true when
you insert mediant (a+ c)/(b+ d) between adjacent (a/b, c/d) with
bc − ad = 1 because the two new adjacent pairs satisfy b(c + a)−
a(b+ d) = bc − ad = 1 and (b+ d)c − (a+ c)d = 1.

Invariant 2 also holds for the initial sequence and remains true
because denominators are formed by adding denominators. QED

The invariants let us answer the four questions about mediants
asked above.

A1. The sequence of fractions is always in increasing order.

Combining invariants shows the gap between adjacent fractions is positive:

c
d
−

a
b
=

cb− ad
bd

=
1
bd
> 0.

A2. Every fraction in the list is in lowest terms.

When a/b is formed, it is followed on the list by c/d with cb − ad = 1.
Since any common factor of a and b must divide cb−ad, the only common
factor can be 1.

A3. Any fraction x = p/q can be made to appear in the list.

If we are looking for a number x in the list, the natural thing to do is to
find adjacent fractions with a/b ≤ x < c/d, then replace one of these by
their mediant so that x remains in the interval.

We can check that this starts by finding the interval a/1≤ x < c/1 with c =
a+1. As we continue from there, we see the mediant denominator growing—
it is always larger than the denominator of either fraction (a/b, c/d), and
it replaces one of the two.

We continue to replace mediants so that a/b ≤ x < c/d, stopping if
we find x . Now, suppose that x = p/q, where integers p and q are not
necessarily relatively prime, but q > 0.

I claim we must find x before either of the denominators, b or d, become
greater than q. This is because x = p/q must fit into the gap of width
c/d − a/b = 1/(bd) between the adjacent fractions. Moreover, since we
have a strict inequality x < c/d, we know that cq− pd is a positive integer.
Combining these,

1
bd
≥

c
d
−

p
q
=

cq− pd
qd

≥
1

qd
,

so we learn that b ≤ q and, therefore, we must have d > q. But then

1
bd
≥

p
q
−

a
b
=

pb− aq
bq

≥
1
bd

,

so pb− aq must equal zero and a/b = p/q. So, x = p/q is in the list.

A4. To approximate any real number x by the nearest rational with denominator
at most q, maintain the two adjacent fractions with a/b ≤ x < c/d as in
A3. When the denominator b+ d > q, report the fraction nearer to x .

For later reference, let’s label as a Lemma the key fact from
A1–A3.

Lemma 7.3.2. For relatively prime integers a and b there are integers
c, d ∈ Z satisfying bc − ad = 1.

Proof. Since a and b are relatively prime, the fraction a/b will appear
in the list of mediants. When it does, let c/d be the following fraction:
we know that bc − ad = 1. QED

7.3.2 A vector view

Changing your perspective on a mathematical problem can help give
intuition to find or understand a solution, so let’s take a different
view of what we have just done. If you are a visual thinker, like I
am, you may find it explains the calculations of the previous section.
Others may find the calculations more convincing.

A fraction a/b is the slope of a vector from the origin to point
(b, a). When a/b is in lowest terms, then the line from the origin of
slope a/b first hits an integer grid point at (b, a).

The two initial vectors (1,0) and (0,1) define a unit square
whose only grid points are at the corners. From this perspective, the
mediant of two vectors (b, a) and (d, c) is formed by the usual rule
for vector addition: (b, a) + (d, c) = (b+ d, a+ c), which completes

0
1

1
1

1
0

1
2

2
3

2
1

1
3

0
1 − 1

3 − 1
2 − α− 2

3 − 1
1 − 3

2 − 2
1 − 1

0

α

(0, 0)

0
1

1
1

1
0

1
2

0
1 − 1

2 − α− 1
1 − 1

0

α

(0, 0)

Figure 7.3: Fractions correspond to integer vectors and a/b in lowest
terms means the vector from the origin to (b, a) does not pass through
any other integer grid point. Diagonals of parallelograms construct medi-
ants; you can cut a parallelogram into two triangles along the diagonal,
and re-assemble into a new parallelogram, as indicated by curved arrows.

the fourth corner of the parallelogram defined by the origin and the
two input vectors.

Figure 7.3 illustrates that replacing one of the starting vectors
with the mediant simply rearranges triangles of the parallelogram so
that total area is preserved and grid points continue to appear only
at parallelogram corners; these are the invariants of the mediant
procedure. In fact, the algebraic invariant bc − ad = 1 is just the
area calculation for the parallelogram.

If we draw the line of any given slope x , we can keep a pair
of vectors∗ on opposite sides of that line to get upper and lower
approximations to that slope. Since the parallelograms have grid

∗Alternate replacing the fraction above and below by the mediant and you get

Fibonacci numbers whose slopes approximate the golden ratio φ = 1+
p

5
2 ≈ 1.618 or

its reciprocal 1/φ = φ − 1≈ 0.618.

points only at the corners, all fractions generated are in lowest terms,
and, if x is rational, it will be generated.

7.3.3 Common divisors

Lemma 7.3.2 is what we’ll need to find the encoding and decoding
exponents, so let’s practice with it before we return to encryption.

The greatest common divisor of p and q is the largest num-
ber that divides both. In notation, m = gcd(p, q) iff m|p ∧ m|q ∧
(∀n> m (n6 | p ∨ n6 | q)).

Using the properties of divisors, we can demonstrate that for all
integers a, b, k, m ∈ Z, if m|a and m|b and every divisor k of a and
b also divides m, then |m| is the greatest common divisor of a and b.
This gives us an unexpected way to obtain a greatest common divisor
by taking a smallest element, as demonstrated in the next theorem.

Theorem 7.3.3. For all integers p, q ∈ Z, not both zero, define the set
of integer combinations S = {qc − pd | c, d ∈ Z}. The smallest positive
element in S is the greatest common divisor of p and q.

Proof sketch. Let’s name the greatest common divisor of p and q:
m= gcd(p, q). Note that all elements of S are multiples of m, since
if m|p and m|q then m|(qc − pd).

There exist integers a, b ∈ Z so that p = am and q = bm with a
and b relatively prime. Lemma 7.3.2, says that there are c, d ∈ Z with
bc − ad = 1. Multiplying both sides by m, we find that qc − pd = m,
so m is in S. QED

Remember this property of necklaces used in the proof of Fermat’s

little theorem (Theorem 7.2.2): for all primes p, each p-bead neck-
lace with at least two colors generates p different straight sequences?
We can now prove this.

Corollary 7.3.4. Let p be a prime. If the number of sequences obtained
by cutting a given p-bead necklace is less than p, then all beads are the
same color.

Proof. If we have fewer than p sequences from p cuts, then there
must be two cuts shifted 0< q < p apart that give the same sequence.
Note that gcd(p, q) = 1.

Identify some bead as 0. The beads at any integer multiple of
q, counting around the necklace, must be the same color as bead 0.
Theorem 7.3.3 says that there are integers c, d ∈ Z with qc = pd +1.
This means that bead qc mod p = 1 is an integer multiple of q from 0.
And then so is every other bead. Either we get p sequences or all
beads are the same color. QED

7.3.4 Encryption

Recall that we want to use our N = pq with its hidden primes to find
exponents E > 1 and D that for all m ∈ [0, N), mED mod N = m.

Choose an E that is relatively prime to (p− 1)(q− 1), then use
Lemma 7.3.2 one last time to find D, k ∈ Z such that ED = (p−1)(q−
1)k + 1. Fermat’s little theorem shows that this is the appropriate
magic.

Corollary 7.3.5. Let p and q be distinct primes and N = pq. For all
integers k and m ∈ [0, N), we have m(p−1)(q−1)k+1 mod N = m mod N.

Proof. It is enough to check that p|(m(p−1)(q−1)k+1 − m), since the
proof for q will be symmetric and if both divide a number, then so
does their product by a property of Subsection 7.2.2.

If p|m then we are done, so assume that p and m are relatively
prime. In this case we can write Fermat’s little theorem as mp−1 mod

p = 1, and m ·
�

mp−1 mod p
�(q−1)k

mod p = m · 1(q−1)k mod p =
m mod p. QED

For the example of Table 7.1, I chose primes p = 101, q = 103 to
get N = 10403, and chose E = 11 · 19= 209, which does not divide
(p− 1)(q− 1) = 10200. Then I solved ED− (p− 1)(q− 1)m = 1 for
integers D, m to get D = 2489, since ED− 1 = 520200 = 51 · (p−
1)(q−1). This lets anyone encode, and me decode, 4-digit messages:
encode(1337) = 8105 and decode(8105) = 1337; encode(42) = 7098
and decode(7098) = 42.

7.4 Summary

Using public-key cryptography as a motivating problem, this chap-
ter reviewed properties of mathematical functions and objects that
should mostly be familiar, if you look at any one thing. On the other
hand, this chapter is intended to be a little overwhelming, because
it brings together so many familiar things and views them from
unfamiliar perspectives.

log and exp These are inverses, since for a, b > 0, if we have a = bc , then
c = logb a. The product rule for counting is one reason these are important.

floor and ceiling These operations round reals down or up to the next
integer. Memory address calculations on the computer tend to use floor,
rounding fractions down.

mod Modulo is an operation on integers that returns the remainder on
division; its definition as x mod y = x − ybx/yc assigns a specific result to
all x and all positive or negative y; only y = 0 is forbidden.

primes The prime numbers, studied as compelling mathematical curiosities,
ironically are applied to send encrypted communication on earth, and to
send what is hoped to be clear communication to the stars.

fractions Even the well-known fractions have surprising properties when
we look at them in new ways.

vectors Vectors are tuples (pairs, in this case) with additional operations
of addition and scalar multiplication. Here they demonstrate that mathe-
matical objects can be viewed from different perspectives to gain different
insights.

In addition to reviewing the mathematics that computer science
relies on, this chapter aims to demonstrate that the ability of mathe-
matics to advance computer science requires, on one hand, formal
definitions and precise reasoning, and on the other, creative under-
standing and insightful application. Ours is a deep and wonderful
discipline.

This chapter continues a trend toward more formal proof, which
culminates in chapters 9 and 10.

7.5 Exercises and Explorations

Quiz Prep 7.1. What are the values of these expressions?
? b3.9c ? b−3.9c ? 42 mod 4 ? gcd(20, 36) ? 210 ? log2 32

? b4.0c ? b−4.0c ? 3 mod 11 ? gcd(64, 65) ?
�

25
�2

? log3 9
? b4.1c ? b−4.1c ? 25 mod 5 ? gcd(1, 9) ? 2(3

2) ? 13log13 7

Exercise 7.2. Find the mistake(s) in each of the following. ∗

1. In reasoning about a number d that is a multiple of 9, a student writes,
“9|d = bd/9c. . . ”.

2. The negation of “n is not divisible by any prime number between 1 andp
n” is “n is divisible by any prime number between 1 and

p
n.”

É

Exercise 7.3. Use definitions of floor and ceiling to establish these
properties of floor and ceiling for x , y ∈ R and N ∈ Z. Spelling out
the definition of floor as the largest integer less than or equal to x ,
we see ∀x∈R that m= bxc iff m ∈ Z and m≤ x and m+ 1> x .

1. First, show that x − 1 < bxc ≤ x and x + 1 > dxe ≥ x , because these
inequalities can help you establish the other properties.

2. Show that bxc+ d−xe= 0.

3. Show that ddxee= dxe.
∗Warning: incorrect statements in this problem!

4. Show that bx + Nc= bxc+ N .

5. Show that if x < y then bxc ≤ byc.

6. Show that bxc ≤ dxe, with equality iff x is an integer.

7. Show that N = bN/2c+ dN/2e.

8. Show that b(N + 1)/2c= dN/2e.

Exercise 7.4. Partition a set of cardinality n (i.e., n elements) as
evenly as possible into k subsets. Use floor, ceiling, and mod to say
how many sets you get of what cardinalities. É

Exercise 7.5. x−bxc is the fractional value of x and x−sgn(x)b|x |c
is the fractional part of x . Explain what each of these is in words.
Use parallel language to make the similarities and differences stand
out clearly. É

Exercise 7.6. Given positive reals b, x ∈ R+, express log1/b x using
logs of base b.

log1/b x = logb x/ logb(1/b) = − logb x

Exercise 7.7. Given positive reals a, b ∈ R+, express logb a using
logs of base a.

logb a = loga a/ loga b = 1/ loga b.

Exercise 7.8.

1. Give a combinatorial proof of the subcommittee identity
�n

k

��k
j

�

=
�n

j

��n− j
k− j

�

.

2. Show that, except for the ones, any two numbers from a row of Pascal’s
triangle have a common factor. That is, show for integers 0< r, s < n, that
gcd(

�n
r

�

,
�n

s

�

)> 1.

É

Hint:
Recall that a degree n
polynomial has at most n
roots – values at which it
evaluates to zero.

Exercise 7.9. Let p(x) =
∑

0≤i≤n ai x
i

be a polynomial with integer coefficients
(a1, a2, . . . , an) and degree greater than one.
That is, n≥ 1 and an 6= 0. Show that there
exists a non-negative integer k so that p(k)
is not prime.

É

Exercise 7.10. On an infinite chessboard, a generalized knight
moves by jumping p squares in one direction and q squares in a
perpendicular direction, for given p, q > 0. Show that a knight
needs an even number of moves to return to its starting position.

Exercise 7.11. Prove this easy upside-down version
of Fermat’s last theorem: There are no positive inte-
gers n > 2, x , y, and z that satisfy nx + ny = nz .

Hint:
Consider both sides mod
n− 1.

Puzzle 7.12. From MAA
Minute Math, via cut-the-knot:
Call a number prime-looking if it is composite
but not divisible by 2, 3, or 5. The three
smallest prime-looking numbers are 49, 77,
and 91. There are 168 prime numbers less than 1000. How many
prime-looking numbers are there less than 1000?

Hint:
Use floor and inclu-
sion/exclusion.

Extension 7.13. There is a subtle differ-
ence between the number of k-tuples from a
set of size b and the number of k-digit num-
bers in base b: we usually don’t allow 0 as
a leading digit. What are the following counts?

1. The number of k-tuples from a set of size b. bk

2. The number of i-tuples from a set of size b, for all i ∈ [0..k].

Geometric series sums to (bk+1 − 1)/(b− 1).

3. The number of k-digit non-negative integers in base b.

(b− 1)bk−1 since you cannot choose 0 for the initial digit.

4. The number of i-digit non-negative integers in base b, for all i ∈ [0..k].

bk, just allow initial zeros.

Extension 7.14. Lemma 7.3.1 dealt only with positive fractions;
extend it to negative fractions as well.

http://maaminutemath.blogspot.com/2011/05/may-19-2011.html
http://maaminutemath.blogspot.com/2011/05/may-19-2011.html
http://www.cut-the-knot.org/arithmetic/combinatorics/InclExclEx.shtml

Extension 7.15.

1. Convert 42 to base 5, 3, and 2.

2. Explain how to convert any base 2 number to base 4, 8, or 16, which use
the digits 0-3, 0-7, and 0-9ABCDEF, respectively.

3. Create a spreadsheet that takes a decimal input number and a base, then
expresses the digit sequence that represents that number in that base.
Recall that the digits used in base b are 0 . . . (b− 1).

4. In your spreadsheet, convert messages in a given alphabet to numbers and
back. In Excel, you can enter a chosen alphabet of symbols in a cell, say A1,
(single quote if you want to start with space or enter just digits) and use
functions =len(A1) for length, =find(B1,A1)-1 to find the number of the
letter/digit in B1, starting from zero, and =mid(A1, C1+1,1) to turn the
number in C1, which must be in 0≤C1 < len(A1), into the corresponding
letter/digit. Your output can be one letter per cell, or can use the =replace
function to collect output into a single string.

Extension 7.16. For these questions, let [x] denote the fractional
part of x: that is, [x] = x − bxc. We are going to look at the set of
all fractional parts, Fα = {[na] | n ∈ N}. Show the following:

1. For any irrational number α, the elements we put into set Fα are distinct.
That is, for all positive integers m, n ∈ N, we have [mα] = [nα] iff m= n.

2. For any irrational number α, the set inf Fα = 0. That
is, for any ε > 0, there is an n ∈ N with [nα] < ε.

3. For any irrational number α, the set Fα is dense in the interval [0, 1]. That is,
for any reals x ∈ [0, 1] and ε > 0, there is an n ∈ N such that |x−[nα]|< ε.

É

Hint:
Use pigeonhole principle
to show that two frac-
tional parts must be close,
then subtract them.

Exploration 7.17. In your favorite pro-
gramming language, or even your favorite
spreadsheet, implement an algorithm that
takes positive integers N , e, and m< N , and
produces the encoded message, me mod N .
The same algorithm does the decoding.
Work out e, d, and N to demonstrate this.

Exploration 7.18. Experiment with using Fermat’s little theorem to
test for primes and Carmichael numbers. Determine, for some range
of integers, how many m values you pick before you successfully
detect a composite, and how many numbers that you pass as prime
are actually not.

Exploration 7.19. How many simple substitution cyphers on [a..z]?
A simple substitution cypher replaces each letter a–z with some other
letter in an invertible manner – it is a bijection from a–z to a–z. You
may have seen Cryptoquote in the newspaper, for which the standard
example is AXYDLBAAXR = LONGFELLOW (i.e., A→L and X→O.)

1. How many different simple substitution cyphers are there? ?

2. Suppose that we want to avoid sending a letter to itself, so we replace
letters from the first half (a–m) with letters from the second half (n–z) and

http://entertainment.howstuffworks.com/puzzles/cryptoquote-puzzles.htm

vice versa. With this restriction, how many different simple substitution
cyphers are there? ?

3. Counting the number of substitution cyphers in which no letter maps to
itself is not easy, but you can take a swing at that, too.

É

Chapter 8

Recursive definition of
structures

Recursive loop:
See recursive loop.

—Borland Pascal Language Guide (1992)

Recursion∗ enables us to compactly and unambiguously specify ar-
bitrarily large structures and sets so that even a mindless computer
can follow the specification. This aim of this chapter is to elimi-
nate ellipses from definitions. Chapter 10 will eliminate them from
proofs.

Objectives: After working through this section, you will be able
to write recursive definitions for sets, relations, functions, and se-
quences. You will be able to identify elements that are in or not in
sets that have been recursively defined, and to explain when and why
the closure rule is needed. You will be able to concatenate strings,
languages, and lists, and use Kleene-star to create Σ∗, the language
of all strings on an alphabet Σ, or the set of all lists.

You will begin to appreciate how a data structure like a list can
be implemented from its recursive definition, which is the basis for

∗Google search: recursion

206

http://www.google.com/search?q=recursion

programming languages like ML or Haskell.

8.1 Recursive definition. . .

Recursive definition is especially important to computer science,
because it tends to translate directly into construction and into rules
for testing the validity of a construction.

8.1.1 . . . of sets

In Subsection 3.1.1 we gave examples of sets defined by a
list, a pattern, or a rule. Why do we need something else?

A circle
with n points
joined in pairs by lines
splits into 1,2,4,8,16,31,. . . regions.

Infinite sets are a problem: I cannot
list their elements in my finite lifetime, a
rule can produce an infinite set only if it
starts with some infinite set, and patterns are
subject to interpretation. {1,2,4,8,16, . . .}
seems to have an obvious pattern, until I tell
you that the next number is 31.

To get around this, we make recursive definitions, which have
a small number of rules that are easily checkable, but that can be
applied an arbitrarily large number of times. As a computer scientist,
I tend to think of a recursive definition as a computer program that
can write out the reason for including an element in a set.

A recursive definition of a set S needs three things:

1. Base cases that defines initial elements of the set S,

2. Recursive rules that tell how to generate additional elements of S from
known elements of S, and

3. A closure rule, saying that the only elements of S are those that are gen-
erated from the base cases by a finite number of applications (possibly
zero) of the recursive rules.

For example, the natural numbers N, which were previously
defined by pattern, can be more formally defined recursively. In
this definition s() stands for successor, which you can think of as
s(n) = n+ 1, or as ++ from C/Java, or as just keep it unevaluated
so that the representation of 1 is s(0), 2 is s(s(0)), etc.

1. Base: 0 ∈ N.
2. Recursive rule: If n ∈ N, then the successor s(n) ∈ N.
3. Closure: The only numbers in N are those generated from the base case

by a finite number of applications of the recursive rule.

Is 0 ∈ N? Is −1 ∈ N? Is 42 ∈ N? Is ∞∈ N? Is π ∈ N? Why do we
need the Closure rule? Rules out sets like N∪ {π+m | m ∈ N}.

The set S of all multiples of 5 is better defined by a rule S = {5n |
n ∈ Z}, but can be defined recursively:

1. Base: 5 ∈ S.
2. Recursive rule: If a, b ∈ S, then a+ b ∈ S and a− b ∈ S.
3. Closure: Only the numbers generated from the base case by a finite

number of applications of the recursive rule are in S.

To prove that these two different definitions define the same sets, we
will need the technique of mathematical induction from Chapter 10.

Recursive definition is most useful when defining sets of other
structures. For example, the set of well-formed formulae, or ‘WFF’s,
in propositional logic can be defined recursively:∗

1. Base: Any isolated variable, or a constant ‘true’ or ‘false’ is a WFF.
2. Recursive Rule: If α and β are WFFs, then α, (α∧β), (α∨β), (α→β),
(α↔ β), and (α⊕ β) are all WFFs.

3. Closure: The only WFFs are the formulae that are defined from the
base case by a finite number of applications of the recursive rule.

Note that the WFFs generated by this recursive definition have
the full set of parentheses. An expression like (p↔ q↔ r) is not
a WFF; in fact it is ambiguous whether it should be interpreted as
((p↔ q)↔ r) or (p↔ (q↔ r)). These have different truth tables,
so although a human can possibly disambiguate, you want to give a
computer a WFF.

8.1.2 . . . of functions and relations

Functions whose domains sets are recursively defined are often best
defined recursively. For example, the factorial function onN is defined
formally as:

1. Base: 0!= 1.
2. Rec. rule: for integers n> 0, let n!= (n− 1)! · n.

The function F : N→ N for the Fibonacci numbers needs two base
cases to get started.

∗Example WFFs: p, p, (p ∧ q), (p↔ (q ∨ r)), ((p ∧ q)↔ (p ∨ q)).
Non WFFs: ∨, (∧q), (p↔ q ∨ r).

1. Base: F(0) = 0, F(1) = 1.
2. Rec. rule: for integers n> 1, define F(n) = F(n− 1) + F(n− 2).

Unlike sets, functions do not need an explicit statement of closure.
The base and rule must already define exactly one result for each
element of the domain; if we tried to add in anything extra, then we
would no longer have a function.

Recursive definitions of numerical functions, called recurrences,
are often used in counting. Here are recurrences for two functions
that we have seen before. We’ll close the chapter with other examples
that give a taste of the power of recurrences.

The choose function C(n, r), which I continue to write using bino-
mial coefficient

�n
r

�

, can be defined with a two-parameter recurrence.

1. Base:
�0

0

�

= 1. For integers n, r with n< 0, r < 0, or r > n, let
�n

r

�

= 0.
2. Rec. rule: for integers n> 0 and 0≤ r ≤ n, define

�n
r

�

=
�n−1

r

�

+
�n−1

r−1

�

.

We can write a recurrence to count surjections, which are the
functions f : A→ B that hit every element of the range, so f (A) = B.
Define S(m, n) as the number of surjections from domain A= [1..m]
to range B with n elements, and check that the following agrees
with the counts in Table 6.2. The justifications are not part of the
definition, but can be turned into a proof that the resulting counts
are correct, once we have the technique of mathematical induction.

1. Base: For all m< n, S(m, n) = 0 because of the pigeonhole principle.
S(0,0) = 1.

2. Rec. rule: for all m≥ n> 0, S(m, n) = n
�

S(m−1, n)+S(m−1, n−1)
�

,
because you can make a surjection by selecting the value f (m) from n

possibilities in the range, then either choose the rest of f : [1..m−1]→
B as a surjection onto the entire n-element range B in S(m−1, n) ways,
or remove f (m) from B and choose a surjection onto the remaining
n− 1 elements in S(m− 1, n− 1) ways.

The factorial and Fibonacci definitions used addition and multi-
plication for N. We can actually define those based only on successor.
Here is addition add(a, b)

1. Base: for all b ∈ N, let add(0, b) = b.
2. Rec. rule: for all s(a), b ∈ N, let add(s(a), b) = s(add(a, b)).∗

And here is multiplication mult(a, b)

1. Base: for all b ∈ N, let mult(0, b) = 0
2. Rec. rule: for all s(a), b ∈ N, let mult(s(a), b) = add(mult(a, b), b).†

We can also define relations, such as ‘less than.’ Recall that a
binary relation on A is a subset of A× A; to define a set of pairs, we
do need a closure rule.

1. Base: 0< s(0).
2. Recursive rule: If a < b, then s(a)< s(b) and a < s(b).
3. Closure: Only the pairs generated from the base case by a finite number

of applications of the recursive rules are in the relation <.

Mathematicians like to define a family of operations on a sim-
ple function like successor and then derive all the basic properties

∗That is, (a+ 1) + b = (a+ b) + 1.
†That is, (a+ 1)b = (ab) + b.

of arithmetic from some simple definitions. Then any system that
satisfies the definitions can be thought of as an arithmetic. In com-
puter science we may be happy to accept the number system, but it
becomes very useful to define data structures formally and precisely
with few rules, as we do in the next sections.

8.1.3 . . . of tuples, lists, and sequences

In Subsection 3.1.2 we defined ordered pairs on a set A using Carte-
sian product, A×A. To formally extend this to the sets of all k-tuples,
Ak for k ≥ 0, we use recursive definition:

1. Base: A0 = {()} is the single 0-tuple.
2. Recursive Rule: for k > 0, the set of k-tuples Ak = Ak−1 × A.

A sequence of numbers or sets like this defines a unique value for
each k. Like a function, it does not need a statement of closure.

As was mentioned in Subsection 3.1.3, several structures are
extensions of tuples. We use the terms list when we speak about
tuples that may have arbitrary finite length but more limited access,
and sequence when that length may even be infinite.∗ A string is a
tuple of letters from some alphabet set Σ, as we define in the next
subsection.

Parentheses are often used for lists and sequences, but since
that may lead to confusion with tuples, I use angle brackets for this
section.

∗A series is a sum over a sequence, replacing commas by plus signs.

Let’s focus on the set L of all possible lists of elements from A. We
could say that L is just the union of all sets of tuples, L =

⋃

k≥0 Ak. A
recursive definition can give a more explicit construction of L. Here I
use a common notation from functional programming that originates
with Lisp: the list constructor is a function cons: A× L→ L that takes
an element and a list. It returns a new list with the element added
to the front or head of the old list.

The set of all lists L is defined:

1. Base: The empty list 〈 〉 ∈ L.
2. Rec. Rule: For any element a ∈ A and list ` ∈ L, cons(a,`) is a list in L.
3. Closure: Only lists generated from 1 by a finite number of applications

of rule 2 are in L.

As with successor, we can imagine leaving the cons unevaluated,
so the list 〈a, b〉 would be represented cons(a, cons(b, 〈 〉)). Two
partial functions head: L→ A and tail: L→ L are defined on every
list but the empty list:∗ head(cons(a,`)) = a and tail(cons(a,`)) = `.
Head and tail of the empty list 〈 〉 are undefined. Two given lists α
and β are equal iff both are empty, or neither are empty, head(α) =
head(β), and recursively tail(α) = tail(β).

Can you give recursive definitions for length: L → N, which
returns the number of elements in a list, and projection πi : L→ A,
which for a list ` and i ∈ [1..length(`)] returns the element in position
i?

Defining length: L→ N:

1. Base: length(〈 〉) = 0.

∗What are head(〈a, b, c〉) and tail(〈a, b, c〉) ?

2. Rec. rule: For all a ∈ A and β ∈ L,
length(cons(a,β)) = length(β) + 1.

Defining projection πi : L→ A:
In brief, πi(β) = head(taili−1(β)).

1. Base: For all β ∈ L, define π1(β) = head(β).
2. Rec. rule: For all i > 1 and β ∈ L, πi(β) = πi−1(tail(β)).

A slower operation on lists is concatenation. The function
concat : L × L → L, joins two input lists of length m and n into
one list of length m+ n by putting elements of the first list before
those of the second. Notice how similar its recursive definition is to
the definitions of addition and multiplication.

1. Base: for all β ∈ L, let concat(〈 〉,β) = β .
2. Rec. rule: For all elements a ∈ A and lists β ,γ ∈ L, we define concate-

nation as concat(cons(a,β),γ) = cons(a, concat(β ,γ)).∗

We could define a function rev: L → L to reverse a list using
concat:

1. Base: rev(〈 〉) = 〈 〉.
2. Rec. rule: ∀a∈A,β∈L rev(cons(a,β)) = concat(rev(β), cons(a, 〈 〉)).

A better way is to give this function two input lists, rev2: L2 → L,
called initially as rev2(β , 〈 〉).

1. Base: For all γ ∈ L, rev2(〈 〉,γ) = γ.
2. Rec. rule: ∀a∈A, β ,γ∈L , let rev2(cons(a,β),γ) = rev2(β , cons(a,γ)).

∗That is, (aβ)γ= a(βγ).

Adding this second accumulator argument is a general transformation
applied in functional programming languages like ML and Haskell to
make functions more efficient. Transforming the definition ensures
efficiency of all implementations derived from the definition.

Sequences are like functions whose domain is N. The Fibonacci
numbers, for example, are commonly defined as a sequence rather
than a function. Recursive definitions of sequences are often called
recurrences or recurrence relations.

1. Base: F0 = 0, F1 = 1.
2. Rec. rule: for integers n> 1, define Fn = Fn−1 + Fn−2.

8.1.4 . . . of notation for operations

As introduced in Subsection 3.1.3, we use the Greek capital Sigma
to stand for summation:

∑

1≤i si = s1 + s2 + s3 + · · · adds the terms
for every integer index i in the set or condition written below the
Sigma. Some write sums with upper and lower index limits, like
∑n

i=1 si , but specifying indices by a set or by logical conditions, like
∑

i∈[1..n] si , gives flexibility—for example, we can easily sum over
evens or primes.

This ‘big operator’ notation extends to other operators that apply
to sets, lists, and sequences. We already used Greek capital Pi

∏

for
product to define factorial∗, n!=

∏

1≤i≤n i, and big ‘and’ and ‘or’ in
defining the quantifiers. We use big operators for union and inter-
sections, and for maximum and minimum by just subscripting ‘max’

∗Look! No ellipses (. . .)!

or ‘min.’ Disjoint union
⊎

combines elements of non-overlapping
sets; we used it to define a partition of a set in Subsection 5.3.1.

To formally define Sigma notation, especially for infinite se-
quences, let me start with the operation of prefix sum, which actually
produces a sequence of partial sums; these sequences are useful in
their own right in Section 8.2.

Prefix sum: Given a sequence s1, s2, s3, . . ., the prefix sum is the
series of sums of the first k terms, for k ≥ 0: using Sigma summation
notation, Sk =

∑

1≤i≤k si . Using a recursive definition,
1. Base: S0 = 0.
2. Rec. rule: for integers k > 0, define Sk = Sk−1 + sk.
Now, for a finite sum,

∑

1≤i≤n si = Sn, the final prefix sum. An
infinite sum is defined to be the limit of the prefix sum values, if that
limit exists. That limit may be infinite, e.g., for

∑

i≥1 1, or may not
exist, e.g., for

∑

i≥1(−1)i .
All other “big operator” notation, including and

∧

, or
∨

, product
∏

, minimum min, maximum max, union
⋃

, intersection
⋂

, disjoint
union

⊎

, can be defined recursively by the same pattern. The base
case begins with the appropriate identity, such as 1 for product,
T for and, F for or, ; for union, U for intersection, and each term is
combined with the previous prefix value.

8.1.5 . . . of strings and languages

As defined in Subsection 3.1.3, strings are lists containing characters
from a given alphabet set, Σ. The set of all possible strings is denoted
Σ∗ =

⋃

i≥0Σ
i , which is recursively defined just below.

We write strings without parentheses or brackets, and often name
them with lowercase Greek letters like α, β , γ, µ, ν, σ, or τ. The
empty string is commonly denoted by Λ.

We can apply all the operations for lists to strings. The main one
is concatenation, so, for all α,β ∈ Σ∗, we abbreviate concat(α,β)
as simply αβ . Concatenation with the empty string does nothing:
αΛ= Λα= α.

A language is a set of strings: L ⊆ Σ∗. We extend the definition of
concatenation from strings to languages L and M by concatenating
all possible pairs of strings: LM = {αβ | α ∈ L,β ∈ M}. This is
subtly different from Cartesian product, which is applied only to sets
of tuples, because not all strings need to have the same length.∗ We
get only part of the product rule: |LM | ≤ |L| · |M |. Can you find two
sets of strings whose product |LM |< |L| · |M |?

The operation of Kleene-star accumulates elements to form a set.
Given a set, list, set of lists, alphabet, or language S,

1. Base: The empty list or empty string, as appropriate, is in S∗

2. Recursive Rule: For all α ∈ S∗, then the concatenation {α}S ⊆ S∗.
3. Closure: Only lists or strings generated from 1 by a finite number of

applications of rule 2 are in S∗.

For example, with alphabet Σ = {b, c}: Is Λ ∈ Σ∗ ? Is b ∈ Σ∗ ? Is
bc ∈ Σ∗ ? Is cc ∈ Σ∗ ? Is abc ∈ Σ∗ ?

Strings and languages are important topics in parsers, compilers
and formal languages; we will see more of them in Chapter 12.

∗We consider a similar problem in detail in Subsection 9.2.1.

8.1.6 . . . of other structures

Figure 8.1: Trees

There are many other structures that are de-
fined recursively. An important example in
computer science is the set of all binary trees,
T . Each binary tree comes with a pointer to
its root, which is also defined in this recur-
sive definition:

1. Base: � denotes an empty tree with no vertices; the root pointer can
be null.

2. Recursive Rule: For any two binary trees with roots `, r ∈ T , the tree
with root #, left child `, and right child r is also in T .

3. Closure: Nothing is in T except what is generated from 1 by a finite
number of applications of rule 2.

Are each of the graphs depicted in Figure 8.1 in T?

Let’s partition trees by height: Define T = {T0, T1, . . .} to be a
family of sets of rooted binary trees, where each set Ti contains all
the trees of height i. We modify the previous definition to define this
family recursively:

1. Base: The empty tree with root � ∈ T0.
2a. Rec. Rule: For any two binary trees with roots ` ∈ Ti and r ∈ T j , for

j ≤ i, the tree with root # whose left child is ` and right child is r is in
Ti+1.

2b. Rec. Rule: For any two binary trees with roots ` ∈ T j and r ∈ Ti , for
j ≤ i, the tree with root # whose left child is` and right child is r is in
Ti+1.

3. Closure: The only elements of Ti and sets in the family T are those
generated from 1 by a finite number of applications of rules 2a and 2b.

What are the heights of the trees in Figure 8.1? What would happen
if I left out rule 2b ?

As we shall see in Chapter 13, trees are generally defined as
connected, acyclic graphs. We explore there whether the different
definitions really define the same set of structures.

8.2 Recurrences, series, and counting

I close this chapter with several examples of working with recursively
defined sequences, or recursions. This is a grab bag of techniques
applied to recursive functions to derive results that will be useful in
other chapters.

The first solves a counting puzzle by recognizing a sequence of
numbers and showing that the recursion defining the sequence fits
the puzzle, the second just forms a recursion for a new sequence. The
examples after that analyze recursively defined sequences and series
to find closed form expressions, either for exact results or for upper
and lower bounds. (An expression is said to be in closed form if it
can be calculated using a fixed number of mathematical operations
(addition, multiplication, exponentiation), not dependent on the
inputs. Summations and recursive functions are not closed form,
because the number of calculations that they represent depend on
their inputs.) The final two are examples of how calculus ideas come
into discrete mathematics, too.

8.2.1 Combinatorial proof of a numerical identity

Here is a puzzle to illustrate the benefit of counting in two ways. Let’s
say that a set S ⊆ [1..n] counts itself iff its smallest element is its size:
|S|=min(S). How many sets count themselves for each value of n?

n sn sets

0 0 none
1 1 1
2 1 1
3 2 1, 23
4 3 1, 23, 24
5 5 1, 23, 24, 25, 345

Scratch paper time. What are some ex-
amples of set that count themselves? Well,
{1}, {2, b} for any b > 2, {3, c, d} for any
d > c > 3, . . . It appears that we can create
a self-counting subset of [1..n] by choosing
the minimum, k, and then choosing k − 1
numbers from the n − k numbers greater
than k. Thus, the number of sets of size n
that count themselves is sn =

∑

1≤k≤n

�n−k
k−1

�

. (I could stop this sum-
mation index halfway, but the terms with n− k < k− 1 are zero by
convention.)

Let’s check that by listing in the margin the self-counting sets
for n ∈ [0..5], omitting braces to save space. The numbers of those
sets, 0,1,1,2,3,5, look familiar.∗ Is there any reason we might expect
self-counting sets to give us Fibonacci numbers? Can you explain
why sn might equal sn−1 + sn−2 for n> 1?

Let’s use Sn to denote the family of all self-counting subsets of
[1..n], so sn = |Sn|. Notice that Sn−1 is the family of the sets of Sn

that do not include n, so there are sn−1 of those. How many sets
are in the difference, Sn \ Sn−1? That is, how many self-counting

∗Cool tool: Online encyclopedia of integer sequences lets you look up sequences
to find out what might create them.

http://oeis.org/

subsets of [1..n] are not subsets of [1..n− 1]?

Sn−1

Sn

sets without n
sets
w/ n

Sn−2

bijection

Here is an easy bijection fromSn\Sn−1 toSn−2: Start
with a self-counting set A ⊂ [1..n] that includes n,
for n> 1. If min(A) = 1 we’d have A= {1}, but since
n> 1 is in A, we can conclude that min(A)> 1. Next,
remove the n and subtract 1 from the other numbers
in A, obtaining a subset of [1..n−2] that counts itself.
This defines an injection.

It is easy to see that this is invertible: Take any set from Sn−2, add one to
each element and insert n, and we have constructed a set from Sn \ Sn−1.
Thus, the mapping is a bijection and |Sn \Sn−1|= |Sn−2|= sn−2. Therefore,
sn = sn−1 + sn−2 for n> 1, and the base cases for n= 0 and n= 1 match the
Fibonacci definition, too.

By counting in two ways, we learn that the binomial coefficient
sums sn =

∑

1≤k≤n

�n−k
k−1

�

are Fibonacci numbers.

8.2.2 Counting partitions

Not every count can be expressed in closed form. How many different
partitions∗ can we have for the set [1..n]? Let’s begin by looking
at small examples in Table 8.1. (I can even include ;, which has
one partition, namely the empty set itself. Strange as it seems, it fits
the definition, and we will use it below.) The number of partitions
grows quickly, so let’s invent notation to write them compactly, e.g.,
writing {{1, 3}, {2, 4,5}} as 13 | 245.

∗Recall: A partition chops a set into a family of non-empty subsets so each element
is in exactly one subset.

sec:partition

Table 8.1: Recursive count of all partitions of sets [1..n] for 0 ≤ n ≤ 5.
A partition {{1,3}, {2,4,5}} is written compactly as 13 | 245. For n = 5
I create notation to track the ways to group some of [1..4] with 5, and
partition the rest.

set # partitions
; 1 ;
{1} 1 {1}
[1..2] 2 {{1}, {2}} and {{1,2}} abbreviated 1|2, 12
[1..3] 5 1|2|3,1|23,2|13, 3|12, 123
[1..4] 15 1|2|3|4, 1|23|4, 2|13|4, 3|12|4, 123|4, (adds |4 to above)

1|2|34,12|34,1|3|24,13|24,2|3|14,23|14, (one # with 4)
1|234,2|134,3|124, 1234 (two or all with 4)

[1..5] 52 15: [1..4]|5, 4 · 5: [abc]|d5, 6 · 2: [ab]|..5, 4: a|..5, 12345
that is, 1|2|3|4|5, . . . 50 more . . . , 12345

Let Bn denote the number† of partitions of the set [1..n].

For the base case: B0 = 1. For the general case, making the
partitions for [1..4] suggests that we count the partitions of [1..(n+
1)] by considering how many elements are not included in the set
that contains element (n+ 1). We can remove k elements from this
set in

�n
k

�

ways, and then partition them in Bk ways. Thus, we can
count partitions recursively by Bn+1 =

∑

0≤k≤n

�n
k

�

Bk, with base case
B0 = 1. This does not have a closed form expression.

†Bn for Bell numbers.

http://en.wikipedia.org/wiki/Partition_of_a_set

8.2.3 Mathematical series

Recall that you get a series from a sequence by just summing the
elements. There are several series that you should know. I find it
easier to remember the key idea to derive these formulae, rather
than to memorize the formulae themselves.

Let me start with the operation of prefix sum, which actually pro-
duces a sequence of partial sums. Prefix sum will help us analyze all
other series that we look at: sums of consecutive integers, geometric
series, harmonic numbers, and base conversion.

• Prefix sum: Given a sequence s1, s2, s3, . . ., the prefix sum is the series of
sums of the first k terms, for k ≥ 0: using Sigma summation notation,
Sk =

∑

1≤i≤k si . Using a recursive definition,

1. Base: S0 = 0.
2. Rec. rule: for integers k > 0, define Sk = Sk−1 + sk.

From calculus, you learned that an infinite series (sum of an infinite se-
quence) has a value if the prefix sums converge to a limit.

• Summing the first n integers:

Sn =
∑

1≤i≤n

i =
n(n+ 1)

2
.

Add up the numbers, once forward and once in reverse order, then divide

by 2.

Sn = 1+ 2 + · · · + (n− 1) + n

+ Sn = n+ (n− 1) + · · ·+ 2 + 1

2Sn = n(n+ 1)

Sn =
n(n+ 1)

2
.

• Summing a geometric series: In a geometric sequence, two consecutive terms
have the same ratio. For example 〈a, ab, ab2, . . . 〉. By doing calculations
with prefix sums, it is easy to figure out their values:

Gk =
∑

1≤i≤k

abi = a+ ab+ ab2 + · · ·+ abk

− bGk =
∑

1≤i≤k

abi+1 = ab+ ab2 + · · ·+ abk + abk+1

(1− b)Gk = a− abk+1

Gk = a
1− bk+1

1− b
.

The prefix sums can tell us if an infinite series converges. Here, when
|b|< 1, series

∑

i≥1 abi converges to a/(1− b).

• Horner’s rule for polynomials. In Subsection 7.1.1, we mentioned Horner’s rule as
an efficient way to convert a string of digits into a number. In general, Horner’s
rule is a way to evaluate a polynomial p(x) =

∑

0≤i≤n ai x
i , with coefficients

(an, an−1, . . . , a1, a0), at a specified value of x . It works by rewriting the polynomial
as a recursive definition that goes from a base case at i = n, down to i = 0.

1. Base: pn(x) = an.

2. Recursive rule: pi(x) = x · pi+1(x) + ai for all 0≤ i < n.

The final polynomial p0(x) = p(x).

If we carry out this definition with a specific value of x , then each pi(x) is just a
number. This is easy to do in a table of three rows: write the coefficients, an, . . . , a0,
in the first, write the value of x at the start of the second, and copy an as pn(x) to
the start of the third. Then, for i = n− 1 down to 0, write x · pi+1 in the second
row under ai , then add to get pi in the third row. The result is the last number in
the third row.

This recursive definition doesn’t calculate powers of x , which gives it two advantages
over the summation formula: It is faster because it uses fewer multiplications, and it
tends to be more accurate in floating point because it is less likely to lose precision in
the neighborhood of the roots of the polynomial due to cancellation from subtracting
large, nearly equal numbers.

By the way, if you need the derivative of your polynomial evaluated, too, just add a
4th and 5th row in the same way. Since the derivative of p′i(x) = x ·p′i+1(x)+pi+1(x),
you can just use the values of row 3 as the coefficients, stopping at i = 1.

• The harmonic numbers Hn =
∑

1≤i≤n 1/i arise frequently in questions of
probability. They form a divergent series—they do not converge to a limit.
By rounding each fraction down to the nearest power of two, and then up
to the nearest power of two, we get wordless proofs that Hn ≤ lg(n+ 1)
and Hn ≥ 1+(lg n)/2. Much tighter estimates are known, but these suffice
for our uses.

Hn = 1+
1
2
+

1
3
+

1
4
+

1
5
+

1
6
+

1
7
+

1
8
+ · · ·+

1
n

< 1+
1
2
+

1
2

︸ ︷︷ ︸

1

+
1
4
+

1
4
+

1
4
+

1
4

︸ ︷︷ ︸

1

+
1
8
+ · · ·+

1
2blg nc

< lg(n+ 1)

Hn = 1+
1
2
+

1
3
+

1
4
+

1
5
+

1
6
+

1
7
+

1
8
+

1
9
+ · · ·+

1
n

> 1+
1
2
+

1
4
+

1
4

︸ ︷︷ ︸

1/2

+
1
8
+

1
8
+

1
8
+

1
8

︸ ︷︷ ︸

1/2

+
1

16
+ · · ·+

1
2dlg ne

> 1+
lg n
2

8.2.4 Estimating factorial

Here is another function to estimate. The factorial function n! grows quickly.
Exercise 10.8 asks for proof that, for all n> 3, factorial is 2n < n!< nn. A
closer approximation is Gosper’s version of Stirling’s formula:∗

Lemma 8.2.1. For n≥ 1, the factorial n!≈
q

(2n+ 1
3)π(n/e)

n.

Rather than take the time to prove this, I’ll derive a
weaker expression from upper and lower bounds on ln(n!).

ln i

1 2 3 4 5 6 7

1

2

∫ 5

4
lnx dx < ln 5 <

∫ 6

5
lnx dx

Since ln x is strictly increasing, we can bound ln i by
integrals for any positive integer i,

∫ i

i−1

ln x d x < ln i <

∫ i+1

i

ln x d x .

Since ln(n!) =
∑

2≤i≤n ln i, we get the bounds

∫ n

1

ln x d x < ln(n!)<

∫ n+1

2

ln x d x ,

n ln n− n+ 1< ln(n!)< (n+ 1) ln(n+ 1)− n− 2 ln 2+ 1,

e · (n/e)n < n! < (n+ 1) ·
�

(n+ 1)/e
�n

.

∗For more, see Peter Luschney’s pages

http://mathworld.wolfram.com/StirlingsApproximation.html
http://oeis.org/wiki/User:Peter_Luschny/FactorialFunction

8.2.5 Generating functions

An important trick in analysis is to take a sequence (a0, ai , a2, . . .) and make
its elements the coefficients of an infinite polynomial p(z) =

∑

k≥0 akzk.
Operations on polynomials, like addition, multiplication, differentiation,
composition and evaluation, become operations on the coefficients of the
sequence. This polynomial is known as a formal power series or generating
function, since it generates the sequence from its coefficients.† We may
not care if this polynomial converges, but if it does in the neighborhood
of zero (in the complex numbers) then there are powerful mathematical
tools that can tell us about the behavior of its coefficients. I briefly give
just three shallow examples of this deep subject. For more, see Wilf’s
“generatingfunctionology” [27] or Graham, Knuth and Patashnik’s “Concrete
Mathematics” [9].

Consider the sequence in which ak = 1 for all k ≥ 0. We write down
the generating function polynomial, and manipulate it to find a rational
expression.

p(z) =
∑

k≥0

zk = 1+ z + z2 + z3 + · · ·

minus zp(z) =
∑

k≥1

zk = z + z2 + z3 + · · ·

(1− z)p(z) = 1

p(z) =
1

1− z
.

This is not defined for z = 1, but is defined and converges for all |z|< 1; this
gives another way to obtain values of geometric series like p(1

r) =
∑

k≥0
1
rk =

1
1−1/r =

r
r−1 for r > 1.

†The names are historical; generating series might have been better.

http://www.math.upenn.edu/~wilf/DownldGF.html
http://www.math.upenn.edu/~wilf/DownldGF.html

By taking the derivative of p(z), we get the series
∑

k≥0
k
rk = r/(r − 1)2

from

p′(z) =
∑

k≥1

kzk−1 =
1

(1− z)2
,

zp′(z) =
∑

k≥1

kzk =
z

(1− z)2
.

Use the Fibonacci sequence to define a generating function q(z), and
manipulate it knowing that Fk = Fk−1 + Fk−2:

q(z) =
∑

k≥0

Fkzk = z + z2 + 2z3 + 3z4 · · ·

minus zq(z) =
∑

k≥1

Fk−1zk = z2 + z3 + 2z4 · · ·

minus z2q(z) =
∑

k≥2

Fk−2zk = z3 + z4 · · ·

(1− z − z2)q(z) = z

q(z) =
z

(1− z − z2)

The roots of the denominator are related to the golden ratio ϕ = 1+
p

5
2 ≈

1.618034 and ϕ̂ = (1−ϕ) = 1−
p

5
2 ≈ −0.618034, so we can rewrite q(z) by

partial fractions:

q(z) =
1/
p

5
1−ϕz

−
1/
p

5
1− ϕ̂z

.

These two terms resemble p(z) closely enough that we can determine a
closed form for Fibonacci numbers:

Fk =
ϕk − ϕ̂k

p
5

.

I find it surprising that each Fk is an integer, and completely amazing that
the sequence is the Fibonacci numbers.

8.3 Summary

With recursive definitions we are able to define structures, functions,
and operations of arbitrary (and even infinite) size by specifying a
few base cases, and a rule that fills in the rest. We thus avoid ellipses
(. . .), a good goal for a computer scientist, since ellipses need some
human intelligence to fill in the missing terms.∗

We can work with these definitions and sometimes recognize new
structures as old friends in disguise, find closed forms for expressions,
or bound the growth of functions or structures that we can’t reduce
to closed form.

In Chapter 10 we will learn induction, which is the main way to
prove properties of recursively defined structures.

∗Some programming languages, like Perl, do formally define ellipsis as a restricted,
linear operator.

http://en.wikipedia.org/wiki/Ellipsis_(programming_operator)

8.4 Exercises and Explorations

Quiz Prep 8.1. Answer these questions on strings and languages:

1. What is the missing language L in these expression using concatenation?
Please be precise – the left and right side of the equal sign should be the
same set. Recall that LM = {st | s ∈ L and t ∈ M}.

(a) {Λ, a, ab}L = {b, ab, ba, aba, abb, abba}.
(b) L{a, b}= {a, baa, b, bab}.
(c) L{Λ, a}= {Λ, a, b, ab, ba, aba}

2. Give example languages M and N that satisfy

(a) |MN |= |M | · |N |.
We could use M = {1,2} and N = {1,2,3} from the previous problem,
or any M and N = ;.

(b) |MN |< |M | · |N |.
We need to use the empty string to get this: e.g, M = {a, aa} and
N = {Λ, a}, OR M = {Λ, a} and N = {Λ, a}.

(c) Explain the differences between the empty set, denoted ; or { }, the
empty string Λ, and the language containing the empty string {Λ}.

Quiz Prep 8.2. Write the recursive definition for the set of all pos-
sible lists of elements from a set S.

Exercise 8.3. Find the mistake(s) in each of the following.∗

1. Let S(n) =
∑n

n=1 n. . .

2. Recursively define the double factorial for non-negative integers:

Base: 0!!= 1.
Rec. Rule: for integers n≥ 1, n!!= (n− 2)!! · n.

3. We can recursively define the language S of all strings that have the same
number of as and bs:

Base: Λ ∈ S.
Rec. Rule: if string σ ∈ S, then the strings abσ, baσ aσb, and bσa are

in S.

É

Exercise 8.4. Write a recursive definition of a function that will find
the maximum element in a list.

Puzzle 8.5. I and my wife Elizabeth went to a party with five other
couples. At the start, all pairs of individuals who had not met before
introduced themselves and shook hands; pairs who had met before
did not shake hands. Later, I asked the other eleven guests (including
Elizabeth) how many hands they had shaken, and got eleven different
answers. How many hands did Elizabeth shake?

Five, but why? You will be able to do recursion on couples.

∗Warning: incorrect statements in this problem!

Puzzle 8.6. Calculate
∑

0≤k≤2n(−1)ik2. You could start with n = 10,
which is the series 202 − 192 + 182 − 172 + · · ·+ 22 − 12.

The difference of two squares factors: x2 − y2 = (x + y)(x − y), so this is
just the sum of the numbers [1..2n], which is n(2n+ 1).

Exploration 8.7. Implement the Fibonacci definition as a recursive
function in your favorite programming language. Have it print ‘0’
and ‘1’ each time it reaches one of those base cases. Explain what
you observe and ways to make the computation more efficient.

Exploration 8.8. Write a recursive definition for the integers using
successor s() to give the positive numbers and predecessor p() to
give negative numbers. Every number should have a unique rep-
resentation. Then write the recursive definitions for operations of
addition, subtraction, and multiplication, which are closed under
integers, and exponentiation for exponents in N. Write recursive
definitions for equality and less than.

Chapter 9

Proof
I mean the word proof not in the sense of the lawyers, who
set two half proofs equal to a whole one, but in the sense of a
mathematician, where half proof = 0, and it is demanded for
proof that every doubt becomes impossible.

—Carl Friedrich Gauss

In previous chapters, we have seen a few formal proofs by truth
table or by symbol manipulation using rules of inference. We have
seen many more arguments, sketches, and demonstrations that are
meant to be convincing, and that contain the key ideas that could be
turned into a formal proof by symbol manipulation. In fact, I have
in earlier chapters attempted to avoid the words ‘proof’ and ‘prove’
except when referring to a formal proof. In this chapter we take a
philosophical and practical look at the role of proof in understanding
and communicating about discrete structures.

Objectives: After reading this chapter, you will appreciate that
proof is about communication, first to oneself and second to others.
You will be able to indicate the type of proof by beginning with some
common phrases, and use a two-column proof format that tries to
set out
what is done: the steps of the proof,

233

why it is done: the aims of the steps, and
how it is done: the justification of each step.

You will be able to apply writing exercises, not only to proofs but to
other writing. The chapter closes with a review of definitions and
properties of the previous chapters, which you should be able to use
or prove.

9.1 What is a proof

If you look up proof in Webster’s dictionary you’ll find the legal and
mathematical definitions combined in the first definition:

1a: the cogency of evidence that compels acceptance by the mind of a truth
or a fact.

b: the process or an instance of establishing the validity of a statement
especially by derivation from other statements in accordance with
principles of reasoning.

Keith Devlin names these two alternatives (in opposite order) at
the start of an article on when can a proof be accepted with certainty.

What is a proof? The question has two answers. The right
wing (“right-or-wrong,” “rule-of-law”) definition is that a proof is
a logically correct argument that establishes the truth of a given
statement. The left wing answer (fuzzy, democratic, and human
centered) is that a proof is an argument that convinces a typical
mathematician of the truth of a given statement.

As a computer scientist, I could give the pragmatic answer that a proof
is good if the program based on it runs and produces correct answers.

http://www.merriam-webster.com/dictionary/proof
http://www.maa.org/devlin/devlin_06_03.html

Kara crashes if she is told to walk into trees, pick up a clover that
isn’t there, or put down a second clover. She also crashes if no rule
applies or if more than one rule applies (in the default “deterministic”
mode). We would like to convince ourselves and others that our
program can never encounter these situations—especially if we are
being paid upon job completion. This is one of the main reasons that
formal proof is such an important topic in this book.

In fact, the process of proving, mentioned in Webster’s 1b, is
often more important than the final proof. The compact, precise
language of mathematical symbols, once we become sufficiently
fluent in it, helps record our thinking so that we can avoid getting
stuck in ruts, and can leverage from the work of others. Imre Lakatos’
book, “Proofs and Refutations,” points out that when we don’t know
if a claim is true, then searching in parallel for its proof and its
refutation (a counterexample) helps us refine our understanding of
the range of possibilities and limitations for solutions.

Figure 9.1: Cartoon by Richard Guindon, used by permission.

You may be surprised how much of the process of proving is about

communication and writing mathematics precisely. Leslie Lamport
opens his book “Specifying Systems” [17] by quoting Richard Guin-
don, “Writing is nature’s way of letting you know how sloppy your
thinking is.” Leslie continues, “Mathematics is nature’s way of letting
you know how sloppy your writing is,” and later, “Formal mathemat-
ics is nature’s way of letting you know how sloppy your mathematics
is.”

9.1.1 The roles of definitions and properties

We use the precise definitions of several discrete structures to de-
termine properties that can help us implement, use, and debug
these structures; they help us make sure we are communicating our
intent to the computer and understanding its results. At least as
importantly, precise specification and reasoning helps us commu-
nicate to humans—to bosses or clients — so that all can agree on
tasks to be done (and we can demonstrate that we need to be paid
more if they change their mind) and to ourselves, since we can only
think about what we can express in language. That is why formal
reasoning about discrete structures is a key component of this book.

Proof that a cat has nine
tails: No cat has eight
tails. A cat has one tail
more than no cat. There-
fore, a cat has nine tails.

Definitions are good if they are consis-
tent and expressive—if from a small num-
ber of definitions we can derive many useful
properties without deriving any contradic-
tions. We must start with some undefined
terms (primitives or axioms—for us these are basic logic, set, and

tuple operations: ∧,∨, ¬, ∈, ∀, variables, braces, and parentheses
suffice). From these basics we can define other operations (e.g., ⊆,
∪, ∩, ×, complement, counting, concatenation, . . .), derive their
properties (associativity, commutativity, distribution laws, de Mor-
gan’s laws, . . .), and so on. These properties, once proved, become
shortcuts so that we don’t have to prove everything from the basics.
When you start, however, and whenever you are uncertain, do go
back to the basics to avoid circular reasoning∗ (e.g., assuming A
to prove A.) We also may need to forget the informal way we use
certain words, e.g., logical ‘or,’ p ∨ q, always allows for both p and q
to be true, even though sometimes we informally mean ‘exclusive
or,’ p⊕ q.

9.1.2 Proof types

Remember that proofs are written down to communicate. One of
the important things to communicate early is what will be the logical
structure or type of your proof. Some stock phrases can indicate to
a reader what type of argument you will use.

Proof of ∀x ∈ S: Defining and proving statements ‘for all’ is so common
that the universal quantifiers are frequently omitted. A statement may
simply use x as a generic variable when the set containing x can be un-
derstood from context. This matches the common approach to proving
such statements: begin by assuming that someone has given you a generic
value for x , and prove the statement for that value, then add the quantifier

∗Of course this joke is relevant; every joke in the margins is relevant.

by universal generalization. Such a proof often begins with a phrase like,
“Suppose that we are given an x ∈ S,” or more briefly, “Given x ∈ S.”

It is important that the value is generic—that any value could be given, not
just a specific example. While working through specific examples can help
determine the reasons a statement is true, to convincingly establish “for
all,” you want an argument that can apply to any given value.

When the set S is the natural numbers or some other recursively defined set,
then the technique of mathematical induction is often used to prove ∀x ∈ S
statements. Chapter 10 gives a detailed template for creating induction
proofs without having to think, except in the interesting part of the proof.

Direct proof of conditional: Many properties that we may want to prove
have the form, “if a, b, and c are true, then q is true,” although this may
be expressed in English in different words: “Assume a, b, and c. Then q.”
or “An a that is b and c is also q.”

A direct proof assumes that the given a, b, and c are true, and tries to
work from that knowledge to derive that q is true. Lemma 9.2.1 will show
an example: a proof that if a string x ∈ L(M ∩ N) then x ∈ LM ∩ LN ,
which, after rephrasing what is to be proved, begins “Suppose that. . . ” and
continues to show the statement to be proved is true.

It does no good to also assume that q is true and from that to demonstrate
other true things. What you need to rule out is the possibility that q can be

false while a, b, and c are true. That, you’ll recall, is the only way for the
conditional (a ∧ b ∧ c)→ q to be false.

Proof of contrapositive: Because (p→ q)≡ (q→ p), we can start a direct
proof of a conditional by assuming the negation of q to show the negation
of p.

Begin your proof with, “We will prove the contrapositive, so assume q. . . ”

Proof by contrapositive is still a direct proof, unlike proof by contradiction.
(Proof by inverse or converse are no good, since those are not logically
equivalent to the original conditional.)

Proof by contradiction: To show something is true, we can assume that it
is false and derive a contradiction.∗ This is useful way to find a proof of
p→ q because you can start by assuming that p is true and q is false—you
get more to work with at the start of your proof. Begin your proof by saying,
“Assume, for the sake of deriving a contradiction, that p is true and q is
false,” and conclude your proof with, “This is a contradiction, which shows
that our initial assumption is false. Therefore, p→ q.” The classic example
is the proof that

p
2 is not rational in Theorem 7.2.1, which gets to assume

that a fraction p/q =
p

2 exists to derive a contradiction showing it does
not.

Once you find a proof by contradiction, you can often turn it into a shorter,
clearer direct proof. This is especially true when your assumption is that

∗The Chinese word for contradiction, , is ‘spear shield,’ from a 3 BC story of a
merchant with unstoppable spears and impenetrable shields at the same market stall.

something does not exist, and you find your contradiction by showing it
does. You can then extract a shorter, direct proof to show it exists.

Proof of “if and only if”: Because p↔ q ≡ (p→ q)∧ (q→ p)≡ (p→ q)∧
(p→ q), proof of “iff” often breaks down into two proofs, one for each
direction. Start such a proof by saying, “We first prove p→ q, then the
converse q→ p [or inverse (p→ q)]. . . ” It is possible to do both directions
at once by a series of iff statements, but you must be careful that they really
are equivalences—that they work going forward and backward.

Since set equality A= B is defined as ∀x (x ∈ A)↔ (x ∈ B), proving two
sets are equal is a special case of proving p↔ q, or actually p(x)↔ q(x)
for a generic element x . The proofs for language concatenation with
intersection (Lemma 9.2.1) and union (Lemma 9.2.2) illustrate the two
ways to attempt to prove ‘iff’ statements.

Proof of ⊆: Replace the statement A ⊆ B by its definition, ∀x∈U (x ∈
A)→(x ∈ B), to see that we want to show a quantified conditional statement.
So assume a generic element x is given, and show that if x ∈ A then x ∈ B.
Proof can proceed directly (assume x ∈ A, derive x ∈ B), by contrapositive
(assume x 6∈ B, derive x 6∈ A), or by contradiction (assume both, derive a
contradiction).

Proof of = for sets:

As mentioned under “if and only if,” we can use the definition of A= B,
which goes back to individual elements and uses “iff.” We can instead use
the important property that A= B iff (A⊆ B and B ⊆ A). We often prove
statements about equality of sets by proving these two statements of about
subsets. Start your proof by saying, “To show A = B, we first show that
A ⊆ B, then that B ⊆ A.” Often one direction is easier than the other; I
typically start with the easy direction as the warm-up.

Proof by exhaustive checking: Suppose that we have a predicate q(x).
We can show ∃x∈S q(x) by exhibiting one element of S. For a finite set S,
we can show ∀x∈S q(x) by checking all elements of S. These proofs by
exhaustive checking are boring, but effective. Start your proof by saying,
“We can check that. . . ” (In advanced mathematics these often become “The
reader can check. . . ” and this is often where errors lurk because the author
was being lazy or sloppy. So do enough of the exhaustive check to be sure
that it is right, even if you don’t write all the details for the reader.)

Proof of ∃x ∈ S: A proof of existence that produces a specific example is
called a constructive proof; most exhaustive proofs are constructive. Some
proofs do not produce a specific example; here is a non-constructive proof
that one of two candidate pairs satisfies the next lemma, without identifying
which pair.

Lemma 9.1.1. There exists a pair of irrational numbers, a and b, such that
ab is rational.

Proof. We know that
p

2 is irrational. Consider
p

2
p

2
: if it is rational, then

a = b =
p

2 gives a rational ab. Otherwise, let a =
p

2
p

2
and b =

p
2, and

observe that ab is rational:

ab =
�p

2
p

2
�

p
2

=
p

2
p

2·
p

2
=
p

2
2
= 2.

QED

In fact,
p

2
p

2
is irrational, and even transcendental (it is not the root of

any finite polynomial with integer coefficients), but the proof of that fact
uses deeper mathematics that would completely obscure the simplicity
of this proof. Most non-constructive proofs show that an example exists
by contradiction or by counting; these can be quite hard to turn into
constructive proofs.

Combinatorial proof:

Last, but not least, counting the same quantity in two different ways can
give concise, elegant proofs. For example, knowing that the binomial
coefficient

�n
r

�

is the number of ways to choose r things out of n, you can
easily observe that

�n
r

�

=
� n

n−r

�

because each way you choose r of n items

to keep is also a way of choosing n− r to discard. Speaking more formally,
“We establish a bijection between the ways to choose r out of n items and
the ways to choose n− r out of n items.”

9.2 Modified two-column proof form

There can be no hard and fast rules for the form of a proof, since
communication via proof is a creative activity—find some form that
works for you, and maybe some modifications that communicate
well to others. Nevertheless, putting some restrictions on the form
can make it easier both for us to write correct proofs and for others
to read our proofs.

The traditional “two-column proof” for geometry, created in 1913,
had enough criticism in recent decades that some of you may have
never seen it. The idea is to write the steps in one column and the
reasons in a second column, showing “what” in the left column and
“how” in the right. Let’s modify this, adding words on “why” to the
steps so that you can read the left side as a narrative, and the right
side as comments on the narrative. Here are some examples.

9.2.1 Example two column proofs

For all languages

Warning: only one of
these is true!

L, M , N , on an alphabet Σ, can we show
that L(M ∩ N) ?= LM ∩ LN and that L(M ∪
N) ?= LM ∪ LN?

Here is a list of definitions and properties that I will assume that
we know. (I try not to state definitions like these inside a proof,
because they break up the flow. Instead, I just use them. I include
the statements here so you can see the primitive definitions I will
rely on.)
• A language is a set of strings; a string is an ordered sequence of letters

from Σ. In brief, L, M , N ⊆ Σ∗, and a string α ∈ Σ∗.
• For two languages A, B ⊆ Σ∗, the concatenation or product

AB = {αβ | for every possible choice of α ∈ A,β ∈ B}.
• For two sets A, B, the intersection A∩ B = {x | x ∈ A and x ∈ B}.
• Various properties of logical ‘and’ ∧ and ’or’ ∨: idempotent, distributive,

commutative, associative.
Back to the two things to show. In each case, we want to show

two sets are equal, so we can try to show that each is a subset of the
other. Let’s look at intersection first.

Lemma 9.2.1. For all languages L, M , N on alphabet Σ, we have
L(M ∩ N) ⊆ LM ∩ LN: concatenation with an intersection is a subset
of the intersection of concatenations.

1. We will show that L(M ∩ N) ⊆ (LM ∩
LN), or equiv.,

2. that ∀x ∈ Σ∗, if x ∈ L(M ∩ N) then
x ∈ (LM ∩ LN)

Definition of subset.

3. Let us do this by direct proof: To show p→ q, we suppose p is
true

4. Suppose that x ∈ L(M ∩ N); and show q must be true.
5. that is, ∃α ∈ L and ∃β ∈ (M ∩ N) with
αβ = x .

Defn concatenation of languages

6. But then β ∈ M and β ∈ N , Exist. instantiation & defn ∩
7. so we can write x = αβ with (α ∈ L

and β ∈ M) and
(α ∈ L and β ∈ N).

Properties of ‘and’ (idempot.,
commut., assoc.), or by checking
a truth table for equivalence.

8. But then x ∈ LM and x ∈ LN , Defn concat of languages
9. so x ∈ (LM ∩ LN), as desired. Defn of intersection

10. Thus, we have shown that L(M ∩ N) ⊆
(LM ∩ LN).

Direct proof of conditional and
defn of subset.
QED

What if we wanted to show the opposite inclusion, that (LM ∩
LN) ⊆ L(M ∩ N)? Well, we better have a problem because this is
false, as we can prove by a counterexample: Choose L = {a, ab},
M = {b}, and N = {Λ}, then∗

L(M ∩ N) = L;= ;, but

LM ∩ LN = {ab, abb} ∩ {a, ab}= {ab}.

Let’s try to prove this false direction and see how far we get:

1. We want to show that (LM ∩ LN) ⊆
L(M ∩ N), or equiv.,

2. that ∀x ∈ Σ∗, if x ∈ (LM ∩ LN) then
x ∈ L(M ∩ N)

Defn of subset.

3. Let us do this by direct proof: To show p→ q, we suppose p is
true

∗Can you see that defns from 3.1.2 imply L;= ; and L{Λ}= L?

4. Suppose that x ∈ (LM ∩ LN); and show q must be true.
5. that is, x ∈ LM and x ∈ LN Defn of intersection.
6. Then ∃α ∈ L and ∃β ∈ M such that

x = αβ .
Defn concat of languages

7. and ∃γ ∈ L and ∃δ ∈ N such that x =
γδ.

8. If β = δ then we are good: α = γ by
definition of equality of strings and we
can finish the proof.

9. But if β 6= δ then we are stuck, and that
is exactly what happens in the coun-
terexample.

QED

Note that I am careful not to reuse variable names α,β for LN in
line 7 that are already in use for LM in line 6. Reusing a variable that
already has another meaning is one of the most common mistakes
in a proof—if I did that here, I could complete the proof of a false
theorem. Because I was careful, my attempted proof instead indicates
how the proposed lemma could fail: L must contain a string and one
of its proper prefixes—this is how I knew to include ab and a in the
counterexample. (In cases where no string in L is a prefix of another,
then the proof can be completed successfully and the result holds!)

Two-column proofs aren’t always so long. For example, let’s prove
that for all languages L, M , N ∈ Σ∗, concatenation does distribute
over union: L(M ∪ N) = LM ∪ LN . We’ll do this in traditional two-
column format by a sequence of equalities in the left column, with
justifications on the right.

Lemma 9.2.2. For all languages L, M , N on alphabetΣ, concatenation

distributes across union: L(M ∪ N) = LM ∪ LN.

1. L(M∪N) = {αβ | α ∈ L∧(β ∈ M∨β ∈
N)}

Defn concat and union

2. = {αβ | (α ∈ L ∧ β ∈ M) ∨ (α ∈
L ∧ β ∈ N)}

Distribution ∧/∨.

3. = {αβ | α ∈ L∧β ∈ M}∪{γδ | γ ∈
L ∧δ ∈ N)}

Defn union, renaming variables.

4. = LM ∪ LN . Defn concatenation.
QED

Since each step is small, a proof in traditional two-column format
should be easy to verify. There are some disadvantages:

• The intent of each step must be inferred, as it is not stated.
• The format encourages heavy use of symbols, which make it hard to

read for those not fluent in the notation.
• Small steps can be tedious.

These are why I prefer to modify the two-column format to include
more narrative text in the left column, as in the proof of Lemma 9.2.1.

To make the proof of Lemma 9.2.2 more narrative, it may be
enough to summarize the proof in words before giving the notation:∗

“After expanding L(M ∩ N) using the definitions of concatenation
and union, we identify that each string is in LM or LN .”

As with any communication, you need to know your audience—
their mathematical background suggests what steps you can do
in great leaps, and what steps you need to expand in detail. L.
Lamport [16] suggests that hyperlinked proofs could allowing a
∗It is always a good idea to summarize in words what you will say in notation.

reader to click on a higher level property (e.g., de Morgan’s law for
sets) and get the expansion of the proof of that law.† For yourself,
you should expand your proof one level deeper than what you find
convincing.

Modified two-column proofs still tend to favor a particular order:
proceeding from what the audience knows (the given information)
to what they don’t (the target statement to be proved). On scratch
paper we often work from both ends, given and target, until we
meet in the middle. We may even work entirely backwards, from
the target. Sometimes these orders are the best way to write the
final proof as well; just make sure to indicate what things we know,
and what things we are trying to show. Adding words (“We want to
show” or “It is enough to prove” vs. “We know” or “We are given”)
helps. You can also use notation, such as marking predicates you’d
like to establish with a question mark (?<, ≤?, ?=, ⊆?, . . .).

Once you are accustomed to modified two-column proofs, you
can drop the right column, or incorporate the non-trivial “how”s into
the narrative. Most arguments in mathematical and computer science
work are given at a higher level, with many steps or justifications
omitted under the assumption that the intended audience has the
knowledge to supply them, given sufficient motivation.∗ This should
only be done after you have demonstrated that you are able to supply
the steps and justifications, so don’t try to write at a high level to

†I use margin notes and tooltips to expand on some proofs in this book.
∗The classic proof in a lecture:

Prof: From steps 7 and 12, it is obvious that we get 13. . .
Back row student: Is it?
Prof, after 10 min of staring at the board: Yes.

early, or for anything critical; go one level deeper than seems clear
to you. Even if you are writing at a high level, I recommend writing
reasons for each step of your proofs on your scratch paper, to avoid
leaps of faith, reuse of variables, or other logical mistakes that might
be overlooked in a narrative proof form. Even better, find a skeptical
friend who is willing to question your proof attempts, and force you
to demonstrate that you understand the details.

9.3 Communication

Remember that your proofs are generally for a human (often yourself)
to read. To communicate well you need to use a shared vocabulary
and shared assumptions, both of which this book aims to remind
you of/introduce. You also need some idea of the way your reader is
expecting you to build on this shared context. Since this is difficult to
do in a first draft,∗ I give five specific exercises that I use to improve
my own writing.

George Gopen [8] says that a reader of English expects to find
context first in a sentence, paragraph, or section, and new infor-
mation after, with the information being stressed at the end.† New
information of one sentence or paragraph often becomes context
for the next, or the author may add more information in the same
context. If the author provides information where it is expected then

∗The five steps to good writing: write, rewrite, rewrite, rewrite, rewrite.
†In contrast, I’ve been told that scholarly writing in German starts a paragraph by

telling you what it is not about, in the middle states the point, then ends with all the
exceptions.

the prose will “just flow” – the reader will not have to backtrack and
spend mental energy to disentangle words, but can save that energy
for understanding ideas.

The ideas of context first and managing reader expectations are
behind most of the picky rules of writing, such as comma usage
and which vs. that. They are also behind rules of and advice for
mathematical writing:

• Define any terms or variables before you use them; don’t define variables
or notation that you will not use, or will use only once. Don’t use variables
outside their scope. Avoid reusing a variable—one of the most common
mistakes in proofs is to have two different variables have the same name.

• Start with words that indicate the purpose of a variable or expression:

– To choose a generic x to show ∀x : “Assume that x” or “Suppose that x”
– To name an x that comes from the problem statement: “Given an x that”
– To define x to replace a complex expression: “Define x” or “Let x .”
– To recall a previously defined variable or property: “Since,” “Because,”

“We know that,” or “But.”
– To state a conclusion: “So,” “Thus,” or “Therefore.”
– To state a goal: “We want to show.”
– To identify cases: “We will have n cases: First. . . , Second. . . , Finally. . . ,”

“On the other hand,” “Conversely,”
– To rephrase what you want to show: “Equivalently,” or “Rewriting this

as.”
– Reserve “If” for if-then logic; don’t use “If” in place of any of the above.

• Always separate mathematical notation by words. Consider summarizing
a proof in words before you give it in notation. Punctuate properly—

punctuation helps your reader know what to expect. Stay in present tense.
• Reserve the equals sign, ‘A= B,’ for expressions in which both sides are

really equal, or are being defined or assigned to be equal, with a variable
named A being assigned the value of B. (Many computer languages distin-
guish even between these, either using == for testing equality or := for
assignment.) Please don’t use ‘=’ when you mean logically equivalent (≡
or⇔), the logic operator iff (↔), or even “I hope to show that these are
equal” (?=).

In a first draft, it is usually best to record ideas quickly, with
little concern for the ideal organization and presentation. But then
improve what you’ve written by applying writing exercises. Here are
my favorite five:

1. Context first (Gopen). Find the context and new information in sentences
in a paragraph or paragraphs in a section and ensure that context comes
first. For a mathematical example, let’s rewrite a typical, first-draft proof
that any even number a times any integer b is even: “When a is even
ab is even because we know there is a c so that ab = 2cb, where 2c = a.
But ab is even, since ab = 2cb and the 2 shows that ab is even.” This
has all the right statements, but you have to read past each statement
for its the reason, then reread to verify it.

Notice that the context is the assumption that a is even, which was
not clearly distinguished from the desired conclusion. The reader is
assumed to know the definition of ‘even’ so, in the first sentence, the
new information is the naming of integer c certifying that a is even. The
naming of c gives context for the second sentence. Realizing this, we
can reorder and shorten: “For any a that is even, there is some integer c

satisfying a = 2c. But then ab = 2cb is even.”

2. Strengthen parallels (Gopen / Strunk & White) Especially for technical
writing, find parallels and strengthen them. E.g., use consistent termi-
nology (if you called it an algorithm, don’t call it a method, technique,
or approach later) and sentence structure (if you find yourself saying
“another xyz” make sure the first was labeled as an “xyz” and, ideally,
start out by saying how many “xyz”s the reader will see. Furthermore, if
you write “the first is a blah that performs a smurge,” then you better
write “the second is a foo that performs a bar.”) Using the same sen-
tence structure makes the similarities and differences obvious without
you even needing to comment. I expect that you were told in middle
school to “vary your sentences to make your writing interesting.” Forget
that—now you are supposed to have interesting ideas, and by using the
identical sentence structure you can highlight the clarity of your ideas,
especially for comparing and contrasting.

3. Use vivid verbs (A. Snoeyink/MC van Leunen) Underline all verbs, giving
being verbs (is, was, are) double underlines, and passive verbs wiggly
underlines. Consider rewriting any paragraph in which less than half
of the verbs are single underlines. Being and passive verbs can be fine,
but overusing them hides the actors, lengthens sentences, and makes
technical prose even more boring.

4. Omit needless words (Strunk & White). Go through a document and
cross out as many words as possible without changing the meaning. Easy
candidates are phrases like “in terms of,” “for the purpose of,” “by means
of,” “very,” “quite”. . . Sometimes you [are going to have to→ must] add
a word to remove others.

5. Paragraph outline (Gopen/MC van Leunen): Identify the point you are
making in each paragraph; if there is more than one, consider splitting.
Check that these points are made in a logical order.

9.4 What may I use?

One of the big questions in doing proofs is “What facts am I allowed
to use?” I close this chapter with some pages on this because it is a
good way to collect a summary of definitions and properties that we
have seen thus far.

It is important to distinguish between definitions and the proper-
ties that can be derived from definitions. For example, set equality
is defined as A= B iff ∀x∈U , (x ∈ A↔ x ∈ B), but we often use the
property that A= B iff (A⊆ B) and (B ⊆ A). You may always use the
definitions, and once a property has been established, you may use it.
The thing to avoid is circularity: you cannot allow the derivation of
property A to contain hidden within it the assumption that property
A is true. To avoid this, we can put the properties in order,∗ and
insist that the proof of a property use only properties that have been
proved earlier. The rest of this section gives example properties in
the order for this book. It may look a little overwhelming, but these
are all part of the knowledge of a working computer scientist. In
fact you need only remember a few primitives and definitions to
derive the many properties. On the other hand, once you have a firm
grasp of the basics, you’ll want to remember many of the properties

∗actually, a partial order—we’ll define those in Section 12.2

because they let you work faster and at a higher level of abstraction,
which is important for exams and for specifying and developing
robust software in the working world.

9.4.1 Primitives

Our primitives come from sets and logic; we can reduce any proof
back to these.
Set construction: We may make sets by listing elements in braces,
giving a rule {x | p(x)}, or recursive definition (base, recursive rule,
closure).
Element of: x ∈ S iff x is an element of set S.

We may replace any expression with a logically equivalent ex-
pression. Equivalence (denoted ≡) can be verified by a truth table.
We name many important equivalences so we can remember them
and not always have to make the truth table. (Tell me of typos you
find!!)

Idempotence of ‘and’ ∧, ‘or’ ∨ and not: p ≡ p ∧ p ≡ p ∨ p ≡ p
Commutativity: p ∧ q ≡ q ∧ p and p ∨ q ≡ q ∨ p.
Associativity: p ∧ (q ∧ r)≡ (p ∧ q)∧ r and p ∨ (q ∨ r)≡ (p ∨ q)∨ r.
Distribution: p ∧ (q ∨ r) ≡ (p ∧ q)∨ (p ∧ r) and p ∨ (q ∧ r) ≡ (p ∨
q)∧ (p ∨ r).
deMorgan’s laws for logic: p ∧ q ≡ p ∨ q and p ∨ q ≡ p ∧ q.
Tautology and contradiction: p ∨ p = p→ p = p↔ p = T and
p ∧ p = p→ p = p⊕ p = F .
Absorption and identity: p ∧ T = p, p ∧ F = F , p ∨ T = T , and
p ∨ F = p.

if: p→ q ≡ p ∨ q ≡ q→ p.
iff: p↔ q ≡ (p→ q)∧ (q→ p).
To prove p→ q we may assume p and show q. (Or assume q and
show p.)
To prove p↔ q we prove both p→ q and q→ p.

Quantifier expansion: If S = {s1, s2, s3, . . .} then ∀x∈S p(x) ≡
∧

x∈S p(x) and ∃x∈S p(x)≡
∨

x∈S p(x).
Quantifier negation: If S = {s1, s2, s3, . . .} then ∀x∈S p(x) ≡
∃x∈S p(x) and ∃x∈S p(x)≡ ∀x∈S p(x).

Concatenation and equality of tuples or strings can be for-
mally defined recursively, but since we used them before we
talk about recursive definition, we can take as primitive that,
e.g., ((a, . . . , b), (c, . . . , d)) = (a, . . . , b, c, . . . , d), and (a1, a2, . . .) =
(b1, b2, . . .) iff

∧

i≥1 ai = bi .
Similarly, we may want to use cardinality (counting) before we

define it using bijective functions, so |A| can be considered primitive.

9.4.2 Basic definitions and properties that follow
from them

Just as reminders, here is a collection of definitions. U is the universal
set.
Set equality: A= B iff ∀x , (x ∈ A↔ x ∈ B),
Subset: A⊆ B iff ∀x∈U x ∈ A→ x ∈ B.
Complement: A= {x | x ∈ U ∧ x /∈ A}
Union: A∪ B = {x | x ∈ A∨ x ∈ B}
Intersection: A∩ B = {x | x ∈ A∧ x ∈ B}

Power set P (A) = {S | S ⊆ A}
Cartesian product A× B = {(x , y) | ∀x∈A ∀y∈B}
Language concatenation LM = {αβ | ∀α∈L ∀β∈M}
Kleene star: L∗ =

⋃

i≥0 L i , where L0 = {Λ}, L1 = L, L2 = L × L, . . . ∗

The following properties of set operations are proved and named
so that we can use them. Their proofs should use only primitives,
definitions, and properties above them. (In fact, each proof can be
expanded to use only definitions and primitives. Exercise: do some
of these; they build character.)
Equality and subset: A= B iff (A⊆ B) and (B ⊆ A).

Idempotence: A= A∪ A= A∩ A= A
Commutativity: A∪ B = B ∪ A and A∩ B = B ∩ A.
Associativity: A∪ (B∪C) = (A∪B)∪C and A∩ (B∩C) = (A∩B)∩C
and A× (B × C) = (A× B)× C and L(MN) = (LM)N .
Distribution: A∪ (B ∩ C) = (A∪ B) ∩ (A∪ C) and A∩ (B ∪ C) =
(A∩B)∪ (A∩C) and A× (B∩C) = (A×B)∩ (A×C) and A× (B∪C) =
(A× B)∪ (A×C) and, as we have proved as Lemmas 9.2.2 and 9.2.1,
L(M ∪N) = LM ∪ LN and L(M ∩N) ⊆ LM ∩ LN Note: not equality!
de Morgan’s laws for sets: A∪ B = A∩ B and A∩ B = A∪ B
Absorption and identity: A∪ ;= A, A∩ ;= ;, A∪ U = U , A∩ U = A,
A× ;= ;, A× {()}= A, L;= ;, and L{Λ}= L.
Absorption for subset: A⊆ B iff A∩ B = A iff B ∪ A= B.

Some of the counting properties we can’t prove until we get
induction, but they still make good checks of understanding.
Inclusion/exclusion: for two sets |A∪B| = |A|+ |B|−|A∩B|, for three

∗I include this one line with ellipses for information—the real definitions is recur-
sive in Section 8.1.

sets |A∪B∪C | = |A|+ |B|+ |C |−|A∩B|−|A∩C |−|B∩C |+ |A∩B∩C |,
generalizes to more sets. . .
Power set: |P (A)|= 2|A|.
Cartesian product: |A× B|= |A| · |B|.
String concatenation: for strings α,β ∈ Σ∗, the length |αβ |= |α|+
|β |.
Language concatenation: |LM | ≤ |L| · |M | with equality if each string
can be made in only one way.

9.4.3 Definitions with variations: Functions, rela-
tions, graphs

Many of these are elaborated upon in later chapters.

A relation on sets A, B is a subset of A× B.
A function f : A→ B is a relation F ⊆ A× B that sends each element
of A to exactly one B. The formal definition is ∀x∈A ∃y∈B ((x , y) ∈ F)
and ∀x∈A∀y1,y2∈B ((x , y1) ∈ F ∧ (x , y2) ∈ F)→ (y1 = y2). We usually
use the notation f (x) for the value in B that x is mapped to, but we
could also say (x , f (x)) ∈ F .

The image of a set S ⊆ A under function f : A → B is the set
f (S) = { f (x) | x ∈ S}. Note f (S) ⊆ B.
The pre-image of a set T ⊆ B under function f : A→ B is the set
f −1(T) = {x | f (x) ∈ T}. Note f −1(T) ⊆ A.
The function f is surjective (f is a surjection, aka onto) iff f (A) = B.
That is, every element of B is mapped from some x ∈ A.
The pre-image of a set T ⊆ B under function f : A→ B is the set
f −1(T) = {x | x ∈ A∧ f (x) ∈ T}.

A function f is injective (f is an injection, aka one-to-one) if
no two elements of A map to the same element of B. Formally,
∀y∈B∀x1,x2∈A (f (x1) = y)∧ (f (x2) = y)→ (x1 = x2).
A function f is bijective (f is a bijection, aka one-to-one and onto) if
it is injective and surjective. For a bijection, the reverse mapping is
also a function, called the inverse and denoted f −1 : B→ A.

For a relation R, let’s write a R b as an abbreviation for (a, b) ∈ R
and a 6R b for (a, b) /∈ R. We will see much more about relations
later, but here are some variants:
A relation on A×A is reflexive iff ∀x∈A x R x , irreflexive iff ∀x∈A x 6R x ,
symmetric iff ∀x 6=y∈A x R y↔ y R x ,
antisymmetric iff ∀x ,y∈A x R y↔ y 6R x ,
transitive iff ∀x ,y,z∈A x R y ∧ y R z→ x R z,
an equivalence relation iff it is reflexive, symmetric, and transitive,
a partial order iff it is antisymmetric and transitive and either reflexive
or irreflexive.

A graph G is a pair of sets (V, E), with V a finite set of vertices
and E ⊆ V ×V a set of pairs called edges. We will see more on graphs
later.

9.5 Summary

You may be surprised that I consider proof relevant to computer
science. After all, what is proof but the manipulation of cryptic
symbols with arcane rules? In computer science we get to create
things by . . . the manipulation of cryptic symbols with arcane rules.
Just as an architect has a better chance of designing a functional

and elegant building if he or she explores and learns by sketching
concepts and making models with media that have key properties of
the desired final product, so we will have better software by exploring
and learning with our scratch paper, where mistakes are less costly.

Proof is about communication, and communication can be diffi-
cult when the language is unfamiliar. Think of how you learn other
languages: you start with a small vocabulary, practice under super-
vision, make many mistakes, and learn from them. Then you go out
and start using the language, continuing to learn vocabulary, make
mistakes, and improve your understanding of what communicates.
As you become fluent, you learn to recognize elegant expressions
from inelegant expressions, and can even begin to appreciate po-
etry. You can only reach that level by time spent in practice, making
mistakes, and learning from them.

Don’t expect that the first thing you say will be said well. Plan
what you want to say on scratch paper, then rewrite, using some
of the suggestions on communication. It can take less time to do a
detailed sketch and a rewrite than to try to write a first draft clean
enough to submit or to serve as the basis for code you will write.

9.6 Exercises and Explorations

Quiz Prep 9.1. Choose any pair of the following statements about
sets A and B and write a two-column proof that they are equivalent:

a A⊆ B
b B ⊆ A
c A∪ B = B
d A∩ B = A
e A\ B = ;

Quiz Prep 9.2. Suppose that we have a function f : A→ A with the
property that, for all x ∈ A, f (f (x)) = x .

1. We can prove that f is a surjection, which means: (fill in definition, includ-
ing quantifiers.)

Defn: ∀y∈A ∃x∈A f (x) = y .

2. From this, I know: I am given some y ∈ A. I also know that f (f (y)) = y .

3. I want to show: ∃x∈A with f (x) = y .

4. Complete the proof.

Choose x = f (y). Since f (x) = f (f (y)) = y, this shows that f is surjec-
tive.

5. We can prove that f is an injection, which means: (fill in definition, includ-
ing quantifiers.)

Defn: ∀x1,x2∈A, if f (x1) = f (x2) then x1 = x2.

6. From this, I know: I am given x1, x2 ∈ A with f (x1) = f (x2).

7. I want to show: x1 = x2.

8. Complete the proof.

Since f (x1) = f (x2), we must have f (f (x1)) = f (f (x2)). But f (f (x1)) =
x1 and f (f (x2)) = x2, so x1 = x2.

Quiz Prep 9.3. Prove or show a counterexample: For all positive
integers a, b, c ∈ Z+ with c < min(a, b), if c 6 | a and c 6 | b then
c 6 | (ab).
A counterexample is c = 15, a = 18, and b = 20.

Quiz Prep 9.4. I want to show, for all reals x , that bxc+ d−xe= 0.
Write a sequence of eight to twelve line numbers that would con-
stitute a clear and valid proof. (There are many sequences because
there is some choice of ordering. Choose a sequence that, for exam-
ple, defines variables before using them.) ?

1. Also, d−xe= −3.
2. Let m= bxc, which is the greatest integer less than or equal to x .
3. Let n= b−xc, which is the greatest integer less than or equal to −x .
4. Let m= dxe, which is the smallest integer greater than or equal to x .
5. Let n = d−xe, which is the smallest integer greater than or equal to −x .
6. Let x = 3.1415926.
7. m+ 1> x , because m is the greatest integer less than or equal to x .
8. m+ 1> x , because m≥ x .
9. m+1< x , because m is the smallest integer greater than or equal to x .

10. m+ 1< x , because m≤ x .
11. n− 1> −x , because n is the greatest integer less than or equal to −x .
12. n− 1> −x , because n≥ −x .
13. n− 1< −x , because n is the smallest integer greater than or equal to
−x .

14. n− 1< −x , because n≤ −x .
15. Suppose that I am given a real number x .
16. Thus, bxc+ d−xe= 0.
17. Thus, m+ n− 1< x − x < m+ n+ 1.
18. Thus, −1< m+ n< 1, and m+ n is an integer, so m+ n= 0.
19. Thus, x − x ≤ m+ n< x + 1− x − 1, so 0≤ m+ n< 0.
20. Thus, x − x − 1< m+ n< x + 1− x .
21. Notice that bxc= 3.
22. Notice that m≤ x , by definition of floor of x .
23. Notice that n≤ −x , by definition of floor of −x .
24. Notice that m≥ x , by definition of ceiling of x .
25. Notice that n≥ −x , by definition of ceiling of −x .

Exercise 9.5. Prove the following by examining all cases.

1. For all x ∈ R we have x − 1< bxc ≤ x and x ≤ dxe< x + 1, with equality
only for integers.

2. For integers n ∈ Z, n= bn/2c+ dn/2e.

3. For integers n ∈ Z, b(n+ 1)/2c= dn/2e.

Exercise 9.6. In Section 4.2, Item A6 suggested that you could
show that “there are no lock or unlock operations in the trace” is
equivalent to, “every operation in the trace is an access,” if you
added the condition that “each trace entry records exactly one of the
operations {a, l, u} applied by one process to one file.” Here are the
two statements, using the notation from that section:

∀i ∀p ∀ f

�

(t i 6= l(p, f))∧ (t i 6= u(p, f))
�

,

∀i ∃p ∃ f (t i = a(p, f)).

1. Write an expression for the added condition

2. Assuming the added condition is true, prove that the two statements are
equivalent.

É

Puzzle 9.7. Show that no set of 9 consecutive integers can be parti-
tioned into two subsets such that the product of the elements in the
first set is equal to the product of the elements in the second set.

É

Puzzle 9.8. I give you a rectangle of size n×m, where both n, m> 1
and their product mn is even, and enough dominoes (1× 2 tiles) to
cover it. I remove the squares at (x1, y1) and (x2, y2). Prove that
you can cover the other squares with dominoes iff x1 + y1 + x2 + y2

is odd. (What type of proof do you use?) É

Puzzle 9.9. A function f : S2 → R is a distance metric for set S iff
for all choices of x , y, z, it is satisfies three conditions:

1. Non-negative: f (x , y)≥ 0 with equality if and only if x = y .

2. Symmetric: f (x , y) = f (y, x).

3. Triangle inequality: f (x , y)≤ f (x , z) + f (z, y).

E. Semyenov proposes that the triangle inequal-
ity is redundant, and offers this demonstration.

Hint:
Add the quantifiers to the
statement of the triangle
inequality and check the
negation.

Suppose that 1 & 2 hold, and assume,
for the sake of deriving a contradiction, that
3 does not, but that for all x , y, and z,
f (x , y) > f (x , z) + f (z, y). Choose y = z
and x 6= y , and the triangle inequality says
f (x , y) > f (x , z) + 0 = f (x , y). This is a
contradiction, since f (x , y) cannot be greater than itself. Therefore,
our assumption is wrong—the triangle inequality can’t be false while
the other two conditions hold.

Do you believe it?

Puzzle 9.10. Alice has fifteen cookies, Beth has nine,
and Carla has none, but offers 24 cents to the other
two, and each girl eats one-third of the cookies.

Hint:
From [3]: Carla pays
24 cents for how many
cookies?

Beth wants Alice to divide the 24 cents
evenly with her, but Alice says that since she
brought fifteen cookies to Beth’s nine, she

should get 15 cents and give Beth 9 cents.
What is the fair division of the 24 cents between Alice and Beth?

Extension 9.11. Write formal proofs for assertions or demonstra-
tions of Chapter 3 or Chapter 7, especially if there are any that you
find confusing or doubtful.

Chapter 10

Mathematical
Induction

—xkcd.com/888

The proof technique of mathematical induction lets us show that a
predicate∗ P(x) is true for every member of a recursively defined
set. It is ubiquitous in computer science, because so many of our
structures and procedures are best defined recursively. In this chapter
I introduce an 8-step template for strong induction that lets you write
an induction proof without thinking except for step S7.

∗Recall that a predicate is a function that maps each x to either true or false:
P : X → {0,1}.

266

Ok, that’s true only if after we know X and P(x) – that is, after
we can state precisely what we are trying to prove about what. The
process of defining the problem and creating the proof go hand-in-
hand, and induction, and the induction template, gives us another
tool to break large problems into smaller pieces.

Objectives: After working through this chapter and the many exer-
cises and puzzles, you will be able to do proofs of ∀n, P(n) by strong
induction, following the 8-step template given here. You will be able
to explain what is known and what is to be shown at each step. You
will also be able to find where attempts at induction proofs of false
statements fail because they do not fit into the template.

10.1 Strong induction

To prove ∃x ∈ X P(x) is usually easy—we just exhibit some x that
works.

To prove ∀x ∈ X , P(x) is harder, because we have to show that
every possible x ∈ X works. As working computer scientists, however,
we want to be able to assure clients that, for all possible inputs x ∈ X ,
our program P computes the true value P(x). We also need to be
able to reassure ourselves.

When the set X is recursively defined, such as the natural num-
bers N, we can essentially set up a computer program that writes a
proof that P(x) holds for each possible value of x ∈ N. This proof
often mimics the recursive definition: We establish ∀x ∈ N, P(x) by

checking a small set of base cases, say x ∈ [0..b] for this illustra-
tion, and then setting up a machine that can show for any given
n > b that P(n) is true, as long as it can assume that P(k) is true
for all 0 ≤ k < n. Let’s start with two interesting (that is, difficult)
examples.

10.1.1 Examples

Tiling with Ls: A celebrity with initials LL wants to tile her laundry
room with gold L tiles, which are made of three unit squares. The
room is a 2n × 2n grid of squares, and there is a 1× 1 drain at some
position i, j, but she doesn’t remember exactly where. When the
master tile layer asks the clever but lazy apprentice to put the tile
cutter on the truck, the apprentice says it won’t be needed. Prove
that no matter where the drain is, they can tile any 2n×2n grid, with
one grid cell removed, by L tiles without cutting.

We better start with some small examples, to make sure we
understand the question. How would you tile these 1× 1, 2× 2 and
4× 4 grids with L tiles?

1× 1

2× 2

4× 4 4× 4 4× 4tile

The apprentice wants to demonstrate that for each possible floor
(a 2n × 2n grid with n ≥ 0 and one grid cell missing) there exists

a way to tile.∗ Being lazy, the apprentice does not want to do this
by tiling every possible floor, so divides floors into groups by their
size parameter, n, and finds a way to turn the larger task into four
smaller instances of exactly the same task.

Lemma 10.1.1. Any 2n×2n grid with n≥ 0 and one grid cell missing
can be tiled by three-cell L tiles without cutting.

Proof. Let’s prove that for all 2n × 2n grids with n≥ 0 and one grid
cell missing, it is possible to tile using L tiles, by induction on n.
Base n= 0: There is only one 1× 1 grid, and it needs no tiles, since
its only grid cell must already be missing. Ø
Ind. Step: For a given 2n × 2n grid missing one cell, with n> 0,
Ind. Hyp.: we may assume that any 2k × 2k grid that is missing one
cell with 0≤ k < n can be tiled using Ls.

To tile a given 2n×2n grid, divide it into four squares of 2n−1×2n−1

by drawing lines through the center. One of the four squares is
already missing a grid cell. Place an L tile at the center to take one
grid cell from each of the other three squares. By the induction
hypothesis, each of these four smaller squares can be tiled, which
tiles the entire floor. QED

Note how alternation of quantifiers affects the proof. An adver-
sary chooses the floor (and n), then we may choose how to tile. We
decide to lay a single tile near the center that steals a cell from the
three 2n−1 × 2n−1 squares that were not already missing a cell. We
can do this, since n > 0. Rather than making more tile decisions,

∗Large grids may be tiled in many ways; finding one way is enough.

we recognize that we have four smaller copies the original problem,
which can be tiled by the magic of recursion. Try on the grids above.

Fibonacci numbers: The golden ratio, ϕ = 1+
p

5
2 ≈ 1.618, is a

number that shows up in surprising places in nature and art. It is
an irrational number, which, as you can check∗, happens to satisfy
ϕ2 = ϕ + 1, 1/ϕ = ϕ − 1, and 1/ϕ2 = 1− 1/ϕ. Subsection 8.2.5
suggested a surprising closed form expression in ϕ for the Fibonacci
numbers.

Lemma 10.1.2. For all n ≥ 0, the nth Fibonacci number Fn =
�

ϕn − (− 1
ϕ)

n
�

/
p

5.

Proof. We can prove this by induction on n.
Base n= 0: By definition F0 = 0, and (ϕ0 − (− 1

ϕ)
0)/
p

5= 0. Ø
Base n = 1: We can check that (ϕ − (− 1

ϕ))/
p

5 = (2ϕ − 1)/
p

5 =
1= F1. Ø
Ind. Step: for a given n> 1, we prove that Fn =

ϕn−(−1/ϕ)np
5

.
Ind. Hyp.: We assume that, for all 0 ≤ k < n, we know that Fk =
ϕk−(−1/ϕ)kp

5
.

∗but not on your calculator because that checks approximate equality

The proof expands the recursive definition of Fibonacci numbers
for all n> 1, uses the induction hypothesis twice (for k = n− 1 and
k = n− 2), then does some algebra—simplifying expressions with ϕ
according to the above equalities.

Fn = Fn−1 + Fn−2

=
ϕn−1 −

�

−1/ϕ
�n−1

p
5

+
ϕn−2 −

�

−1/ϕ
�n−2

p
5

=
1
p

5
·
�

ϕn−1 +ϕn−2 −
�

−
1
ϕ

�n−1 −
�

−
1
ϕ

�n−2�

=
1
p

5
·
�

�

ϕ + 1
�

ϕn−2 −
�

1−
1
ϕ

�

�

−
1
ϕ

�n−2�

=
1
p

5
·
�

ϕ2ϕn−2 −
� 1
ϕ

�2�−
1
ϕ

�n−2�

=
ϕn −

�

−1/ϕ
�n

p
5

.

Thus, we have established the formula for all n ≥ 0 by induction.
QED

We needed to know the values of both Fn−1 and Fn−2 to compute
Fn, so n = 2 is the first case that can be handled by the induction step,
and we need base cases for n= 0 and n= 1. After that, induction
can complete a proof for any value of n that we request, therefore
the theorem is true for all n. Note that induction does not tell us
how to come up with the formula (for that, see 8.2.5), but it does
give a surefire way of proving this formula is correct.

10.1.2 8-step template for strong induction

Here is an 8-step template to work out an induction proof that
∀x ∈ X P(x), where each x has some size n = |x |. This applies
directly to laundry-room floors with x being an 2n × 2n grid with
one cell missing and P(x) being the claim that “x can be tiled with
L tiles.” It applies to the x = nth Fibonacci number, with P(n) being
the claim that “Fn = (ϕn − (−1/ϕ)n)/

p
5.”

Most template steps require little thought, but simply create a
framework to help you understand and communicate what you are
doing in the steps that do require thought: proving a ‘for all x ∈ X ’
statement by splitting into specific base cases (step S3), and specific
general cases (step S7) that assume that proofs have already been
given for all ‘smaller’ cases.

As you become adept at strong induction, you can omit steps of
the template, but when you begin, I suggest that you do even the
most mindless of the steps. On an assignment or test, even if you
cannot figure out step S7, you at least earn partial credit for doing
the other steps right. And writing down the framework prepares you
for steps S3 and S7, too.

S1. State the ‘for all’ statement that you want to prove: Here, ∀x ∈ X P(x).
Sometimes we strengthen the statement of what we want to prove in order
to have stronger assumptions in S5.

S2. Say “we prove this by induction on” and state the induction parameter.
I’ll use the size n = |x | for this template, but sometimes you have a choice,
as in the chocolate bar example coming next.

S3. Prove the base case, often n= 0 or n= 1 or both.

Here you use the definition to check the truth of P(x) for specific instances
of x with small values of the induction parameter. If you have trouble
getting an induction rolling, do an extra base case or two.

S4. Write “Induction Step: for a given x with size n> the base cases,”
This mindless step is a reminder that in the induction step you are prov-
ing P(x) for a specific, given instance x that has size n. No ∀x ∈ X
quantifier allowed here! You should imagine, however, that it is your ad-
versary who gives you x of size n, since the proof in S5–S7 must work for
any given x and n not already handled in a base case.

S5. State the Induction Hypothesis (IH): “I can assume, for all y of size k, with
base cases≤ k < n, that. . . ” (e.g., that P(y) is true.)
This repeats the phrasing of S1, but now for all y of size k < n in place of
for all x , because while trying to prove P(x), we get to assume that we
know P(y) for all ys smaller than x , including the base cases.

S6. State what you are going to prove about your specific value of x of size n
that was given to you in S4: e.g., I want to prove P(x).
Again, no ∀ quantifier, because we have a specific x of size n to work with.
Sometimes S4–S6 are combined for short proofs.

S7. Do the proof for the specific x and n, often by expanding the basic definition,
applying the IH, then doing some calculation.
Once you’ve chosen what you plan to prove in S1, you don’t really have to
think until somewhere in the middle of this step.

S8. Declare victory. “Therefore, we have proved ∀x , P(x) by induction.”

For another simple example, let’s prove a fact that we already
observed in Subsection 8.2.3: that the first n positive integers sum
to n(n+1)

2 .

ϕ

1 1
ϕ

ϕ

ϕ2 = ϕ + 1

Lemma 10.1.3. For n≥ 0, the sum
∑

0≤i≤n i = n(n+1)
2 .

Proof. For easier notation, define Sn =
∑

0≤i≤n i.
1. I want to prove, for all n≥ 0, that Sn =

n(n+1)
2 ,

2. by induction on n.
3. Base n= 0: S0 = 0= 0(0+1)

2 . Ø
4. Induction Step (IS): For a given n> 0,
5. Induction Hypothesis (IH): I can assume, for all 0≤ k < n, that Sk =

k(k+1)
2 ,

6. and I want to prove that Sn =
n(n+1)

2 .
7. By definition, Sn = Sn−1 + n, and by the IH with k = n− 1, Sn−1 =

(n−1)n
2 .

So Sn =
(n−1)n

2 + 2n
2 =

n(n+1)
2

8. QED

• You should never need ellipses (. . .) in an induction proof; if you do, then
you either need to define some notation before you start∗ or you haven’t
broken the proof down into elementary steps.

• The claim that you are trying to prove (e.g., P(x) in the template; Sn =
n(n+ 1)/2 above) is true or false, so don’t do arithmetic on P(x).

• Be sure that you actually use the induction hypothesis.† You get to assume
that P(y) is true for all y of size k in base cases≤ k < n; if you don’t use
∗E.g., to talk about the sum of the first n positive integers, define Sn = 1+2+· · ·+n.
†One of the most common mistakes is not to use the induction hypothesis.

that, you aren’t doing induction. (Many proofs need only that P(y) is true
for instances of size k = n− 1, but some, like the Fibonacci proof, need
more.)

• Check that your base case starts at the right place: n = 0 or n = 1 is
common.

• Check that your inductive step (IS) matches with your base cases—the first
time through, the IS should use only statements that you’ve established as
base cases. E.g., proofs about Fibonacci numbers usually need two base
cases.

• Taken together, the base cases and the induction step cases must cover the
entire quantification domain X .

• We get to assume for all y smaller than x , that P(y) is true, and try to
prove P(x) is true. Don’t assume P(x) and try to prove P(y).

• More generally, don’t confuse the roles of x and n with y and k in S5–S7.
In step S4, your adversary gives you one generic, non-base-case value x
of size n in S4, and it does not change in S5–S7. You may consider any or
all ys of size k < n in those steps and know from the induction hypothesis
(IH) that P(y) is true.
• You don’t need closure for induction—we don’t care if there are other cases

where the theorem is true that aren’t covered by our proof. You do need
closure for recursive definition—we don’t want extra elements being tossed
into our sets, languages, structures, or relations.

Here is a less numerical example. Suppose
that you have a chocolate bar made up of r
squares by c squares that you want to share. At
each step, you choose a piece of chocolate with
two or more squares and break along a vertical

or horizontal line between squares. Eventually,
it will be reduced to single squares. Does it make
a difference if you break the long or the short
way?

We can prove by induction that the num-
ber of breaks required is rc − 1, no matter
which way you break. Decide what would
you write in these boxes before looking at
my answers. Note how the first two steps
reduce the pair r, c to a single induction pa-
rameter.

1. We want to prove that, for any chocolate bar C with n = rc ≥ 1 squares,
and any way to break it, it will be reduced to isolated squares after exactly
b(C) = n− 1 breaks.

2. We prove this by induction on n .

3. Base case n = 1 : (Do the base case) We see that n− 1= 0 ,
which is right since it is already an isolated square.

4. Ind Step: Consider a given chocolate bar C with n> 1 squares
(an inequality),

5. IH: We may assume that, for all bars D of k squares with
1≤ k < n (upper & lower bounds), the number of breaks b(D) =

k− 1 .

6. I want to prove that the number of breaks b(C) = n− 1 . (Should
I add ∀? ?)

7. For the n-square chocolate bar, C , with one break I get two smaller parts,
say A with m squares and B with n−m squares.

By IH, b(A) = m− 1 , and b(B) = n−m− 1 .

Therefore, b(C) = 1+ b(A) + b(B)
= 1+ m− 1 + n−m− 1 = n− 1.

This establishes the induction step,

8. and by induction we have proved that for all chocolate bars with n squares,
exactly n− 1 breaks will turn it into isolated squares. QED

10.2 Variants

There are several important variants of induction that can be used
once you master the basics of the 8-step template. I present examples
of the following four variants in this section:

Weak induction: In many induction proofs, only the k = n− 1 case of the
induction hypothesis is needed in the induction step. As a result, most
introductions to induction ask students to prove P(n)→ P(n+ 1) in the
inductive step, known as weak induction.
In computer science we often use divide and conquer: solving a problem or
forming a data structure by combining two or more smaller instances that
are not necessarily of the previous size (e.g., binary trees, Subsection 8.1.6).
Since these call for strong induction, I see no need to introduce different
notation for weak induction. I prove one result using both strong and weak
induction in Subsection 10.2.1.

Nested quantifiers: As mentioned above, sometimes the “for all” statement
we wish to prove actually depends upon other quantified variables that
must be chosen first. Subsection 10.2.2 illustrates this with a Tetris example
where it is easy to see the solution, but fiddly to prove it formally.

Strengthening the Induction Hypothesis: Paradoxically, it is often easier
to prove a stronger statement than we actually need. Because we get
to assume that the statement we are trying to prove is true for smaller
instances of the problem, strengthening the statement gives us a stronger
Inductive Hypothesis. Subsection 10.2.3 continues the Tetris example to
demonstrate this.

Minimal counterexample: One of my favorite variants combines proof
by contradiction with induction in the following way: you assume that a
counterexample of the theorem exists, and choose the smallest one, under
an appropriate, discrete notion of smallest. You show that the smallest
(base) cases are not counterexamples. Then you show that any counterex-
ample that is not a base case can be manipulated to produce a smaller
counterexample. But this is a contradiction that shows that the falsity
of the assumption that a counterexample exists. See Subsection 10.2.4,
Lemma 12.1.1, and Lemma 12.2.2 for examples.

The rest of this book uses induction; here are three more exam-
ples coming later:

Invariants: Chapter 11 has several examples of induction used to establish
algorithm invariants—statements that remain true while an algorithm is
running. In the induction step, your adversary gives you some input and
state of the data structures at a particular step, and you must show that
your algorithm does the right thing in its next step. You often need to
strengthen the statement of the invariants so you can assume a strong

enough Induction Hypothesis that your proof can go through. Refining
the invariants and their proof identifies and avoids possible coding errors,
which would be much more expensive to identify and fix in the test and
debugging phase.

Induction on more than one variable: Section 11.5 shows that an algo-
rithm with two parameters terminates by induction on the pair—it gives
three options to do so on page 331.

Equivalent structures: Subsection 13.5.1 shows that three definitions of
rooted trees actually give top-down, bottom-up, and global views of exactly
the same set of structures. The formal proof ensures that we haven’t missed
anything in the boundary cases of these definitions, which is easy to do
without the assistance of the formality.

10.2.1 Weak vs. strong induction

You may have previously seen weak induction, which asks you in
the inductive step to prove, for all n, that P(n)⇒ P(n+ 1). I prefer
strong induction, which assumes that for all k < n we know P(k) is
true to show P(n) is true. Since strong induction applies easily in
every case that weak induction applies, and in some cases that weak
induction does not, I encourage you to use strong induction, too.∗

The first two examples of the previous section, summing 1+ · · ·+ n
and tiling with Ls, either weak or strong induction, although for
tiling weak induction emphasizes the number in the exponent rather
than the tiled floor. The other two examples are easier with strong

∗Weak induction can mimic strong for P(n) by proving that P̂(n) =
∧

j≤n P(j)
is true for all n; strong induction does not need to complicate the predicate to be
proved.

induction: The Fibonacci closed form in Lemma 10.1.2 needs the
formula to hold for the two previous numbers. The chocolate bar
needs the formula to hold for all bars with a smaller number of rows
or columns.

Here is an example showing first a weak and then a strong in-
duction proof of the same lemma, in similar an 8-step forms. The
weak induction starts with a base case for 12 and shows that you can
get from postage of n cents from knowing the postage of n− 1 by
either replacing a 4 with a 5, or else by replacing three 5s with four
4s, using some additional notation to help describe this operation.
The strong induction starts with four base cases for [12..15], and
eventually reduces every number to one of them. The weak induc-
tion may seem more “mathematical” because we must think harder
when only the immediately preceding case is assumed in the IH. I
find the strong induction proof simpler.

Lemma 10.2.1. Any amount of postage 12 cents or more can be
formed using 4- and 5-cent stamps.

For the proof by weak induction, we restate the lemma to include
some non-negative integer variables.

1. State what you want to
prove,

We want to show ∀n ≥ 12 ∃a, b ∈ N such that
n= 4a+ 5b,

2. State induction parame-
ter.

by induction on n.

3. Do Base case(s). for n = 12: Since n = 3× 4, we set a = 3 and
b = 0.Ø

4. State “Ind. Step: for given
n>base,”

Ind. Step: for a given n> 12, we may assume

5. State IH, true for all
base≤ k < n.

IH: ∃a, b ∈ N with n− 1= 4a+ 5b.

6. State “We want to prove”,
for given n.

We want to prove that we can form n cents.

7. Do the proof, From the IH, assume there are a, b ∈ N with
n− 1= 4a+ 5b.
If a > 0 then n = (a − 1)4+ (b + 1)5 has (a −
1), (b+ 1)≥ 0.
Otherwise a = 0, and since n > 12, we know
b ≥ 3.
Then n = (a+4)4+(b−3)5 has (a+4), (b−3)≥
0.

8. and declare victory.
QED

The proof by strong induction needs no restatement.

1. State what you want to
prove,

Prove ∀n≥ 12 we can make n-cents from 4- and
5-cent stamps,

2. State induction parame-
ter.

by induction on n.

3. Do Base case(s). We can make n ∈ [12..15] easily:
12= 3× 4Ø 13= 2× 4+ 5Ø
14= 4+ 2× 5Ø 15= 3× 5Ø

4. State “Ind. Step: for given
n>base,”

Ind. Step: for a given n> 15,

5. State IH, true for all
base≤ k < n.

IH: ∀12 ≤ k < n, we can make k cents from 4-
and 5-cent stamps,

6. State “We want to prove”,
for given n.

We want to prove that we can form n cents.

7. Do the proof, Choose k = n− 4. Since n≥ 16, we have 12≤
k < n.
By the IH, we can make k cents with 4- & 5-cent
stamps.
Add a 4-cent stamp to make n.

8. and declare victory.
QED

10.2.2 With nested quantifiers

The Tetris pieces are the seven different ways to con-
nect four squares, allowing rotations but not reflec-
tions. We play original (no gravity) Tetris—when a
row disappears every block above moves down one
row. Suppose that your Tetris program gives you zigs,
and zigs only. You can still rotate them to be horizontal or vertical.
Can you play forever? Does your answer depend on the well width
(number of columns) w? We will see in this subsection that for even
w we can play forever, and in the next subsection that for odd w we
cannot.

In pictures and in proofs, it may be easier to think about just
crossing out rows that would otherwise disappear. To compensate,
rather than having a fixed height hmax, we play in an infinitely tall
well of width w. Later pieces teleport over crossed-out rows as if
they weren’t there. We then say that we can play forever in a well of
width w iff there is a strategy σ and a height h such that every grid
cell above h is eventually covered by some piece i. The negation

would say that we cannot play forever in width w iff for any strategy
σ and chosen h, there exists some grid cell g above h that all pieces
i fail to cover.

h

w

horizontal vertical

Figure 10.1: Tetris
with zigs

Notice the alternation of quantifiers in
this claim that for all even w we can play
forever: ∀ even w, ∃ strategy σ, ∃h ≥ 0,
∀grid cells g, ∃i with grid g y > h and zig
i covering g. As mentioned in Subsec-
tion 4.1.3, it is this alternation of quanti-
fiers that makes problems difficult; we get a
different statement if we change the order.

In the rest of this section we show for-
mally that for all even w> 0 there is a strat-
egy and a height h, so that all grid cells
above h are eventually covered. Our adversary will first choose
w, then we can choose the strategy and h to depend upon w, then
our adversary can ask about any grid cell above h and we are sup-
posed to demonstrate that it will be covered. In fact, we can choose
h= 1; only the strategy needs to depend upon w.

Idea of the strategy: Once the adversary chooses an even width w,
we want to show ‘there exists’ a height and strategy. We choose h = 1
and a strategy that plays all the zigs vertically and keeps filling in
the lowest reachable spot that is farthest left. We can see the pattern
pretty easily: the first row will not be fully covered, but every row
after h = 1 will be fully covered. This is enough to convince someone
that a proof exists. For practice, I spell out this strategy in detail

and prove that it works for any even w > 0 that is given to me.

h

w

Lemma 10.2.2. Playing original Tetris with width w
and zigs only, for all even w> 0 there is a strategy and
a height h so that all grid cells above h are covered.

Proof. Start by choosing h = 1 and by making the
strategy more formal: group the w columns into
strips of 2, numbered 2m−1 and 2m for 1≤ m≤ w/2.
The strategy is to play a vertical piece in each strip in turn, with
the ith piece in strip m covering grid cells (2m− 1,2i − 1), (2m−
1,2i), (2m, 2i), (2m, 2i + 1).

We can invert this to calculate which zig covers a cell (x , y) with
y > 1: it must be in strip dx/2e, and will be the by/2+(x mod 2)cth
zig in that strip. By looking at the even and odd columns separately,
we can see that no two zigs in a strip overlap, and since every grid
cell with y > 1 is in a zig, this strategy works. QED

Notice how in this problem being formal makes us pin down the strategy
to the point that we could even write it as computer program. This program
depends on the width w, though, so we are asking the reader of the proof
to check that it works for all even w. We can be even more formal and use
induction to check all even w> 0. Nested within that proof, once we choose
the strategy and h= 1, we find a statement “for all cells (x , y) with y > h,”
so we use a second induction to prove that.

Proof by nested induction. We again choose h = 1 and the strategy of playing
vertical zigs in strips. We want to prove that for all even w> 0 all grid cells
above h are covered. We do this by induction on w.

Base w = 2: Here we want to prove that every cell (x , y) with y > h is
covered. Since this is again a ‘for all’, a formal proof can use induction (yes,
within the base case of the induction on w.)

Let’s prove that using n vertical zigs covers all cells up to 2n in column
1 and cells between 2 and 2n+ 1 in column 2. Check the base case for
n = 1. Now, for any chosen n> 1, we assume that n− 1 pieces cover up
to 2n− 2 in column 1 and 2n− 1 in column 2. Adding that last vertical
zig adds two to both columns. Thus, the result we wanted is true by
induction. (Note: we actually prove more than we wanted—our result
describes the shape after n zigs, and all we care is that things eventually
get covered. But being able to assume the shape in the IH really helps.)

Ind Step: Now we are back to our given even w> 2, and we may assume:
IH: For all even 0 < k < w, in a game of width k, the vertical zig strategy
covers all cells above h= 1.

We want to show that the strategy works for width w. But we can
partition w into a game of width 2 and one of width 0< w−2< w, and apply
the induction hypothesis to both games. This completes the proof. QED

10.2.3 Strengthen what is to be proved

For odd column widths w, we can turn the controls over to our
adversary and be sure that, no matter their strategy, they cannot
play forever. That is, for any odd w, our adversary can choose any
strategy and height h, and there will be some cell above h that is
never covered. We prove this by induction on w.

What is a strategy? We can think of it as a sequence of where
each zig in turn is to be placed: whether it is played horizontal or
vertical, and the position in the grid when it is dropped (by specifying

the position of a distinguished square, or the lowest square in the
rightmost column). The strategy must respect the rules, and not
overlap zigs or extend zigs outside this well.

w

Figure 10.2: Placing
zigs along right wall

Here is the first key idea: look at the
zigs that a chosen strategy places touching
the right wall. Each one that is placed hor-
izontally leaves a square (marked x in Fig-
ure 10.2) that cannot be covered: the square
below (since we are playing with no gravity)
protects it from the bottom, the square on
the same row cannot disappear until the x is
filled, and neither a horizontal nor a vertical
zig can fill it from the top. Thus, if our adversary claims to have
a strategy that covers all grid cells above height h, then above h
they must play only vertical zigs in the right two columns. We can
imagine the adversary’s strategy as playing the other pieces above h
in a width w− 2 game.

So we would like to run the adversary’s strategy and just ignore
all zigs that don’t extend above h or outside the right two columns.
There is a subtle problem; can you see it in Figure 10.3? In this
smaller game, we are not starting the width w − 2 game with an
empty well, because some zigs at h or h− 1 may be poking into it
from below. The second key idea is to again strengthen the statement
that we want to prove: allow the adversary to add any collection of
initial blocks in the first two rows. Proving a stronger theorem gives
us a stronger assumption in the induction hypothesis.

Lemma 10.2.3. Playing original Tetris with width w and zigs only,

for all odd w> 0, for all strategies, heights h≥ 0, and initial choice of
blocks for the first two rows, there exists some grid cell above h that is
not covered.

Proof. We prove this by induction on w.
Base: w= 1; In a single column you can’t play any zigs at all. The
adversary can block up the first two rows, but by row max(3, h+ 1)
you will have an uncovered grid cell above h.
Ind Step: for an odd width w> 1, I get to assume:
Ind Hyp: For all odd widths 0 < v < w, for all strategies, for all
initial two rows, and ∀ j, there is some uncovered cell above height
j.

Now, for width w, I want to show that for all strategies, for all
initial two rows, and ∀h, there is some uncovered cell above height
h.

Consider the zigs played that touch the right wall. If any zig is
played horizontally above height h, then it protects an uncovered
cell, as I argued with Figure 10.2. Therefore I need to worry only
about strategies in which all vertical zigs are played in the right two
columns above h. In such a case, however, I cut off the right two
columns and all rows h or below, and view the strategy as playing
a smaller game of width w− 2 that may start with the fragments
of cut zigs in its first two rows, as in Figure 10.3. By the induction
hypothesis, there will be an uncovered cell in this game. QED

There are other possible proofs, but many of them require re-
ordering the zigs in a strategy, which really needs an aboveness
relation that I don’t define until Section 12.2. By strengthening the

claim, I avoid that completely.

Z LJO I ST

Figure 10.4: Sometimes impossibility proofs are easy, when you get the
right idea: Prove that you cannot pack the 7 Tetris pieces into a 4 × 7
rectangle.

10.2.4 Minimal counterexample

One of my favorite variants combines proof by contradiction with induction:
proof by a minimal counterexample. Here is a mathematical example.

A list of real number coefficients, (ao, a1, . . . , an) with an 6= 0, gives us a
non-zero polynomial of degree n: p(x) =

∑

0≤i≤n ai x
i . A real number r is a

root of polynomial p iff p(r) = 0. We can show:

Lemma 10.2.4. Any non-zero polynomial of degree n≥ 0 has at most n roots.

Proof by minimum counterexample. Suppose, for the sake of deriving a con-
tradiction, that there exists at least one non-zero polynomial with more
roots than its degree. From all such examples, choose a polynomial
p(x) =

∑

0≤i≤n ai x
i whose degree n is minimum, and let (r0, r1, . . . , rn)

be n+ 1 distinct roots of p.
Notice that the degree of p cannot be n = 0, because the non-zero

polynomials of degree 0 are constants, and have no roots.
Now, form the polynomial q(x) = an(x − r1)(x − r2) · · · (x − rn). As

polynomials, p 6= q, since p(r0) = 0, but q(r0) is a product of non-zero terms.

The difference, p−q, is therefore a non-zero polynomial, and since the an xn

terms cancel, it has degree less than n. But it has n roots, (r1, r2, . . . , rn), so
would be an example of smaller degree, which contradicts the minimality
of p.

Thus, any non-zero polynomial of degree n ≥ 0 has at most n roots.
QED

We can do a proof by induction going forwards, but then we have to
know how polynomial division works.

Proof by forward induction. We prove that any non-zero polynomial of de-
gree n≥ 0 has at most n roots by induction on n.
Base: When n = 0, for all reals x , the polynomial p(x) = a0 6= 0, by
conditions of the problem. So p has no roots. Ø
Ind. Step: for a given non-zero polynomial p of degree n > 0, we may
assume as
Ind. Hypothesis: any non-zero polynomial of degree 0≤ k < n has at most
k roots.
We want to prove that the given polynomial p has at most n roots. If p has
no roots, then we are done, so we worry about the cases in which p has a
root r.

Use polynomial division (just like long division for numbers) to obtain
the polynomial q(x) satisfying p(x) = (x − r)q(x). If you are used to
polynomial division, this is fine, otherwise set up the division and work out
some details to make sure that q(x) is indeed a polynomial, and that the
remainder is zero. You should find that the highest coefficient of q(x) is
bn−1 = an, and the rest, for i ≤ n, can be generated recursively as bi−1 =
ai + r ∗ bi , which happens to give b−1 = p(r) = 0.

Now, since p(x) = (x− r)q(x), it is not hard to see that any number that
is not a root of q and not r cannot be a root of p. The induction hypotheses

says that q has at most n− 1 roots, so p has at most n roots. (Fewer if r is
already a root of q.) QED

10.3 Summary

Induction is important in computer science because we often want
to know that an algorithm or data structure works correctly (and
efficiently) for all possible inputs. The next chapter gives several
examples of how induction is used to establish invariants—properties
of our algorithms or data structures that remain true while our
algorithm is running. Iterative algorithms can often get by with
weak induction, but recursive algorithms often need strong induction,
which is why I strongly encourage you to use the template for strong
induction.

The template emphasizes that you are trying to prove a property
of all elements in a set by assigning each element a size (usually
an integer). The base cases then prove that the smallest elements
have the property. The inductive step proves that an element has the
property under the assumption that all smaller elements have the
property. As a computer scientist, I can view an induction proof as a
program that can generate a valid proof that any particular element
has the property.

The usual problems when teaching a proof technique is that one
must start with simple proofs that don’t show the many variations
and complexities of the technique. The examples in the text are
relatively complex and subtle; some of the exercises and puzzles for

this chapter are even more complex. Read them more than once.

w

h

w − 2

Figure 10.3: Make IH
stronger

10.4 Exercises and Explorations

Exercise 10.1. Can you show that the first n odd integers sum up
to n2?

We want to show that 1+ 3+ 5+ · · ·+ 2n− 1= n2, except this
formula is not quite right at n= 0.

Stating it correctly with a recursive definition instead of ellipses:
Let S0 = 0, and for integers n> 0 define Sn = Sn−1 + 2n− 1. Prove
by induction that for all n ≥ 0, Sn = n2. Summation notation also
works: show for all n≥ 0 that

∑

1≤i≤n

2i − 1= n2.

I urge you to follow the template; there are many example proofs
on the web that are not always careful about where they start, or
about use of n and k, or that they are proving a ‘for all’ statement.

É

Exercise 10.2. What is the sum of the first n squares? For all inte-
gers n≥ 0, prove that 12 + 22 + 32 + · · ·+ n2 = n(n+ 1)(2n+ 1)/6.
In summation notation, show that

∑

0≤i≤n

i2 =
n(n+ 1)(2n+ 1)

6
.

Try to use the induction template to make sure you handle the
ns and ks in a correct manner. There is nothing magical about
those variable names, but good habits help us to be correct without
thinking hard. É

Exercise 10.3. Is the sum of the first n cubes equal to the square of
the sum of the first n natural numbers? Show that:

13 + 23 + 33 + · · ·+ n3 = (1+ 2+ 3+ · · ·+ n)2

Define notation to avoid the ellipses: either by summation Σ or
recursive definition of prefix sums. You may get the value of the
right hand side from Lemma 10.1.3.

Exercise 10.4. An arithmetic series a1, a2, . . . , an is a series in which
the differences between consecutive terms are the same: ∃d ∀1≤
i < n (ai+1− ai = d). Show that the sum of an arithmetic series with
n terms is just n times the average of the first and last terms:

∑

1≤i≤n

ai = n
a1 + an

2
.

Exercise 10.5. A geometric series a1, a2, . . . , an is a series in which
the ratios between consecutive terms are the same: ∃r ∀1 ≤ i <
n (ai+1 = rai). Show that the sum of an geometric series with n
terms is the following combination of first and last terms:

∑

1≤i≤n

ai =
a1 − ran

1− r
.

Exercise 10.6. What is the value of the binary number that is a
string of n ones? Define S0 = 0 and for n> 0, define Sn = 2Sn−1 + 1.
Show that Sn = 2n − 1.

Do an induction to determine a closed form expression for the
value for this sequence that is defined recursively. An expression in
closed form uses a fixed number of standard operations, like arith-
metic, factorial, binomial coefficients, but no summation or recursion
in which the number of operations grows as n grows.

É

Exercise 10.7. What do the first n fractions of the form 1/
�

i(i+1)
�

sum to? Show∀n ∈ N that 1
1·2+

1
2·3+· · ·+

1
(n−1)·n =

n
n+1 . In summation

notation, show that

∑

1≤i<n

1
i · (i + 1)

=
n

n+ 1
.

Feel free to add notation, like defining Sn as the sum. It may help
to write the fraction 1/(i(i + 1)) as the sum of two fractions.

Go ahead and start filling in the template without thinking, how-
ever; you’ll need to think only in step S7.

Exercise 10.8. Prove that for all n> 3 we have 2n < n!< nn.

Exercise 10.9. For what integers n is n2 ≤ 2n?
You’ll have to do a few base cases, then induction can take over.

Exercise 10.10. Can euro 2 and 5 cent coins make any value greater
than 3? For all n≥ 4, show that there exist non-negative integers h
and k such that 2h+ 5k = n.

Warning: Be careful not to re-use k in the induction proof; you’ll
want to rename either this variable or the one in the induction
template. É

Exercise 10.11. Prove that for all non-negative integers n ∈ N, the
number n3 + 2n is divisible by 3. Recall that integer a is divisible by
d if there exists an integer m such that a = md.

Exercise 10.12. Prove Lemma 7.3.1 by induction on the number of
mediants created. É

Exercise 10.13. What is wrong with Polya’s classic proof that all
horses are the same color? I’d suggest rewriting this to follow my
template and see if that clarifies what goes wrong.

CLAIM: In any set of h horses, all horses are the same color.

Faulty proof. by Induction on h.
Base: For h= 1. In any set containing just one horse, all horses

clearly are the same color.
Induction Step: For k ≥ 1 assume that the claim is true for h = k

and prove that it is true for h= k+ 1.
Take any set H of k+ 1 horses. We show that all the horses in

this set are the same color. Remove one horse from this set to obtain
the set H1 with just k horses. By the induction hypothesis, all the
horses in H1 are the same color. Now replace the removed horse and

remove a different one to obtain the set H2. By the same argument,
all the horses in H2 are the same color. Therefore, all the horses in
H must be the same color, and the proof is complete. QED

É

Exercise 10.14. What is wrong with this induction proof that an = 1
always?

Claim: Let a be any positive number. For all positive integers
n ∈ Z+, we have a an−1 = 1.

Faulty proof. by induction on n
Basis: If n= 1, we have an−1 = a0 = 1. Ø
Inductive Step: We want to prove this for an integer n> 1.
Inductive Hypothesis: Assume, for all natural numbers k < n,

that ak−1 = 1.
We now want to show that it is true for n by writing

an−1 =
an−2 · an−2

an−3
,

since n− 1 = (n− 2) + (n− 2)− (n− 3). But if we use the inductive
hypothesis twice, for k = n−1 and k = n−2, we can replace an−2 = 1
and an−3 = 1, so an−1 = 1 · 1/1= 1. QED

É

Exercise 10.15. Can you show that not and and suffice to express
all logic formulae? Consider a well-formed logical formula (wff),
using the operations of negation,→, ∨, and ∧ and full parentheses.
The set of all wffs can be defined recursively: A logical variable is
a wff, and if f and g are wffs, then the following four statements
are also wffs: (g), (f → g), (f ∨ g), and (f ∧ g). Prove, using
mathematical induction on the length of a wff, that for any wff there
is a logically-equivalent wff using only the operations of negation
and ∧ and parentheses.

Puzzle 10.16. Think of a number, square it, write it down in base
10, and add up the digits. For example, 132 = 169→ 16. Repeat
until you get into a cycle, e.g., 162 = 256→ 13. Show that every
number reduces to one of three cycles. Can you also figure out which
cycle a number will end at without going through the squaring and
reduction process?

Puzzle 10.17. In how many ways can you tile a 2×n rectangle with
dominoes? Dominoes, spots down, are 2× 1 rectangles, or 1× 2 if
rotated. How many ways can you tile a 2× n rectangle for different

values of n? For small values of n, the answers are:
n 1 2 3
1 2 3

But this pattern does not continue.

Puzzle 10.18. Can you show that the number guessing game has a
worst case of exactly dlog2 ne guesses?

I’m thinking of a natural number x between 1 and n. You can
ask questions of the form, “Is x larger than a?” and I will tell you

(truthfully) yes or no. Show that, in the worst case, dlog2 ne questions
are necessary and sufficient to exactly determine my number.

For sufficiency, you may want to argue that you can round n up to
the next power of 2 to make your proof easier: e.g., new n = 2dlog2 ne.

To show that this many are necessary is the harder direction.
You’ll want to imagine that you delay picking a number until forced to
by the guesser’s questions. Pick your answers to keep the maximum
number of options open to you. É

Puzzle 10.19. Suppose there are n identical cars stopped on a cir-
cular track, and that the total gas in all tanks is enough for one
car to make it around the track (even if it had to stop and start n
times.) Show that there is at least one car that can make it around
if it siphons all the gas from each of the stopped cars it passes. É

Puzzle 10.20. Nim is a simple two players game with two stacks of
chips, matches, or other counters. At each turn, a player removes
some (non-zero) number of counters from one of the stacks. In this
variant, the player who removes the last match wins.

If the two piles contain the same number of matches at the start
of the game, show that the second player can always win with the
following strategy: always take the same number of matches that
your opponent took, but from the other pile.

Puzzle 10.21. Take the red cards (hearts and diamonds) from a
deck, shuffle them, pair them up arbitrarily, then glue pairs back to
back. Show that you can still lay out the pairs so that you’ll see, face
up: A, 2, 3, . . . , 10, J, Q, K. (The suits showing do not matter.)

Generalize to a 2n-card deck, consisting of 1 . . . n of hearts and
diamonds.

Play with a 10 card deck (A..5) on scratch paper until the problem
is clear.

Puzzle 10.22. In the city of Arrangemént, the old city wall has been
replaced by a one-way ring road, and all other roads are one way,
starting and ending on the ring road. Show that there must be some
“block” that you can legally circle, respecting the one-way arrows.
(Blocks in Arangemént may have odd shapes, but have no roads
through them.)

Puzzle 10.23. Ten pirates are going to split 100 gold coins. The
pirates have a strict seniority. The oldest makes a proposal for a
division of the coins, and if it acceptable to half the pirates, including
himself, they divide the coins as proposed. If not, the remaining
pirates make the proposer walk the plank. Pirates are smart, greedy,
and bloodthirsty: each has first priority of staying alive, second of
getting as most money as possible, and third of making others walk
the plank if it doesn’t conflict with first or second priority. What
should the oldest propose to get the most money?

Does the proposal change if the proposer is not allowed to vote?
(That is, if the proposal needs a strict majority to accept?)

Extension 10.24. Using properties from Subsections 7.2.1 and
7.2.2, prove the “Fundamental Theorem of Arithmetic” that every
integer n> 1 can be written as the product of one or more primes
in an increasing sequence in exactly one way (up to order).

1. Initially drop the “in exactly one way,” and just show that every integer
n> 1 can be written as a product of primes.

2. Then prove the full theorem, perhaps by minimal counterexample.

É

Extension 10.25. Prove the Cauchy-Schwartz inequality by
induction:Given two sequences of reals, (a1, a2, . . . , an) and
(b1, b2, . . . , bn),

� ∑

1≤i≤n

ai bi

�2
≤
� ∑

1≤ j≤n

a2
j

�� ∑

1≤k≤n

b2
k

�

.

Extension 10.26. Prove the Pigeonhole Principle by induction:That
is, show that for all integers n≥ 1, for all sets A of n+1 elements, all
sets B of n elements, and all functions f : A→ B, there exist elements
a1, a2 ∈ A, with a1 6= a2, such that f (a1) = f (a2). É

Extension 10.27. Prove Fermat’s little theorem, Theorem 7.2.2, by
induction on m: For all primes p and positive integers m ∈ Z+, the
exponential mp mod p = m mod p. É

Extension 10.28. Prove the Chinese remainder theorem: given inte-
gers n1, n2, . . . , nk that are pairwise relatively prime (no two have a
common factor) and have product N =

∏

i∈[1..k] ni , any integer m ∈
[0, N) is uniquely determined by its remainders (m mod ni)i∈[1..k].

You’ll want to choose good notation, use induction on k, and use
Lemma 7.3.2 within the induction step.

Exploration 10.29. An interesting recursive way to represent every
non-negative integer n ∈ N as a set Sn is the following:

• Base: S0 = ; represents 0.
• Recursive rule: For n> 0, let Sn = Sn−1 ∪ {Sn−1} represent n.
• Closure: All sets representing integers come from the base case, by a

finite number of applications of the recursive rule.

1. Show that Sn has n elements.

2. Show that i < j iff Si ⊆ S j .

3. Show that for Si and S j we have three choices: either Si ⊆ S j , Si = S j , or
S j ⊆ Si .

4. Recursively define functions for addition and multiplication.

Chapter 11

Algorithms and invariants

A loop counter and an escape to the least objectionable activity.
Howard, that’s brilliant! I’m surprised you saw that.

—Dr. Sheldon Cooper, Big Bang Theory,
ep. 2–13, “The Friendship Algorithm”

Induction plays a crucial role in computer science because we use it to
establish invariants—statements that remain true while an algorithm
is running. I demonstrate by asking you to derive four important
algorithms:

P1 Given an array A[0..n− 1] of n numbers, find the maximum.

P2 Binary search a sorted array A[0..n − 1] to determine where a given x
belongs using dlog2(n+ 1)e comparisons.

P3 Sort a given array A[0..n − 1] of n numbers into non-decreasing order,
A[0]≤ A[1]≤ · · · ≤ A[n− 1]. (We’ll use insertion sort.)

P4 Find the greatest common divisor of two non-negative integers, gcd(a, b).

302

Objectives: By working through a series of questions about four
algorithms in this chapter, you will see the importance of clearly and
precisely stating the input and desired output, and how identifying
invariants can help us derive an algorithm, in much the same way
that we derive a proof. On mastering this material, you will be able
to derive algorithms from invariants that will run correctly (once
you fix the inevitable typos), and recoup the time spent learning this
technique by reducing the time you spend debugging.

11.1 Preliminaries

To write down the steps of an algorithm we use pseudocode with
operations common to many programming languages: logic (<,
>, ==,!not, &and, |or), calculation (+,−,∗,/), increment (++,−−),
assignment (=), indexing[], and function calls. For control flow (if-
else-endif, for, while) we use C++/Java or higher-level languages;
we allow “for all i in” a set or list. Lines mentioned in the text are
numbered.

Most classroom programming assignments are simple, and we
can simply write down the steps of a algorithm. That is, we say what
to do, and expect others to infer what is true before, during, and
after the algorithm executes. This is poor communication because it
suppresses the context that is needed to understand the algorithm.
One should always specify what is true of the input, what we desire
to have true of the output, and, ideally, the invariants that remain
true during an algorithm. Time spent doing so helps avoid errors,
decrease debugging time, and simplify maintenance.

For more critical or intricate programming tasks, you also need to
guarantee that the algorithm that you write terminates and returns
the correct output. Formal proof can help do that. As usual, the
search for a proof can be more valuable than the proof itself; trying
to prove a program correct help clarify the conditions you need on
the input and what you need to maintain as an invariant, increasing
your understanding of a problem and the chances that your code
is correct. In this chapter you will work through several examples,
starting with the simple problem of finding a maximum in a list.

Remember the problem solving steps from Chapter 1: Draw
diagrams and work through examples on scratch paper to help you
understand what is sought. Break tasks into smaller tasks. Ask
yourself what can go wrong—check the types, check the ranges of
indices. Then, when writing down your solution, don’t forget the
context: before writing the steps of any algorithm, always specify
the input and desired output. Then answer three questions, in this
order:
• Does this algorithm terminate?
• Does it produce correct results?
• How many steps does it take?

11.2 Max in a list(A)

Our first algorithm is to find the maximum in a list. Even this simple
algorithm leads to interesting questions when we also search for min
or look at average performance over all possible inputs. But let’s
begin by considering invariants, which are statements that are true

at all times during a procedure.

1. I read you a sequence of n bid amounts, b1, b2, . . . , bn, and you
want to sell to the highest bidder. What will you keep track of?

You’ll want to remember the amount of the highest bid so far. You’ll also want
to keep a count of bids, and remember a position of the highest, so you know
which bidder to collect from.

Remembering the entire sequence of bid amounts would be
overkill, since tracking one amount and two integers is enough.
The properties of these three numbers are the invariant of a proce-
dure for tracking the highest bid and bidder. Notation helps us state
an invariant precisely, so let us leave this scratch-paper musing and
begin writing an algorithm for finding the maximum in a list.

We are given an array A[0..n−1] of n entries that can be compared
by <. Think of each entry A[j] as a bid amount in your favorite
currency to distinguish it from the integer position or index j ∈ [0, n)
at which it is stored. We want to find the∗ maximum entry mx, which
satisfies ∀ j∈[0,n) mx ≥ A[j], and a position mi where it is found, so
mx= A[mi].

The implementation in Algorithm 1 is iterative: with a loop
variable i advancing from 0 to n− 1, we maintain an invariant that
says that mx is the largest of the first i array entries. Stated in
notation, the invariant is threefold: that 0≤mi< i, mx = A[mi] and
∀ j∈[0,i) mx≥ A[j].

2. Work the example suggested in the margin, making a table to
track the values of mi, mx and i at the test i < n in line 2. I put i

∗Note articles: since mx be repeated in A, I say “the max entry” but “a position.”

at the end of the table, since it is incremented just before the test.

For A =
[770, 551, 772, 993, 884, 665],
track values of mi, mx and
i at the test i < n in line 2.

mi mx i
0 77 1
0 77 2
0 77 3
3 99 4
3 99 5
3 99 6

It may seem more natural to track val-
ues at the ‘endfor’ after the loop body, and
you may choose to do so, if you prefer. If
you do, however, notice that your base case
must handle two possible ways to reach the
‘endfor’ for the first time: either the test ini-
tially fails, and you don’t pass through the
loop body, or it initially succeeds and you
do.∗ By choosing to track the values at the
test in line 2, my base case handles only the
initialization, and my inductive step handles any and all executions
of the loop body. When the test fails because i = n, I don’t have to
distinguish whether it failed in the base case or the induction step.

To show that Algorithm 1 is correct, we must show that, for all
input values n and A[0..n− 1], it terminates and returns the correct
value. For any given n and A, proving that A terminates is trivial:
when line 2 finds the loop variable has reached n, the program halts.

For any given n and A, to prove that Algorithm 1 finds the correct
value, we actually prove something stronger—that each trip through
the ‘for’ loop preserves the invariant. Specifically, we prove, for any
given n and A, that for all 1≤ i ≤ n, whenever line 2 tests that i < n,†

the invariant holds: 0≤mi< i, mx= A[mi] and ∀0≤ j<i mx≥ A[j].

∗This is a subtlety of making the proof cover all possible cases; the code is un-
changed.

†Note that last test is with i = n, since when i < n is false, the loop ends.

Max in a list(A)
Input: An array A[0..n− 1] of n comparable entries.
Output: Find a position mi of the maximum entry mx in A:

0≤mi< n, mx= A[mi] and ∀ j∈[0,n) mx≥ A[j].
Invariant: In line 2, just before testing loop variable i < n,

we know that 0≤mi< i, mx = A[mi] and ∀ j∈[0,i) mx≥ A[j].

1: mx = A[0]; mi= 0;
2: for (i = 1; i < n; i++)
3: if mx < A[i]
4: mx = A[i]; mi= i;

endif
endfor

Algorithm 1: Find a maximum entry in a unordered list in array A[0..n−
1].

We prove this by induction on the value of the loop variable, i.
(We could instead do induction on the number of trips through the
loop body, which is i−1.) There will be some confusion here because
we will be speaking of the loop variable “i”, its current value i, and
its previous value i− 1 (which was named “i” at the time, but which
I’ll call k to match my induction hypothesis).

Base i = 1 is the initial case, when we have been through the loop
0 times. Line 1 has set mi = 0 and mx = A[0], so the invariant holds
at the test of line 2: 0≤mi< 1, mx = A[mi], and ∀0≤ j<1 mx≥ A[j].

Ø
Ind Step: At the test in line 2 with a given 1< i ≤ n,

IH: I may assume that, when line 2 tested previous loop variable
values k ∈ [1, i), the invariant held: 0 ≤ mi < k, mx = A[mi] and
∀0≤ j<k mx≥ A[j]. (I’ll use only the k = i − 1 cases of the IH.)

Now we want to show that the invariant holds for the given value
i > 1.

To have reached the test in line 2 with i > 1, we must have gone
through the previous loop with value k = i − 1.

3. Quick check: did k = i − 1 make the trip through the body of the
previous loop?

Yes: 1≤ k = i − 1< n, because 1< i ≤ n, so the test was true.

The IH holds for k = i − 1 so at the test in the previous loop,
we knew that 0≤mi< k, mx= A[mi] and ∀0≤ j<k mx≥ A[j]. Next,
line 3 tested if mx< A[k]. If not, then mx was already a maximum in
A[0..k]; otherwise line 4 updated mx and mi with the new maximum
A[k] and position mi= k.

In either case, since k = i − 1, we now know that 0 ≤ mi < i,
mx = A[mi] and ∀0≤ j<i mx ≥ A[j]. Thus, the invariant has been
re-established for the current value of i.

QED by induction.

4. Notice that the loop ends with i = n. Spell out what the invariant
says for this final test, and why that implies that mi and mx have the
correct final values.

The invariant says that 0≤mi< n, mx = A[mi] and ∀0≤ j<n mx≥ A[j]. Thus,
mx is the max of A[0..n− 1] and mi is its position.

5. Strengthen the invariant to say that the index mi is the first occur-
rence of the maximum mx in A[0..i − 1]. Write this formally using a
quantified logical expression; attempt this yourself before you peek
to see my answer.

Add to the invariant that ∀0≤ j<mi A[j] < mx, which says that all ele-
ments before index mi are strictly smaller than mx. You could instead add
∀0≤ j<n mx ≤ A[j]→ j ≥mi, but I prefer the former, since it is less complex
and easier to use in induction.

6. What steps of the induction proof would you modify to show that
the algorithm already establishes this strengthened invariant?

It becomes part of what is to be proved (template step 1). The base case
(step 3) should mention it, but the claim is trivial since the interval [0, mi) is
empty.
The IH (step 5) must include it as stated.
Step 7 is the main change: notice that we change mx and mi only if we find
a new maximum value, not for repeats.

7. Convert the invariant and algorithm to index the array of n numbers
starting from 1 instead of 0.∗

This question is easy enough that one might “just start coding”
to make the changes. To minimize debugging, however, first change
the input, output, and invariant, then derive the algorithm changes
from the changes to the invariant.

What if we want to compute both the minimum and the maxi-
mum? Let’s continue to use the array A[1..n] here, and later consider
∗Example languages whose default arrays start at index 1: FORTRAN, COBOL,

MATLAB, Julia, and Lua.

http://en.wikipedia.org/wiki/Array_data_type#Index_origin

Max in a list(A)
Input: An array A[1..n] of n comparable entries.
Output: Find a position mi of the maximum entry mx in A:

1≤mi≤ n, mx= A[mi] and ∀1≤ j≤n mx≥ A[j].
Invariant: In line 2, just before testing i ≤ n, we know that

1≤mi< i, mx= A[mi] and ∀1≤ j<i mx≥ A[j].

1: mx = A[1]; mi= 1;
2: for (i = 2; i ≤ n; i++)
3: if mx < A[i]
4: mx = A[i]; mi= i;

endif
endfor

Algorithm 2: Finding a maximum entry in array A[1..n].

the changes if we return to A[0..n− 1].

MinMax(A)
Input: An array A[1..n] of n comparable entries.
Output: return the maximum entry mx in A and minimum entry mn

in A.
Assume initially that you are allowed to reorder elements of A

during the algorithm; later we remove that assumption. By simpli-
fying the problem we can find an initial solution faster, and then
improve it by refactoring, which is rewriting and improving working

code. It can be more fun to build from success to success than to be
debugging failures until reaching success at the end.

8. I’d like to minimize the number of comparisons to elements in the
array. Obviously, we could run mx =Max(A) from Section 11.2, and
a similar algorithm mn = Min(A). How many comparisons would
that perform?

Max(A) and Min(A) each perform n− 1 comparisons, for a total of 2n− 2.

9. For all integers 1 ≤ i ≤ n/2, if A[2i − 1] > A[2i]
then swap the entries A[2i − 1] and A[2i]. Do this on the
example arrays A = [771, 552, 773, 994, 885, 666] and B =
[771, 552, 773, 994, 885, 666, 997]. Exactly how many comparisons of
array elements is this? (Give an expression that works for both even
and odd n.)

There are bn/2c comparisons. Afterwards, A= [551, 772, 773, 994, 66,886]
and B = [551, 772, 773, 994, 665, 886, 997].

10. Double check: prove that comparing A[2i−1]> A[2i], for integers
1≤ i ≤ n/2, does not access elements outside of A[1..n].∗

The smallest index accessed, when i = 1, is 2i − 1 = 1, and largest, when
i = bn/2c, is 2bn/2c ≤ 2(n/2) = n.

11. What can you say in English about the array that results from the
procedure in 9? In notation we can say that ∀1≤i≤n/2 A[2i − 1] ≤
A[2i].

∗Several internet-wide virus infections have exploited buffer overrun errors.

http://en.wikipedia.org/wiki/Buffer_overflow

For any input array A, after this procedure, every value at an even index is at
least the value at the preceding odd index.
Furthermore, the maximum value is at A[n] or an even position; the minimum
value is at an odd position in A.

12. It is important to be precise. Each of these five plausible statements
is false for some input array; do you see why?

• After the procedure in 9, A is sorted. ?

• After the procedure, ∀ j∈[1,n) A[j]≤ A[j + 1]. ?

• After this procedure entries at odd positions cannot be larger than
entries at even positions. ?

• After this procedure every entry at an odd position is at most the entry
at the next even position. ?

• The maximum value must be at an even position and the minimum at
an odd position. ?

After the procedure of question 9, only the values in odd positions
are candidates for the minimum, and only values in even positions
(plus A[n] if n is odd) are candidates for the maximum. Thus we can
run the previous max algorithm, and a related min algorithm, each
on roughly half the array. Let’s develop the invariant and algorithm
together.

13. Let’s initialize at the high end of the array, since that is where
even and odd behave differently. How might you initialize in both
odd and even cases to minimize comparisons?

mx= A[n];
mn= A[2dn/2e − 1] OR mn= A[n− 1+ (n mod 2)].

14. Next, I’d loop for integers 1 ≤ i < n/2 with the Invariant that
before each loop

mn=min(A[n− 1+ (n mod 2)..n], A[1..2(i − 1)])

mx=max(A[n− 1+ (n mod 2)..n], A[1..2(i − 1)]).

Write the loop body. The first box hides a hint.

We already know how mn and mx relate to the last element(s) by the initial-
ization, and the first 2(i−1) by the previous iterations. The loop body should
compare to A[2i − 1] and A[2i] so that the invariant will hold at the start
of the next iteration. This complicated statement for the invariant actually
keeps the loop simple.

for (i = 1; i < n/2; i ++)
if mn> A[2i − 1] then mn= A[2i − 1];
if mx< A[2i] then mx= A[2i];

endfor

15. For both even and odd cases, double check the value of i when
the loop terminates. Make sure that it fits with the initialization so
no array entries are missed.

When n is odd, the loop ends with i = (n− 1)/2, accessing the last pair of
entries, A[2i − 1] = A[n− 2] and A[2i] = A[n− 1]. Both min and max were
initialized equal to A[n], which was the only unpaired element.
When n is even, the loop ends with i = n/2− 1, accessing the penultimate
pair A[2i−1] = A[n−3] and A[2i] = A[n−2]. The initialization started with
the last pair A[n− 1] and A[n].

16. Prove by induction that your algorithm correctly finds the min
and max in any given array, A[1..n]. That is, establish the invariant

in 14 for all iterations through the loop.

We don’t need to do induction on n or the array elements, because
those are fixed while this algorithm runs. We assume we’ve already
swapped pairs, so we know ∀1≤ j≤n/2 A[2 j − 1]≤ A[2 j].

1. I want to prove that, for all 1≤ i ≤ dn/2e, when the loop tests i < n/2,
we know that mn = min(A[n− 1+ (n mod 2)..n], A[1..2(i − 1)]) and
mx=max(A[n− 1+ (n mod 2)..n], A[1..2(i − 1)]).

2. We prove this by induction on i.
3. Base case: i = 1. When n is odd, the invariant matches the initialization:

mn= A[n] =min A[n..n] and mx= A[n] =max A[n..n].
Ditto when n is even: since A[n − 1] ≤ A[n] after swapping, mn =
A[n− 1] =min A[n− 1..n] and mx= A[n] =max A[n− 1..n].

4. Now consider any test with i > 1.
5. I may assume, for all iterations j with 1 ≤ j < i, that when the

loop tested j < n/2, we knew that mn = min(A[n − 1 + (n mod
2)..n], A[1..2(j−1)]) and mx =max(A[n−1+(n mod 2)..n], A[1..2(j−
1)]).

6. I want to prove, at the given test with index i > 1, that mn =
min(A[n− 1+ (n mod 2)..n], A[1..2(i − 1)]) and mx = max(A[n− 1+
(n mod 2)..n], A[1..2(i − 1)]).

7. Because i > 1, this test follows an execution of the loop body with loop
index value j = i−1. We’ll look at the statements executed for index j.
First, the IH says that at the test before the body executed, we
knew that mn = min(A[n − 1 + (n mod 2)..n], A[1..2(j − 1)]) and
mx=max(A[n− 1+ (n mod 2)..n], A[1..2(j − 1)]).
We also knew that A[2 j − 1]≤ A[2 j], from swapping.
Thus, the only candidates for min are the previous min, mn and
the entry A[2` − 1]. The first ‘if’ in the loop body updates mn =
min(A[n− 1+ (n mod 2)..n], A[1..2 j]).
Likewise, the second ‘if’ updates mx = max(A[n − 1 + (n mod
2)..n], A[1..2 j]).
Substituting j = i − 1 reveals the invariant for the test of the current
loop index i.

8. QED.

17. What is the total number of comparisons to find both
min and max? (Don’t forget the comparisons in 9. You can
do evens and odds separately, if you wish.) Your calcula-
tion may differ, but you should get an equivalent final answer:
b n

2 c+ n− 2+ (n mod 2) = d n
2 e+ n− 2= d 3n

2 e − 2.

18. Change your algorithm to work when the array entries are stored
in A[0..n− 1] and may not be moved.

Refactor your code in stages. First, make it internally do the
comparison and swap of a pair at a time, rather than doing the swaps
in preprocessing. Then change the indexing. As before, change the
invariants first, and derive the code changes from the invariant.

Note: I decided to keep the same for loop limits, but change the
index calculations; your code is likely to be different. If you write

MinMax(A)
Input: An array A[0..n− 1] of n comparable entries.
Output: Return the minimum and maximum entries in A as

mn and mx.
Invariant: For 1≤ i ≤ dn/2e, when the loop tests i < n/2, we

know that mn=min(A[n− 2+ (n mod 2)..n− 1], A[0..2i −
3)]) and mx =max(A[n−2+(n mod 2)..n−1], A[0..2i−3)]).

1: if n is odd, then mn=mx = A[n− 1];
elseif (A[n− 2]≤ A[n− 1]), then { mn= A[n− 2]; mx = A[n− 1] };
else { mn= A[n− 1]; mx = A[n− 2] };

endif // initialized
for (i = 1; i < n/2; i++)// for even/odd pairs

j = 2i − 2; k = j + 1; // ensure A[j]≤ A[k]
if A[j]> A[k] then j = 2i − 1; k = j − 1; endif
if mn> A[j] then mn= A[j]; endif // updated min
if mx < A[k] then mx = A[k]; endif // updated max

endfor

Algorithm 3: Finding both min and max in A[0..n− 1] without disturbing
A.

tricky code like this, then include the invariants in the comments.
You’ll thank yourself when if you read it 2 months later, as will
anyone who has to maintain the code.

We can prove that any comparison-based algorithm that correctly
finds min and max on all input arrays of size n must perform at least
f (n) = d 3n

2 e − 2 comparisons on at least one of the possible input
arrays. We use a technique called an adversary argument.

Usually we play the role of algorithm creator and want to show
that, for all large n, there exists (by construction) an algorithm that,
for all input arrays of length n given by the cruel world, computes
the correct min+max, and performs at most f (n) of comparisons.
To negate this, we want to show that there is a large n so that, for
any algorithm, there is an array that needs more than f (n) compar-
isons. Our opponent is now the algorithm creator, who still can try
all algorithms, and we are the adversary who picks the array that
frustrates each attempt. (Note that we are still playing the existence
quantifier.)

Actually, we’ll prove something a little stronger than the negation,
because we let the algorithm designer pick n as well as the algorithm.
Through the next few questions we will show that, for any n ∈ Z+

and algorithm MM(A) that finds min+max in arrays of size n by
comparisons, we can create an array A[1..n] such that MM(A) must
perform f (n) = d 3n

2 e − 2 comparisons to correctly find the min and
max for A.

We, as the adversary, want to show that there exists an array
that forces our opponent’s algorithm to perform many comparisons.
To keep track of the comparisons, let us assume that we keep the
array—the algorithm never sees specific values, but may ask us how
two entries compare, or instruct us to move entries around. Note
that all algorithms of this section can be made to work this way: e.g.,

by storing mi, the index of the current max, they can compare with
A[mi] instead of a stored value mx.

A key observation is that, since we hold the array, we can de-
lay assigning actual values to array entries, as long as we answer
requests for comparisons between entries in a manner that is con-
sistent with our previous answers. So, create four labels for array
entries—untested, small, mid, and big—with the following definitions
for how each entry is labeled at any time.

untested: An entry is labeled untested iff it has not been compared with
another entry. Untested entries may be assigned any value without
contradiction.

mid: An entry is labeled mid when we assign it a unique, permanent integer
value. There will remain values labeled small and labeled big when we
do this.

small: An entry labeled small has been compared only with entries in mid
and big, so may be assigned any value smaller than min(mid).

big: An entry labeled big has been compared only with entries in mid and
small, so may be assigned any value larger than max(mid).

19. How must we initially label each array entry to satisfy all invari-
ants?

Initially, all entries are labeled untested, since no comparisons have been
made.

20. Candidates for min and max array entries may have which labels?
The goal of the algorithm is to reduce to one min and one max
candidate. Initially, how many candidates are there in total, counting
both min candidates and max candidates?

From these invariants, every entry in untested or small is a candidate for
min and every entry in untested or big is a candidate for max. Initially all
numbers are untested, for a total of 2n candidates.

We, as adversary, must respond to the algorithm’s request for
comparisons between two entries. We can look at the labels and
decide what to report (< or >) and how we must relabel as a result.
For example, comparing two untested entires, we report < and re-
label the one small, and the other big. Before the comparison both
were min and max candidates (total of four); after the small is a min
candidate only and the big is a max candidate only (total of two).
Comparing small to small, we report <, assign the second the value
min(mid)− 1 (or 0 if there is no entry labeled mid yet), and relabel
it mid, reducing by one candidate.

When there is a choice, we base our decision on what makes
the smallest change in the number of candidates for min and max.
Comparing small to untested, we report < and change the untested
to big, because that loses only one candidate. Comparing a small to
a big, we report < and leave labels and candidates unchanged. With
mid to mid, we use the numbers to decide what to report.

21. Fill in this table for how to resolve comparisons between labeled
entries (U,M,S,B) and minimize the number of candidates lost, ∆.
I use ∗ to indicate that an output label is unchanged. (If you are
unsure of the table structure, drag the rectangle down and to the
right to see the row and column headings before you reveal the rest
of the table.)

input com- output
labels parison relabel:value for M ∆

U U < S B -2
S U < * B -1
S M/B < * * 0
S S < * M:min(mid)− 1 -1
B U > * S -1
B M/S > * * 0
B B > * M:max(mid) + 1 -1
M U < * S -1
M M use #s * * 0

22. Now, argue that in order to have one min and one max candidate
remain, the algorithm must perform at least d3n/2e−2 comparisons.
It may be easiest to consider even n and odd n in separate cases.

Separate even/odd cases is easier but longer, so I’ll use instead use floor and
ceiling properties from Subsection 7.1.2, like n= bn/2c+ dn/2e.
Our opponent’s algorithm wants to reduce 2n candidates to two, eliminating
2n− 2 candidates. Comparing an untested pair eliminates two candidates,
but that can be done at most bn/2c times, leaving 2n−2−2bn/2c candidates
to be eliminated one at a time. Thus, the total number of comparisons is at
least 2n− 2− bn/2c= n+ dn/2e − 2= d3n/2e − 2.
Concepts:
• Algorithm properties: termination, correctness, step counts.
• Invariant: something that remains true during algorithm execution.
• Before listing steps of an algorithm, state input, output, and invariants.
• Often the algorithm can be derived from the invariants (7, 13–14).
• Even, odd, floor, ceiling
• Adversary argument for lower bound (19–22)

11.3 Iterative binary search

“I’m thinking of a number between 1 and 1000.” I’m sure that you
have played this game in which you guess and are told if you are
too high or too low. If you always guess the middle of the remain-
ing numbers, what is the maximum number of guesses you’ll need?
dlg1000e= 10. This is binary search, and every computer science
student should learn how to derive a correct, non-recursive imple-
mentation of binary search from its invariants. It is a good question
for job interviews because it tests not only preparation but also
thinking and communication skills.

I would like code for the following.
Binary search(A, x)
Input: A sorted array A[0..n− 1] of n numbers with A[0]≤ A[1]≤
· · · ≤ A[n− 1] and a number x .

Pretend that A[−1] = −∞ and A[n] =∞ (without actually
modifying A).
Output: Return the unique index 0≤ i < n with A[i]≤ x < A[i+1].
Invariants: Maintain two indices 0≤ lo< hi≤ n for which A[lo]≤

x < A[hi]. We access A[i] only for lo< i < hi.
Warning note: I have left two mistakes in the Output and Invariants
that you should be able to detect as soon as you start these exercises.

Don’t peek until you have your idea of what the mistakes are. In general,
don’t look at my answers until you have your own.
The ‘0’ should be ‘−1’ in Output and in Invariants.

23. Read the desired output, and decide what these calls should
return:

Bsrch([5, 10,15], 10) , Bsrch([5,10, 15], 12) , Bsrch([5, 10,15], 1) ,

Bsrch([5,10, 15], 42) , Bsrch([5,10], 5) , Bsrch([], 42)

A key idea for Bsrch(A, x) is that we maintain a shrinking interval,
[lo, hi), rather than just a middle point. Many students attempt to
maintain the middle point (and maybe the width) of the interval, but
that is hard to do correctly. Other students write recursive algorithms
that copy half of the array, thereby doing exponentially more work
than they should.

24. With what values should we initialize lo and hi?

From the invariant: lo= −1 and hi= n.

25. Let’s use a while loop. What is the con-
dition on lo and hi for which we can stop?
Stop when there is only one candidate index left, namely that hi− lo≤ 1.

26. Suggest a calculation to choose an integer mid midway between
lo and hi.

mid= (lo+ hi)/2; using integer division equals mid= b(lo+ hi)/2c.
Real pros use mid = lo+ (hi− lo)/2 to avoid potential integer overflow for
really large lists.

27. How would you decide if x is in interval [A[lo], A[mid]) or
[A[mid], A[hi]), and why must it be in exactly one of these two
half-open intervals?

Test: if x < A[mid]
Because of the invariants, you need only one comparison, and don’t need to
check for equality. Important note: you should not compare against A[lo] or
A[hi] because lo or hi might be outside the 0..n− 1 range!

28. Write the binary search algorithm so that the invariant is pre-
served.

Binary search(A, x)
Input: A sorted array A[0..n− 1] of n numbers with A[0] ≤

A[1]≤ · · · ≤ A[n−1] and a number x . Pretend that A[−1] =
−∞ and A[n] =∞ (without actually modifying A).

Output: Return the unique index −1≤ i < n with A[i]≤ x <
A[i + 1].

Invariants: Maintain two indices −1≤ lo< hi≤ n for which
A[lo]≤ x < A[hi]. We access A[i] only for lo< i < hi.

lo= −1; hi= n;
while hi− lo> 1

mid= lo+ (hi− lo)/2; // note: mid ∈ [0..n)
if x < A[mid] // if x ∈ [A[lo], A[mid])

hi=mid;
else // if x ∈ [A[mid], A[hi])

lo=mid;
endif

endwhile
return lo;

Algorithm 4: Binary search derived from its invariants

By deriving the steps from the invariant we obtain a very short
algorithm that does exactly what we need. It makes no access out

of the range [0..n− 1], yet it correctly handles lists with 0 elements
and returns the flag index −1 if x is below the range.

29. You may have expected Bsrch(A, x) to return false if x is not in the
sorted array A. What I have chosen to return is more useful, because
it tells the position of the last copy of x if there are duplicates, and
tells you the position at which you want to insert x if you want to
add it. What tests will correctly determine whether x is in the array
after idx= Bsrch(A, x)?

Don’t forget to first check that the index returned is valid:
if idx> −1 AND x == A[idx] then FOUND else NOTFOUND.
x is not in the array A iff (idx== −1 OR x > A[idx]).
Note that these expressions assume a programming language in which AND
and OR operations stop evaluating as soon as they know their final result;
otherwise we may access A[−1]. Otherwise I would need to write my test as:
if idx > −1 then { if x == A[idx] then FOUND else NOTFOUND } else
NOTFOUND.

30. How many comparisons does Algorithm 4 do in the worst case?
In a list with n elements, there are m = n+ 1 possible outcomes. We
can recursively define a function T(m) that counts the number of
comparisons to determine the unique outcome. We use m to avoid
carrying a “+1” around while doing the induction. T(1) = 0, and
for all m> 1, T (m) = 1+ T (dm/2e). Show that T (m) = dlog2 me.

We prove this by induction on m.

Base m= 1; T (1) = 0= log2 1.

Induction step: For m> 1
IH: we may assume, for all 1≤ k < m, that T (k) = dlog2 ke,
And we want to show that that T (m) = dlog2 me.

The algorithm on an array of size m will do one comparison and then re-
cursively search half of the array. In the worst case, it searches the larger
half, taking T(m) = 1+ T(dm/2e) comparisons. By the IH, we know that
T (m) = 1+ dlog2dm/2ee, and the rest is just considering cases for even and
odd n and being able to handle ceiling and log.

T (m) = 1+ dlog2d
m
2
ee= d1+ log2d

m
2
ee= dlog2(2d

m
2
e)e.

For even m, the right side is dlog2 me; for odd m this is dlog2(m+ 1)e, but
since dlog2(k + 1)e increases to the next integer only if k is a power of 2,
dlog2(m+ 1)e= dlog2 me as well.

Concepts:
• Binary search
• Deriving an algorithm from its invariants (24–28)
• Recurrences (recursive functions) for counting steps of an algorithm (30)

11.4 Sorting by insertion

There are many good sorting algorithms for various types of data.
(And some bad ones that teachers like to teach anyway; the worst
culprit is Bubblesort—never use it.) Insertion sort in Algorithm 5 is
great for small or nearly-sorted lists.

31. Prove that Algorithm 5 terminates.

Insertion sort(A)
Input: An array A[0..n− 1] of n numbers
Output: Values of A[0..n − 1] permuted so A[0] ≤ A[1] ≤
· · · ≤ A[n− 1].

Invariant 1: At 1 with loop value i, the values of A[0..i − 1]
have been permuted so that A[0] ≤ A[1] ≤ · · · ≤ A[i − 1],
and the values of A[i..n− 1] are unchanged.

Invariant 2: At 2, tmp is the former value of A[i], and tmp <
former values of A[j + 1..i − 1], now moved to A[j + 2..i].

1: for (i = 1; i < n; i++)
tmp= A[i]; j = i − 1;

2: while j >= 0 & tmp< A[j]
A[j + 1] = A[j]; j = j − 1;

endwhile
A[j + 1] = tmp;

endfor

Algorithm 5: Insertion sort A[0..n− 1].

For each i in [1..n− 1], the while loop of line 2 goes from i − 1 down to −1,
decreasing j by one each time. Thus it executes at most n2 times—we’ll make
this upper bound much more precise in question 39. But there is no way for
this program to go into an infinite loop if the computer is correctly executing
it.

32. Prove that no numbers are lost, even though we may assign
A[j + 1] = A[j] and/or A[j + 1] = tmp.

It would be important not to lose numbers while we are sorting a list. The
invariants capture everything that we need to know about the current state
of the list A to be able to convince ourselves that this doesn’t happen. You
should be able to write a formal proof by induction.

33. Prove by induction that Algorithm 5 correctly sorts its input array
A[0..n− 1].

34. What are the minimum and maximum numbers of times that this
algorithm can assign the value of j? What permutations of [1..n]
give the minimum and the maximum?

The line j = i − 1; assigns a value to j exactly n− 1 times. If tmp >= A[j]
every time in the while loop, then no other assignments are done—that is, if
A[i]>= A[i − 1] for all i, which means that A is already sorted in monotone
increasing order, then we get a minimum of n− 1.

On the other hand, if we always find tmp< A[j], then we get the max number
of executions of the line j = j − 1;

and this happens if A is initially in strictly decreasing order. In loop i, the
total number of these assignments will be i, so the overall total is n− 1+
∑

1≤i≤n−1 i = n−1+
�n

2

�

= (n+2)(n−1)/2. I think that 38–40 give an easier
way to think about this.

35. Modify Algorithm 5 to create a permutation P of [1..n] so the
value found at P[input index] = output index.

We want to keep track of where the item originally at position
i ultimately goes to. This requires thought. We can keep track of

where each item came from and invert to get where each goes to.
Add to both invariants that i is the original position of tmp, and
that F[k] always tells the original position of the item at k. The
comments in Algorithm 6 contain the statements that would be used
in an induction to formally prove that F and P are set up correctly.

36. Strengthen the invariant to show that insertion sort is stable, that
is, it does not swap the order of numbers that are equal. (If in the
input A[i] = A[j] for i < j, then output indices P[i]< P[j].)

The easiest way, I think, is to restate the invariant as if the F (from) array
was used to break ties. Instead of saying that A[k]≤ A[k+ 1], the invariant
could say that A[k]< A[k+ 1] OR (A[k] == A[k+ 1] AND F[k]< F[k+ 1]).
If you were asked to, you could prove this new invariant holds by induction.

The sharp-eyed may notice that elements initially assigned to F
are never used in the code, only in invariant 0. So we could drop that
initialization if we wanted to work invariant 0 into the other two.
The next modification, however, does make use of the initialized
values.

37. If we permute just the from indices, we can avoid moving the
data in A, a trick worth knowing for large data records, or when you
want to sort shared data. Explain how Algorithm 7 does this.

38. Define an inversion for A to be a pair (i, j) with i < j but A[i]>
A[j]. What are the minimum and maximum numbers of inversions
possible, and what permutations give these numbers?

The minimum number of inversions is 0, from a list in increasing order. The
maximum number is the number of unordered pairs,

�n
2

�

, from the list in
strictly decreasing order.

39. Show that the number of times j is assigned a value is n− 1 plus
the number of inversions of A.
We’ve already seen that j = i−1 is executed n−1 times. Each time we assign
A[j + 1] = A[j], we remove an inversion of (F[j], i) since tmp= A[i]< A[j].
Each inversion is removed once in the loop for i.

40. Of the n! permutations of [1..n], how many have an inversion
with a chosen pair (i, j) for i < j?

n!/2 permutations, which is exactly half of all permutations. Why? We can
create a bijection between permutations that have (i, j) as an inversion and
those that do not: just swap A[i] with A[j]. (Here I’m assuming that in A all
entries are unique.)
Said more slowly: Let S be the set of permutations in which i < j is an
inversion, so A[i]> A[j]. Let T be the complementary set in which i < j is
not an inversion, so A[i]< A[j]. The function f : S→ T that swaps A[i] with
A[j] is its own inverse, so it must be a bijection, and |S|= |T |= n!/2.

41. By summing the previous result, what is the average number of
inversions over all n! permutations? (This is the average number of
steps for the algorithm, if we assume that all input permutations are
equally likely.)

If I wanted to make this sound complex, I could say that we need to sum,
for all possible pairs (i, j), the number of permutations for which it is an
inversion, divided by the total number of permutations. This is just

�n
2

�

/2,
half the number of pairs.

Concepts:
• Sorting a list
• Finding a permutation (35)

• Stable sorting (36)
• Inversions of a list (38–40)
• Average running time, assuming a distribution of the input (41)

11.5 Greatest common divisor

Euclid’s Elements, Book VII, Prop. 2 presents an ancient algorithm
for greatest common divisors in the verbose, but still understandable
fashion of 300 BC. Euclid’s algorithm is, in some sense, the reverse of
the mediant algorithm of Lemma 7.3.1, but this presentation will be
self-contained. I quote a translation of some of Euclid’s preliminary
definitions and his lemma in Figure 11.1 to underscore the benefits
of modern notation for precision and clarity.

Recall that for integers a, d we say that d divides a, written d|a,
iff there exists an integer m so a = md.
∀a,b∈N, define

gcd(a, b) =

¨

0 if a = 0 and b = 0,

max{d : d|a ∧ d|b} otherwise.

42. Examples: What are gcd(0, 0) , gcd(18, 24) , gcd(3, 5) , and
gcd(0, 4) ?

Algorithm 8 presents slow and fast versions of Euclid’s algorithm,
SE and FE, with the same input and output:
Input: integers a, b ≥ 0.
Output: the greatest common divisor gcd(a, b)

Both SE(a, b) and FE(a, b) in Algorithm 8 compute gcd(a, b) for
all a, b ∈ N.

1. A unit is that by virtue of which each of the things that exist is called one.
2. A number is a multitude composed of units.
3. A number is a part of a number, the less of the greater, when it measures
the greater;
4. but parts when it does not measure it.
5. The greater number is a multiple of the less when it is measured by the
less. . . .
11. A prime number is that which is measured by an unit alone.
12. Numbers prime to one another are those which are measured by an
unit alone as a common measure.

Proposition 1. Two unequal numbers being set out, and the less being
continually subtracted from the greater, if the number which is left never
measures the one before it until an unit is left, the original numbers will be
prime to one another.

Figure 11.1: Euclid’s definitions and preliminary lemma before the algo-
rithm for greatest common divisor that bears his name. Translation by
Heath [11].

43. Show that if SE(a, b) is called with parameters a, b ≥ 0, then all
recursive call parameters are ≥ 0. This will be important in the next
question to show that the SlowEuclid algorithm is correct.

Consider any call to SE(a, b) with a, b ≥ 0. If b = 0, there is no recursive
call. If b > a, the call has the same parameters. Otherwise b ≤ a, and both
b, a− b ≥ 0.

44. Show that for all integers a, b ≥ 0, algorithm SE(a, b) terminates.

The condition a, b ≥ 0 is important, since, for example, SE(0,−1)
does not terminate. (For defensive programming without adding an
extra test to each call, line 2 should test b <= 0, and then raise an
exception if b < 0.)

To prove termination we would like to show that the pair (a, b)
becomes smaller in some way. Here are three options; most students
try an informal version of the second, but the others have fewer
cases.

Option 1: Define a pair order: (c, d) > (e, f) iff max(c, d) >
max(e, f) OR

�

max(c, d) =max(e, f)
�

∧ (d > f). This is known as
lexicographic or dictionary order: resolving the comparison at the
first index where the tuples differ.

Now, observe that a recursive call is always made to a smaller
pair:

• When a < b, we recursively call SE(b, a). This is the easy case: (a, b) >
(b, a), since max(a, b) =max(b, a) and b > a.
• When a ≥ b > 0, we call SE(b, a− b). Show that (a, b)> (b, b− a):

if a = b, then max(a, b) = max(b, a − b), but b > a − b = 0, so (a, b) >
(b, b− a). otherwise a > b, and max(a, b) = a >max(b, a− b), since a > b
and a > a− b when b > 0.

Notice that the only pairs smaller than (0, 0) have negative num-
bers, which question 43 implies we will never reach. Thus SE(a, b)
must terminate.

Option 2: define a function f (a, b) =max(a, b).

We have several cases. If b = 0, we stop. If a = b, we make one call and
stop. If a > b > 0, then our next call is to SE(a, b) and f (a, b) = a >
max(b, a− b) = f (b, a− b). And finally, when b > a, two more calls get us to
SE(a, b−a) and f (a, b) = b >max(a, b−a) = f (a, b−a). Since the function
decreases at least every other call, and can never be negative, SE(a, b) must
terminate.

Option 3: define f (a, b) = 2max(a, b) + [a < b]. Here we are
using Iverson notation, where [a < b] evaluates to 1 if a < b and 0
otherwise.
When a < b, we have f (a, b) = 2max(a, b) + 1 > f (b, a). On the other
hand, when a ≥ b > 0, we have f (a, b) = 2a > 2 max(a, b)+1≥ f (b, a− b).
Thus, f always gets smaller. Again, question 43 implies that f can never be
negative, so SE() must terminate.

45. Show that for all a > b ≥ 0, (d|a∧ d|b) iff (d|b∧ d|(a− b)). This,
with mathematical induction, is all we need to show that SE(a, b)
returns the correct result, gcd(a, b).

Sketch for one direction: if d|a ∧ d|b then ∃n,m∈Z a = md and b = nd. But
then a− b = (m− n)d, so d|(a− b).

46. SE(999999,1) would be slow; show that FE(a, b) computes the
same result as SE(a, b) by showing that many steps of SE(a, b) may
be replaced by one step of FE(a, b).

The intuition is that mod or division is repeated subtraction. The
proof will check not only this intuition, but also that the algorithm
handles the start and end conditions correctly. We can show by
induction that several steps of SE(a, b) can simulate one step of
FE(a, b), leaving no doubt that they compute the same result.

First, define notation to make our task easier. Suppose that a = mb+ r, for
integers m and 0≤ r < b. Note that FE(a, b) next recursively calls FE(b, r).
We can show by induction on m that after max(2m− 1,1) steps of SE(a, b),
we also get to SE(b, r).

Base m = 0: In this case b > a = r, and the next call is SE(b, a), which
is SE(b, r). Base m = 1: In this case b ≤ a = b + r, and the next call is
SE(b, a− b), which is SE(b, r).

Ind. Step: For a given m > 1, we can assume the following induction
hypothesis,
IH: if c = (m− 1)b+ r, then 2m− 3 steps of SE(c, b), we get to (b, r).

Now consider SE(a, b) for a = mb+ r. We want to show that 2m−1 steps are
enough. Since m> 1, we know a > b and a− b > b. Thus, the next two steps
will be SE(b, a− b) and SE(a− b, b), which together give SE((m−1)b+ r, b).
But then our induction hypothesis says at most 2m− 3 steps suffice, giving a
total of at most 2m− 1 steps as desired.
QED

Just for completeness, next is the trivial induction that applies this result to
each step of FE(a, b). We show that for all a, b ≥ 0, SE(a, b) = FE(a, b) by
induction on b.

Base b = 0: both SE(a, 0) and FE(a, 0) return a.
Ind. Step: for a given b>1, we assume as an induction hypothesis that
IH:∀0≤k<b SE(a, k) and FE(a, k) return the same value.

Now, consider given integers a, b with b > 0 and r = a mod b. FE(a, b) re-
turns the value of FE(b, r). By the previous lemma, after less than 2a steps (an
overestimate) SE(a, b)will reduce to a call SE(b, r). The induction hypothesis
says FE(b, r) = SE(b, r), so both return the same value, as promised.
QED

47. Recall the Fibonacci sequence: F0 =
0, F1 = 1, Fn+1 = Fn + Fn−1, for n>0.

FE(21, 13) computes
a b

21 13
13 8
8 5
5 3
3 2
2 1
1 1
1 0

Run FastEuclid on adjacent Fibonacci
numbers, such as FE(21,13). Make a ta-
ble of the values of each call. What familiar
numbers do you observe?

48. Show that for all integers a, b with 0 ≤
b ≤ Fi the call FE(a, b) makes at most i re-
cursive calls. (That is, every call after the
first: FE(a, 0) makes 0 recursive calls.) This
is challenging because it takes some thought
in ‘step S7’ of the 8-step induction template.

We prove by induction on i that, for all a, b ≥ 0 with b ≤ Fi , the call FE(a, b)
makes at most i recursive calls.

Base i = 0: No recursive calls are needed, since FE(a, 0) immediately returns
a.
Base i = 1: Only one recursive call is needed, since FE(a, 1) calls FE(1, 0) = 1.

Ind. Step: for any given a, b ≥ 0 with b ≤ Fi , we may assume that
IH: For all 0 ≤ k < i for all c, d ≥ 0 with d ≤ Fk, the call FE(c, d) makes at
most k recursive calls.

Consider now the given call FE(a, b) and let r = a mod b.

If r ≤ Fi−1, then we can immediately apply the I.H. to the next call, FE(b, r)
with k = i − 1, to give a total of i calls for FE(a, b).

But what if r > Fi−1? Let’s try going one more step, since FE(a, b) = FE(b, r)
= FE(r, b mod r). Since we have Fi−1 < r < b ≤ Fi , and Fi − Fi−1 = Fi−2, we
can observe that 0 < b − r ≤ Fi−2. This has two implications: first, since
b − r < r, we learn that b mod r = b − r. This sets up the second, that
FE(b, b mod r) = FE(b, b− r) fits the I.H. with k = i − 2 to show that a total
of i calls are enough for FE(a, b).
QED

49. These algorithms are tail-recursive because in each branch the last
thing they do is make the recursive call. Tail-recursive algorithms
are easy to convert to iterative algorithms. I leave you with the task
of rewriting both algorithms to use ‘while’ statements instead of
recursion.
Concepts:
• Divides and gcd
• Induction on two parameters (44)
• Using a slow algorithm to explain a faster one (46)
• Recurrences to count steps
• Fibonacci numbers (47–48)
• Tail recursion (49)

Insertion sort(A)
Input: An array A[0..n− 1] of n numbers
Output: Values of A[0..n−1] permuted so A[0]≤ A[1]≤ · · · ≤

A[n− 1] and permutation P so that the value originally at
A[i] ends at A[P[i]].

Inv 0: F[0..n − 1] are maintained so F[k] is the original
position in A of the item that is currently at A[k].

Inv 1: At 1 with loop value i, the values of A[0..i − 1] have
been permuted so that A[0]≤ A[1]≤ · · · ≤ A[i−1], and the
values of A[i..n− 1] are unchanged.

Inv 2: At 2, tmp is the former value of A[i], and tmp < former
values of A[j + 1..i − 1], now moved to A[j + 2..i].

Init array F = 0..n− 1;
1: for (i = 1; i < n; i++)

tmp= A[i]; j = i − 1;
2: while j >= 0 & tmp< A[j]

A[j + 1] = A[j]; // Moved from j to j + 1, so
F[j + 1] = F[j]; j = j − 1; // save orig pos

endwhile
A[j + 1] = tmp; // Save where tmp is from in F
F[j + 1] = i; // as we store tmp in A.

endfor
for k = 0 to n− 1 // Invert F : F[k] = i⇒ P[i] = k.

P[F[k]] = k; // i.e., A[k] orig from i, so P[i] = k.
endfor

Algorithm 6: Modified insertion sort of A[0..n−1] records where elements
come from and reports permutation P so the item originally at i ends at
P[i].

Insertion sort(A)
Input: An array A[0..n− 1] of n numbers
Output: Values of A[0..n−1] permuted so A[0]≤ A[1]≤ · · · ≤

A[n− 1] and permutation P so that the value originally at
A[i] ends at A[P[i]].

Inv 0: F[0..n−1] maintains all F[k] equal to the position in
A of the item that is kth in the current insertion sort array
order.

Inv 1: At the start of line 1 with loop value i, the values of
F[0..i−1] have been permuted so that A[F[0]]≤ A[F[1]]≤
· · · ≤ A[F[i−1]], and the values of F[i..n−1] are unchanged.

Init array F = 0..n− 1;
1: for (i = 1; i < n; i++)

tmp= A[F[i]]; j = i − 1;
2: while j >= 0 & tmp< A[F[j]] //Inv2: at while,

F[j + 1] = F[j]; // tmp=former A[F[i]] is <
j = j − 1; // former A[F[j + 1..i − 1]],

endwhile
F[j + 1] = tmp; // now in F[j + 2..i].

endfor
for k = 0 to n− 1 // Invert F : F[k] = i⇒ P[i] = k.

P[F[k]] = k; // i.e., A[k] orig from i, so P[i]=k.
endfor

Algorithm 7: Insertion sort A[0..n− 1] without moving data

SE(a, b) /* Slow Euclid */
Input: Integers a, b ≥ 0.
Output: The greatest common divisor gcd(a, b).

1: if b > a
return SE(b, a);

2: else if b == 0
return a;

else
return SE(b, a− b);

endif

FE(a, b) /* Fast Euclid */
Input: Integers a, b ≥ 0.
Output: The greatest common divisor gcd(a, b).

if b == 0
return a;

else
return FE(b, a mod b);

endif

Algorithm 8: Two algorithms for greatest common divisor: SE(a, b) uses
repeated subtraction as described by Euclid, and FE(a, b) uses mod.

Chapter 12

Binary Relations
and Applications

No one really understood music unless he was a scientist, her
father had declared, and not just a scientist, either, oh, no,
only the real ones, the theoreticians, whose language was
mathematics. She had not understood mathematics until he
had explained to her that it was the symbolic language of
relationships. “And relationships,” he had told her, “contain
the essential meaning of life.”

—Pearl S. Buck, The Goddess Abides

The definition of relation and definitions of types of binary relations
from Chapter 6 were abstract. Now that we have the tools of recur-
sive definition and inductive proof, I want to demonstrate that this
abstraction helps us understand the nature of computation, using
two quite complex examples. The first defines my favorite partial
order, aboveness, which reveals one reason why geometry in 3d is
harder than in 2d. The second uses several equivalence relations
to create, for a given regular language, the simplest possible Kara
program to recognize whether or not a string is in the language. This
chapter tells the stories of these two examples, after recalling and
extending some definitions from Chapter 6.

340

Objectives: After working through this chapter and the exercises,
you will review which binary relations are reflexive, symmetric, and
transitive, and be able to force these properties by closure operations.
You will be able to recognize and give examples of comparability,
partial order, and equivalence relations. You will be able to prove
that an equivalence relation partitions its domain into equivalence
classes. Through complex examples of aboveness for line segment
drawings and determining the simplest Kara program to recognize
the strings of a regular language, I hope that you will begin to appre-
ciate how proofs using the somewhat abstract properties of partial
orders and equivalence relations can reveal useful structure that
would otherwise be hidden.

12.1 Binary relations extended

Recall from Section 6.1 that a relation is just a set of pairs, R ⊆ A×B,
and a binary relation R ⊆ A2. Here are nine special types for a binary
relation, R ⊆ A× A, that are defined by quantified statements. The
first five are review.

Reflexive: A relation R is reflexive iff ∀x∈A (x R x).
Symmetric: R is symmetric iff ∀x ,y∈A (x R y→ y R x).
Transitive: R is transitive iff ∀x ,y,z∈A

�

(x R y ∧ y R z)→ x R z
�

.
Irreflexive: R is irreflexive iff ∀x∈A (x 6R x).
Antisym: R is antisymmetric iff ∀x 6=y∈A (x R y→ y 6R x).
Comparability: R is a comparability relation iff ∀x 6=y∈A (x R y ∨ y R x).

Equiv. relation: R is equivalence relation iff it is reflexive, symmetric, and
transitive.

Partial order: R is a partial order iff it is antisymmetric, transitive and either
reflexive or irreflexive. The pair of set and relation (A, R) is called a poset.

Total order: R is a total order iff it is a partial order and a comparability
relation.

Example binary relations in Section 6.1 included relations on
integers like “equals” (=), “less than” (<) and their negations “not
equals” (6=) or “greater than or equal to” (≥), the relation on sets of
subset ⊆, and relations on people like “is a child of,” “is in the same
class as,” or “has sent email to.” Which of these are comparability ? ,
partial order ? , total order ? , or equivalence relations ? ?

12.1.1 Closure operations for relations

For a binary relation R ⊆ A2, three closure operations can make new
relations. These operations are used only occasionally, and almost
exclusively when a relation is being defined, so there isn’t a standard
notation for them.

• The reflexive closure, R∪ {(a, a) | a ∈ A}, adds each element paired with
itself. This new relation is clearly reflexive.

• The symmetric closure, R ∪ R−1 = {(a, b), (b, a) | (a, b) ∈ R}, adds the
reverse of every pair. This new relation is clearly symmetric.

• The transitive closure is a relation R̂ ⊆ A2 that can be defined recursively:

Base: R ⊆ R̂.

Rec. Rule: ∀a,b,c∈A, if aR̂b and bR̂c then aR̂c.
Closure: The only pairs in R̂ are those obtained from the base case by a

finite number of applications of the recursive rule.

This definition adds the shortcut for every two pairs until no new short-
cuts can be added; since it doesn’t stop until all shortcuts are present, R̂
is clearly transitive.

As an example, define the “ancestor of” relation as the transitive
closure of the “parent of” relation: the ancestors of a person are their
parents and the ancestors of their parents. Assuming no unusual
loops (e.g., that no child has adopted their grandparent, and no-one
is their own parent), the “ancestor of” relation is an irreflexive partial
order. We could make it a reflexive partial order, calling each person
their own 0-step ancestor, by also taking the reflexive closure.

A reflexive or symmetric closure adds all missing pairs to a rela-
tion in a single step. Transitive closure needs a recursive definition
because adding some pairs can make other pairs eligible for addition.
By the recursive definition that my ancestors are my parents and the
ancestors of my parents, I avoid the ellipses that I would need if I
said they were my parents, my grandparents, my great-grandparents,
my great-great-grandparents,

I said above that the transitive closure of a relation is “clearly”
transitive. In mathematics, when a writer says something is “clear” or
“obvious” they are being lazy, and you should ask them to elaborate.
How would a formal proof R̂ is transitive begin? We want to prove
that, ∀a,b,c∈A

�

(aR̂b ∧ bR̂c)→ aR̂c
�

. We can start with any given
a, b, c ∈ A for which aR̂b and bR̂c, and observe that the recursive

rule says that aR̂c. So this is indeed easy.
What is more interesting is that R̂ is the smallest transitive relation

that contains R. We can prove

Lemma 12.1.1. Any transitive relation T that contains a binary rela-
tion, R ⊆ T, also contains its transitive closure: R̂ ⊆ T.

Proof. Here is a proof by minimal counterexample, which is an
induction variant from Subsection 10.2.4.
1 Given a transitive relation T that contains R, Given for

suppose, for the sake of deriving a contradiction, proof by
that ∃(a,c)∈R̂ with (a, c) 6∈ T . contradiction

2 Choose (a, c) ∈ R̂ that uses Closure rule for
the recursive rule the fewest times. trans. closure

3 Note that (a, c) 6∈ R, since R ⊆ T
4 so (a, c) ∈ R̂ because ∃b with (a, b) ∈ R̂∧ (b, c) ∈ R̂. Recur. rule
5 (a, b) and (b, c) each use rec rule fewer times, And (a, c) was
6 so (a, b) ∈ T and (b, c) ∈ T . fewest 6∈ T
7 Thus, (a, c) ∈ T . T is transitive.
8 This contradiction establishes the lemma.

QED

Proof by minimum counterexample is a form of proof by con-
tradiction. Sometimes it is easier to find a contradiction than a
specific conclusion. Once you have found the idea that makes a
proof work, a proof that goes forward may be easier to verify and
to communicate to others. Try writing your own 8-step induction
proof∗ before peeking at mine in Figure 12.1. Which proof do you

∗This proof had 8 steps by coincidence; don’t confuse that with the 8-step induction
template.

1 I want to prove that each pair added to R̂ must also be in T ,
2 by induction on n≥ 0, the number of applications of the recursive rule.
3 Base n= 0: the pairs of R are given to be in T .
4 For a given pair (a, c) ∈ R̂ by n> 0 applications,
5 IH: I may assume that all pairs added by 0≤ k < n applications are in T .
6 And want to show that (a, c) ∈ T .
7a (a, c) must be in R̂ because ∃b with

(a, b) ∈ R̂ with 0≤ i < n applications and (b, c) ∈ R̂ with 0≤ j < n.
7b Apply the IH twice: (a, b) ∈ T and (b, c) ∈ T .
7c Since T is transitive (a, c) ∈ T .

Figure 12.1: 8-step induction proof of Lemma 12.1.1; try your own first,
then compare the three proofs.

find most convincing? Which is most concise?

Suppose that a relation is both symmetric and transitive. Must it
then be reflexive? Check this on scratch paper: symmetry says that
whenever we have aRb we also have bRa, transitivity then says we
have aRa, right? So let’s try to write a formal proof.

1 Let R ⊆ A2 be symm & trans. Given a ∈ A, Given for direct proof
I want to show that a R a. to show R reflexive.

2 With any b ∈ A, I know a R b→ b R a, defn symmetric
3 so a 6R b or b R a. logical equivalent
4 If aRb and bRa then aRa. defn trans for aRb and bRa.
5 Suppose that aRb for some b, First of two cases:
5b then bRa and aRa. by 4 and 5 (modus ponens)
6 Otherwise, for all b, a 6R b Second case
7 —I’m stuck—

I am unable to prove what I wanted, but by attempting to do
so, I learn something new. The only way a symmetric and transitive
relation R ⊆ A2 can be non-reflexive is by having one or more a ∈ A
that are not related to anything. Write a two column proof of this
lemma.

Lemma 12.1.2. If R ⊆ A2 is a symmetric and transitive relation, and
∀a∈A ∃b∈A (a R b), then R is also reflexive.

Proof. Many of the ideas come from the proof attempt above, but
you will want to write them context first.

1 Let R ⊆ A2 be symm & trans. Given for direct proof
Given a ∈ A, I want to show a R a. to show R reflexive.

2 There exists b ∈ A with a R b Given
3 and thus b R a. defn symmetric, modus ponens
4 Therefore, a R a. defn trans, modus ponens

QED

12.2 Aboveness: A partial order

On graph paper, draw a set S of n line seg-
ments that do not touch or cross. Define a
binary aboveness relation on these segments:
∀a,b∈S , we say that a � b iff we can draw a
vertical line that hits a above b. Prove that:

Lemma 12.2.1. The aboveness relation � is
anti-symmetric.

Proof. Suppose, for the sake of deriving a contradiction, that I have
two segments with a � b and b � a.

I can draw two vertical lines, one intersecting a above
b and the other intersecting b above a. (These cannot
be the same line: since the segments cannot touch, any
vertical that hits both clearly hits one above the other.)
The segments must traverse the space between the two
vertical lines. But when they do so, they cross, which is
forbidden. This contradiction shows that the � relation
is anti-symmetric.

I can formally prove that segments a and b must cross: the y coordinates
of segments a and b can be considered as partial functions of x: only for x
coordinates where a vertical line intersects a is y = a(x) defined. If vertical
lines at x1 and x2 cross segments a and b in different orders, then on the
interval [x1, x2] the difference a(x) − b(x) is a continuous function that
changes sign. By the intermediate value theorem of calculus, it has a zero in
the interval.

QED

Draw an example that shows that this rela-
tion is not transitive. Three segments is enough:
Above, a � b � e but a and e are not comparable.

Construct a new relation ��∗ as the transitive closure of �. That
is, ∀a,c∈S , we say that a �� c iff there is a sequence of k ≥ 1 segments
b1, b2, . . . , bk ∈ S with a = b1, c = bk, and bi � bi+1 for all 1≤ i < k.
Can we prove that �� is a partial order?

The hard part is to show that �� is anti-symmetric because we
cannot have a cycle in �. (Since we know there are no cycles of
length 2, this might also be a good place to prove there is no minimal
counterexample.) But let’s start with the easy part.

To show that �� is a partial order, we must show it is transitive,
anti-symmetric, and irreflexive. Transitive is easy, because �� is a
transitive closure. For practice, here are the details:

For all r, s, t ∈ S if r �� s and s �� t then we know that there are
two sequences b1, b2, . . . , bk ∈ S with r = b1, s = bk, and bi � bi+1

for all 1 ≤ i < k, and c1, c2, . . . , c` ∈ S with s = c1, t = c`, and
ci � ci+1 for all 1≤ i < `. We can concatenate these two sequences
(after dropping the duplicate s = c1) to get r � b2 � · · · � bk � c2 �
· · · � c`−1 � t, which shows r �� t.

To show that �� is anti-symmetric and irreflexive, we want to
show that there is no cycle in the� relation: that there is no sequence
b1, b2, . . . , bk ∈ S with bk � b1, and bi � bi+1 for all 1 ≤ i < k. We
already know that there is no such sequence of length 1 or 2.

∗Read as ‘superior to.’

Why, if I want to show �� is both anti-symmetric and irreflexive,
should I worry about cycles in �? First, the practical: � is more
basic than ��, and is easier to analyze through pictures, so I can find
a proof more easily if I replace each �� with a chain of � relations.
Second, the formal: if �� is not irreflexive then there is a cycle in
�. If �� is not anti-symmetric then we can link two chains r �� s
and s �� r into a cycle in �. Thus, if we show there is no cycle in �,
then we have shown that �� is both anti-symmetric and irreflexive.

By the way, if we rolled the graph paper into a
cylinder, and then drew line segments, the�� relation
might not be anti-symmetric. Anti-symmetry is a
property of the plane; what in your proof depends
on being in the plane? ?

Lemma 12.2.2. The relation ��, which is the tran-
sitive closure of the aboveness relation �, is a partial
order.

Proof. Suppose, for the sake of deriving a contradiction, that there is
a cycle b1, b2, . . . , bk ∈ S with bk � b1, and bi � bi+1 for all 1≤ i < k.
Without loss of generality, we can suppose that we assigned indices
so that bk is a segment whose rightmost point is furthest to the left.
(This is a choice we can make in the plane, but not in the cylinder.)

I claim that bk−1 � b1 so that b1, b2, . . . , bk−1 is a shorter cycle.
Why?

Well, look at a vertical line through the rightmost end-
point of segment bk. This line must hit both bk−1 and b1

because they are comparable to bk and have right end-
points on or to the right of this line. Furthermore, since
there are no cycles of length 2 by (a), it must hit them in
order bk−1, bk, and b1.
Thus, we can remove bk and get a smaller cycle. If we
repeat the process, we get to a cycle of length 2, which
contradicts (a). Thus, there can be no cycle for � in the
plane.

Thus �� is irreflexive and anti-symmetric, and is a partial order.
QED

This means is that a 2-dimensional game like pick-up sticks, or
Mikado, is easy: in any direction you choose, some stick will be the
top of the pile and can be translated to infinity without disturbing
others. In 3-d this is not true; you can make collections of sticks
(suitably fattened, but without introducing notches) so that in no
direction can you translate one stick away from the rest.

12.3 Equivalence relations and finite state
automata

In many tasks—parsing code for keywords or variable names, search-
ing DNA sequences, scanning network traces to identify denial of
service (DOS) attacks—we want to recognize strings that belong to a

http://en.wikipedia.org/wiki/Mikado_(game)
http://en.wikipedia.org/wiki/Mikado_(game)

given language (a set of strings, as defined in Subsection 3.1.3.) In
this section, we see how to automatically make the simplest possible
Kara programs to recognize the important class of regular languages.

Usually, finding the simplest possible program to do anything
is hard, if not impossible.∗ In this case, we will be able to use
equivalence relations to reveal and exploit structure of the strings
inside and outside the language that would be otherwise hidden
in particular examples—equivalence relations will help us see the
forest that would otherwise be hidden by the trees.

The rest of this section deals with material that you will see again
if you take a class on languages and automata; the key fact to learn
is that equivalence relations partition their sets into equivalence
classes—that is the structure that we will exploit more than once.

12.3.1 Regular languages and simplified Kara

Regular languages are a useful class of languages that can be defined
recursively:

1. Base: The empty language ; is regular, the language of the empty string {Λ} is
regular, and, for all a ∈ Σ, the language {a} is regular.

2. Recursive Rule: If languages L and M are regular, then LM , L ∪M . and L∗ are
all regular.

3. Closure: Only languages that can be constructed from base cases by a finite
number of applications of the recursive rule are regular.

∗The simplest program to test if your code can go into an infinite loop? Not
possible, because from it you can create a program that goes into an infinite loop iff
it says it does not.

Here are some example regular languages over the alphabet that
Kara can write: Σ= { ,�}:

• Any language with a finite number of strings is regular.
• The language of strings in which every � is immediately preceded by a :

L = { , �}∗.
• The language of strings in which no s follows a �s: L = { }∗{�}∗.
• The language of strings where the number of �s is a multiple of 3:

L = { }∗({�}{ }∗{�}{ }∗{�}{ }∗)∗.
• The substrings of { �}∗ obtained by starting and ending at arbitrary charac-

ters: L = { �,�,Λ}{ �}∗{Λ, , }.

One example language that is not regular, as we shall see in
Cor 12.3.4, is the language of strings with the same number of

s as �s.
We can simplify Kara to build regular language recognizers on

Σ= { ,�}.

1. Write the string to be tested in clovers and blanks from left to right on a 1×n+1
tape.

2. Start Kara at the leftmost end of the string, facing right.
3. Put a tree one space after the end of the string. (For the empty string, that puts

the tree next to Kara.)
4. Kara may optionally stop if she senses the tree ahead.
5. After each read, Kara must move one square to the right. (It doesn’t matter

what Kara writes; she won’t read it again.)
6. If Kara senses the tree and stops, then the string accepted as being in the

language; if Kara crashes, then it is not. Kara is said to recognize the language
of all accepted strings.

Figure 12.2: Kara program to recognize the
language of substrings of { �}∗. A string
is in the language iff Kara stops without
crashing.

Consider the exam-
ple world at the top of
Figure 12.2. Kara on a
clover, so the string to be
tested is in the language
of substrings of { �}∗.
We can draw a simplified
Kara program as a state
diagrams: a graph with
a vertex for each state,
and edges labeled with
the clover, blank, or tree
to be read as Kara tran-
sitions to the next state.
Add the labels at left to
make a program that cor-
rectly recognizes strings
of this language.

Let’s adopt a draw-
ing convention to re-
duce clutter: rather than
drawing the arrows to
Stop that are labeled
with trees, put double circles around the states they come from.
These are accepting states; all states of Figure 12.2 would be ac-
cepting. To be complete, however, we should add a non-accepting
“garbage state” to catch all strings that would otherwise crash Kara.

Then Kara would process each string to the end.
Each simplified Kara program can be written as a 5-tuple K =

(S,Σ,δ, s0, F) containing a set of states S, alphabet Σ = { ,�}, a
transition function δ : S × Σ → S that always moves to the next
symbol, a distinguished start state s0 ∈ S, and a set of final or
accepting states F ⊆ S. This is a complete description of machine K ,
capturing all the relevant detail from K ’s state diagram. K accepts
string α iff by starting at the start state and processing α to the end,
it ends in an accepting state. K recognizes the language LK of all
strings that it accepts.

There is a nice binary relation on strings of Σ∗ that comes from
the state diagram: Define any two strings α,β ∈ Σ∗ to be equivalent
with respect to K , denoted α≡K β , iff from the start state they reach
the same state. (Figure out which strings end in which states in
Figure 12.2.)

• This relation is reflexive, symmetric, and transitive (why?), so it is an equiva-
lence relation. It partitions strings of Σ∗ into a number of classes that equals
the number of states.

• If α ≡K β then α ∈ LK ↔ β ∈ LK—one string is accepted iff the other is
accepted.

• For any γ ∈ Σ∗, if α ≡K β then αγ ≡K βγ—once strings travel together, they
stay together.

The relation ≡K from a machine K tells me about its language LK ;
I’d like a language L to tell me about its machines. We will do that
in several steps (using at least three more equivalence relations) in
the rest of this chapter.

12.3.2 Recognizing a regular language with super-
Kara

Let’s show that, for any regular language L, we can create a Kara
program to recognize L. Let’s initially cheat, and give Kara two
superpowers: First, we allow Kara to teleport from one state to
another state without reading or moving. An edge labeled with the
empty string Λ in the state graph gives Kara the option to teleport if
she wishes. Second, if Kara has a choice of where to go on reading a
clover/blank (or of teleporting and reading later), she can copy the
world, clone herself, and try all possibilities.∗ We change the domain
and range of the transition function δ : S ×Σ∪ {Λ} → P (S).

A string is accepted by superKara iff there exists some clone
that stops at the end of α in an accepting state. We can think of
Kara as running independent clones in parallel, or as having an
uncanny ability to choose a path that leads to acceptance, if one
exists. Figure 12.3 shows three diagrams that use these superpowers;
which languages are these?∗

The first two accept L = { }∗{�}∗.
The last two accept all substrings of { �}∗.

Any regular language L ⊆ Σ∗ has a recursive definition that builds
L from simpler regular languages. We can build a superKara state
diagram accepting L by induction – combining state diagrams for the
simpler languages. Each of our diagrams will have a single accepting
state. For example, state diagrams in Figure 12.4 accept base case

∗Also known as non-determinism.
∗Hint: The first pair in Figure 12.3 accept a common language, as do the last pair.

Figure 12.3: Four example diagrams that use the teleportation and
cloning powers of superKara. Which languages do these diagrams accept?
I.e., from the start state, which string end in a double-circled accepting
state?

languages for an example alphabet Σ= {a, b}.

Figure 12.4: Machines with Σ= {a, b} that accept base case languages ;,
{Λ}, and {a}. The machine for {b}, similar to the machine for {a}, would
complete the set of base cases.

Figure 12.5 suggests how to combine machines for languages L
and M to make machines that accept LM , L∪M . or L∗. Here we use
superKara’s ability to teleport and clone to make the constructions
easy, and to always have one start state and one accepting state.

For any a regular language L ⊆ Σ∗, we simply follow the (finite
number of) steps of L’s recursive definition to build a machine K that
accepts every string in L and rejects every string not in L. We would
prove that K recognizes L by induction on the number of recursive

Figure 12.5: Combining machines for languages L and M to make ma-
chines that accept LM , L ∪M . or L∗.

steps in the definition of L.

12.3.3 Simple Kara simulates superKara

Next, we would like to remove Kara’s superpowers of teleportation
and cloning, so that each state,symbol pair goes to exactly one state.
To begin, let R be the relation on states with sRt iff there is an edge
from s to t labeled with Λ, and form R̂ from R by reflexive and
transitive closure.∗ Relation R̂ is not necessarily symmetric, but is
reflexive and transitive—a partial order. Define the Λ-closure of any
set of states A as the set of states related to them by R̂: Λ-closure(A) =
{t | ∃s∈A sR̂t}.

From the machine K = (S,Σ,δ : S×Σ∪{Λ} → P (S), s0 ∈ S, F ⊆
S)we define a new machine K ′ = (S′,Σ,δ′ : S′×Σ→ S′, s′0 ∈ S′, F ′ ⊆
S′) that essentially runs all possible clones of K in parallel. We define

. S′ = P (S); states of K ′ are the sets of old states that clones of K can be in
while processing an input string. ; always serves as a garbage state.

∗sR̂t iff there is a path from s to t labeled with Λs.

. s′0 = Λ-closure(s0); start in the set of states that clones in K can reach by
teleporting from s0 (including s0),

. F ′ = {A | A⊆ S∧A∩ F 6= ;}; a string is accepted iff, after processing to the end,
there exists a clone in an accepting state of K .

. ∀A∈S′,b∈Σ δ
′(A, b) = Λ-closure

�⋃

t∈Λ-closure(A) δ(t, b)
�

. In words, if superKara
has clones in the states of A, she teleports clones to all places they can reach,
advances clones to all possible next states reading b, then teleports clones
to all possible output states. The resulting set of states of K is a state of S′

for K ′.

This new machine K ′ is completely deterministic; for each state
(set of old states) there is a single new state to go to for each letter
in Σ. We could prove by induction on the length of a string α that
K ′ accepts α iff K accepts α. Thus, K recognizes the language L.

The new machine can be huge—the superKara construction from
a regular language L already created many states, and this conversion
to simple Kara constructs all subsets of these states. We can reduce
the construction to only the states that are reachable from the start
s′0—doing so also gives, for each state, a string that ends in that state.
Using yet another relation we can do better, and make the smallest
machine that recognizes L.

12.3.4 An equivalence relation ≡L

In order to capture the idea of strings traveling together with respect
to a language, define α ≡L β iff ∀ρ∈Σ∗ (αρ ∈ L↔ βρ ∈ L)—that
is, two strings are equivalent iff every possible extension puts both

inside or both outside the language L.∗

Lemma 12.3.1. ≡L is an equivalence relation.

12.3.5 Proof in detail:

We need to show that ≡L is reflexive, symmetric, and transitive. All
three are easy; let me write the proofs in full detail, then more briefly.

Detailed proof. To show that ≡L is an equivalence relation, we need
to show that it is reflexive, symmetric, and transitive.

Refl: I want to show that ∀α∈Σ∗ α ≡L α. Expanding the definition, this means
I want to show that ∀α,ρ∈Σ∗ αρ ∈ L iff αρ ∈ L is always true. But p↔ p is
always true, so ≡L is reflexive.

Sym: I want to show that ∀α,β∈Σ∗ if α ≡L β then β ≡L α. But α ≡L β means
∀α,β ,ρ∈Σ∗ (αρ ∈ L↔βρ ∈ L), and since↔ is symmetric, (βρ ∈ L↔αρ ∈
L), and ≡L is symmetric.

Trans: ∀α,β ,γ∈Σ∗ if α ≡L β and β ≡L γ then α ≡L γ. But this expands to
∀α,β ,γ,ρ∈Σ∗ , if (αρ ∈ L↔ βρ ∈ L) and (βρ ∈ L↔ γρ ∈ L), then (αρ ∈
L↔ γρ ∈ L). But↔ is transitive—for all p, q, r, if p↔ q and q↔ r, then
p↔ r, so ≡L is transitive.

QED

Brief proof. We aim to show that ≡L is reflexive, symmetric, and
transitive.

Refl: This is trivial. ∀α,ρ∈Σ∗ αρ ∈ L iff αρ ∈ L, so α≡L α.

∗≡L is like ≡K , but different. Can you explain how?

Sym: This is trivial since↔ is symmetric. ∀α,β ,ρ∈Σ∗ if (αρ ∈ L↔βρ ∈ L) then
(βρ ∈ L↔αρ ∈ L), so if α≡L β then β ≡L α.

Trans: This is almost trivial. ∀α,β ,γ,ρ∈Σ∗ if (αρ ∈ L↔ βρ ∈ L) and (βρ ∈
L↔ γρ ∈ L), then (αρ ∈ L↔ γρ ∈ L), so if α ≡L β and β ≡L γ then
α≡L γ.

QED

Any equivalence relation partitions its set into equivalence classes.
For ≡L defined on strings Σ∗, the equivalence class of string α ∈ Σ∗

is the set [α] = {β ∈ Σ∗ | α≡L β}.

Lemma 12.3.2. Every string in Σ∗ is in exactly one equivalence class.

Proof. This proof uses only the properties that ≡L is reflexive, sym-
metric, and transitive, so it applies to any equivalence relation. First,
every string is in some equivalence class: ∀α∈Σ∗ α ∈ [α] because ≡L

is reflexive.
Second, if it looks like α is in a second equivalence class, it is

actually the same one: I want to show ∀α,β∈Σ∗ that if α ∈ [β] then
[α] = [β].
So assume α ∈ [β], which means that α≡L β .
Consider any γ ∈ Σ∗.

γ ∈ [α]⇔ γ≡L α by definition of [α]

⇔ γ≡L β by transitivity and symmetry of ≡L

⇔ γ ∈ [β]. by definition of [β]

Thus, the equivalence classes [α] partition Σ∗. QED

12.3.6 The smallest machine for L

We can make a machine KL for L from the equivalence classes of ≡L .
• Make a state for each equivalence class: SL = {[α] | α ∈ Σ∗}.
• Define the transition function δL : SL × Σ → SL by ∀[α]∈SL

b ∈ Σ
(δL([α], b) = [αb]).

• The accepting states are FL = {[α] | α ∈ L}.
• The start state is [Λ].
• So, KL = (SL ,Σ,δL , FL , [Λ]).
I leave it to you to prove that KL recognizes L, probably by using

induction on the length of a string to show that KL accepts every
string in L and rejects every string not in L. The next lemma does
prove that KL has the smallest number of states of all machines to
accept L.

Lemma 12.3.3. No machine with fewer states than the number of
equivalence classes of ≡L can accept the language L.

Proof. Consider a machine K with fewer states than the number of
equivalence classes of ≡L . By the pigeonhole principle, there must
exist two strings, α and β , with α ≡K β and α 6≡L β . In words, α
and β end in the same state of K, but there is some string ρ for
which exactly one of αρ and βρ is in the language L. But both or
neither of αρ and βρ are in the language accepted by K , so K does
not accept language L. QED

This has a quick and important corollary: There are languages
that are not regular. Simple Kara cannot remember an arbitrarily
large count.

Corollary 12.3.4. The language M = {am bm | m ∈ N} is not accepted
by any machine with a finite number of states.

Proof. There are an infinite number of equivalence classes for ≡M :
For all m ∈ N, the strings am is in it’s own equivalence class with
respect to ≡M , because adding bn to it puts it into the language M
iff m= n. QED

It is unusual to be able to prove that we can make the smallest
program to do something, especially something as useful as recog-
nizing a whole class of languages. I think this is the second-best
demonstration of the benefit of equivalence relations; second-best
because I have to figure out the equivalence classes from a language,
and that doesn’t seem easy. But we will fix that by getting the classes
from a machine.

12.3.7 Reducing K ′ to KL

Subsection 12.3.2 and 12.3.3 gave a construction of a way-too-big
machine K ′ that recognizes L. The relation defined on this machine,
≡K ′ , partitions strings of Σ∗ into classes that are a finer partition of
the classes of≡L . So we just have to figure out what states of K ′ have
to be merged to make the states of the minimum-state machine KL .

Let’s actually start with states of K ′ merged together and separate
those that must be separated. Initially, letΠ0 = {S0, S1} be a partition
of states S′ into accepting states S1 and non-accepting states S0.

Given a partition Πi , we consider each possible set of states
T ∈ Πi and each b ∈ Σ and, you guessed it, define equivalence

relations'i,b⊆ T×T with states s 'i,b t iff the next states on reading
b, namely δ′(s, b) and δ′(t, b), are in the same set in partition Πi .
(Why are these equivalence relations?) If T has more than one
equivalence class under'i,b, then we formΠi+1 fromΠi by removing
T and replacing it with its equivalence classes under 'i,b.

When no choice of T or b change the partition Πi , we stop.
Each element of the partition Πi corresponds to a state SL of our
minimum-state machine KL . This requires proof, which can be done
by induction, but that is for a later computer science class on au-
tomata theory or compilers. Here, let me just close by working out
the example for the language of substrings of {aab}∗ in Figure 12.6.

12.4 Summary

The language of relations is common in computer science. By study-
ing special types of relation, we learn properties common to all
relations of that type.

The examples of partial orders and equivalence relations are com-
plex, even though they follow from simple definitions. You will see
finite state machines and regular languages in subsequent computer
science classes, so the one thing to learn from the last example is
that equivalence relations are helpful tools because they parti-
tion their set into equivalence classes. Of course, to learn that,
you also need to know what are binary relations and equivalence
relations on a set, how to show a relation is an equivalence relation,
what is a partition, and what are equivalence classes. These are very
general and abstract concepts, and most examples of them (like ‘=’)

Figure 12.6: Constructing and minimizing a finite state machine for the
language of substrings of (aab)∗ shows the role of equivalence relations
and their partitions.

are trivial, so I wanted to show an important, non-trivial example.

12.5 Exercises and Explorations

Quiz Prep 12.1. On the set of all intervals of the real line, {[a, b] |
a ≤ b}, we can define the following binary relations. Classify each
as a total order, partial order (not total), equivalence relation, or
neither.

a ? Contained: [a, b]≺ [c, d] iff [a, b] ⊆ [c, d].
b ? Intersecting: [a, b]≺ [c, d] iff [a, b] ⊆ [c, d].
c ? Preceeding: [a, b]≺ [c, d] iff b < c.
d ? Lexicographic: [a, b]≺ [c, d] iff either a < c or (a = c and b ≤ d).
e ? Narrower: [a, b]≺ [c, d] iff b− a ≤ d − c.

Quiz Prep 12.2. Show that the divides relation is a partial order
for the sets of positive integers, Z+, and non-negative integers, N,
but not the set of all integers, Z. Recall that a|b iff ∃m ∈ Z ma = b.

Hint:
Not antisymmetric on Z:
2| − 2 and −2|2.Exercise 12.3. Prove that subset (⊆) is the universal reflexive par-

tial order. That is, if you are given a poset (S,�) with � being
reflexive, then you can make a family of sets FS and a bijection
f : S→FS so that for all a, b ∈ S, a ≺ b iff f (a) ⊆ f (b).

Hint:
For each b ∈ S, define
f (b) = {a ∈ S | a ≺ b}.

É

Exercise 12.4. For a poset (S,≺) with n = |S| elements, a chain
of length k is a totally ordered sequence of k elements from S:
s1 ≺ s2 ≺ · · · ≺ sk. An antichain of size k is a subset X ⊆ S of k
elements, no two of which compare: ∀a, b ∈ X a 6≺ b.

Show that any poset has either a chain of length at least
p

n or
an antichain of size at least

p
n.

Exercise 12.5. You are a xenobiologist studying Zorches. When two
Zorches get together, one or both may “freeb” (glow blue). Write
aF b if a freebs when close to b. Some Zorches freeb near your
spaceship, and you eventually realize that this is because they are
seeing their own reflection, aFa.

A particular group of four Zorches, Z = {Aye, Bee, Cea, Dii},
change their freeb pattern every day, but it is always reflexive (each
freebs with its reflection), symmetric (for any pair, either both or
neither freeb), and transitive (if aF b and bFc then aFc). How many
days can they go before repeating a freeb pattern? Let’s break this
into smaller questions.

1. How many elements are there in the Cartesian product Z × Z? ?

2. How many different relations from Z to Z are possible?

3. How many different reflexive relations from Z to Z are possible?

4. How many different reflexive and symmetric relations from Z to Z are possible?

5. How many different equivalence relations from Z to Z are possible?

É

Exercise 12.6. Answer these questions from the end of Subsec-
tion 12.3.1 on the relation ≡K , which defines two strings to be
equivalent with respect to machine K iff from the start state they
reach the same state.

1. Show that ≡K is indeed an equivalence relation.

2. Explain why the other two statements use ‘if’ rather than ‘iff’: (If α≡K β then
α ∈ LK↔ β ∈ LK , and if α≡K β then, for any γ ∈ Σ∗, αγ≡K βγ.

Exercise 12.7. Show that if a binary relation R is irreflexive and
transitive, then it is anti-symmetric.

Exercise 12.8. In a wolf-pack, suppose that the domination relation
is a transitive comparability relation. That is, for all a 6= b, either
aDb or bDa (and possibly both), and for all a, b, c, if aDb and
bDc then aDc. A pack-leader is a wolf that dominates all others.
Show that every pack has at least one pack leader. What additional
condition could I place on D to ensure that there is exactly one pack
leader?

Chapter 13

Graphs and Trees
The secret to productivity in so many fields – and in origami –
is letting dead people do your work for you. . . . When you get
math involved, problems that you solve for aesthetic value
only, or to create something beautiful, turn around and turn
out to have an application in the real world.

—Robert Lang, TED Feb 2008, 2:19 & 15:25.

In this book, graphs and trees are discrete structures that are
defined from sets and tuples: e.g., a directed graph is a fi-
nite set of vertices V and edges E ⊆ V × V , representing
a relation between the vertices (e.g., the “in-
fluences,” “likes,” or “friends” relationship).
This abstract concept is not to be confused
with the graph of a function, which is a draw-
ing of the values of taken on by the func-
tion. Our graphs need not even be drawn,
although small ones almost always are be-
cause our visual system can perceive connection, density, and pattern
information very rapidly. For an example, in Kara’s programming
window, transitions out of a state are shown in two ways: as edges of
the state diagram and rows of a table. In a well-drawn state diagram
it takes only a glance so check if there exists a path from the start to

369

http://www.ted.com/talks/robert_lang_folds_way_new_origami.html
http://www.ted.com/talks/robert_lang_folds_way_new_origami.html#120000
http://www.ted.com/talks/robert_lang_folds_way_new_origami.html#909000

the stop state, but in a table this takes careful inspection.

Objectives: You will be able to apply your knowledge of sets and
tuples to understand the basic definitions of graphs and trees, You
will meet many variations of graphs, including embedded graphs
with planar drawings and triangulations. You will be able to use your
knowledge of proof techniques to derive a series of properties that
follow from these definitions; some of these properties have been
known for centuries, such as that a tree on v vertices has v−1 edges,
and a connected planar graph with v vertices, e edges, and f faces
satisfies Euler’s relation, f − e+ v − 1= 1. Others are recent, such
as a way to encode triangulations using 4v bits, v of which are 1s,
which is related to schemes for compressing characters and terrain
in 3-d video games. Throughout your study of computer science
you will meet many applications and puzzles that demonstrate the
usefulness of both graphs and trees.

Figure 13.1: From
Spikedmath

The study of graph theory is considered
to have begun with L. Euler’s 1736 paper on
the puzzle of the bridges of Königsberg [4]:
Is it possible to walk across all seven bridges
without crossing a bridge twice? ? This
chapter is dominated by questions and puz-
zles that introduce basic definitions and vari-
ations of graphs, and develop some of my
favorite applications that are relevant to mul-
tiplayer video games: drawing terrain, lo-
cation positions, and compressing models.

http://spikedmath.com/541.html

I’ve selected several problems whose solu-
tions depend upon properties of trees, which
are special types of graphs that are ubiquitous in computer science.
(We’ve seen rooted trees defined recursively in Subsection 8.1.6.)

The emphasis of this chapter is less the specific results than to
practice problem-solving using our precise language for sets, tuples,
counting, relations, and proof techniques. Graph theory and its
applications is just the domain in which we find interesting problems
to solve. I stronly suggest that you first copy or summarize each
question in a notebook (paper or electronic), then try answer it
yourself. After you have wrestled with the problem yourself, then
look at hidden hints or answer sketches and revisit your answer.
Since proof is about communicating ideas clearly, it is good to do
this as a group of two to four classmates.

In my experience, those who go beyond what is assigned emerge
with a clearer understanding. The practice will not only help with
sets, tuples, and proof, but you can expect to see graph data structures
and graph algorithms in future classes across all areas of computer
science. You can also find entire courses on graph theory, graph
algorithms, and graph drawing.

13.1 A draw-it-yourself chapter outline

Get your scratch paper ready, because I would like to introduce the
main concepts for (undirected) graphs in an informal way by having
you draw them. Each of the terms mentioned here is more formally
defined later in the chapter.

Basic graph definitions: degree, paths, cycles. In Section 6.1,
we noticed that we could draw a binary relation R ⊂ A×A by drawing
a labeled dot (vertex) for each element of A and an arrow for each pair
(a, b) ∈ R. This is a directed graph, as defined in the first sentence of
this chapter. If the relation is symmetric and irreflexive∗, then the
graph is an undirected graph; we can draw each pair (a, b) as a line
or curve with no arrowheads, since whenever we have (a, b) ∈ R,
we also have (b, a) ∈ R.

Draw four points that form a box, then draw five points in-
side the box so no three of the nine points lie on a common
line. Make a few copies, then answer the following questions.

1. What is the maximum number of line seg-
ments (undirected edges) that you can draw
between the nine dots (vertices∗) without
repeating an edge? ? This is the complete
graph K9.

2. The degree of a vertex is the number of edges incident on it. For
example, every vertex in K9 has degree 8. Notice that the sum of all
degrees counts every edge twice. One implication is that the number
of odd degree vertices is always even. Check the graphs you draw
and the ones in Figure 13.2.

∗That is, ∀(u, v) ∈ R we know both u 6= v and (v, u) ∈ R.
∗vertices is the plural of vertex: one vertex, two vertices.

Figure 13.2: Which have paths (and cycles) that visit all vertices with no
repetition? All edges?

3. In a graph, a path from u to v is a sequence of vertices
(w0, w1, . . . , wk) with w0 = u, wk = v and, for all 1 ≤ i ≤ k, the
pair (wi−1, wi) is an edge. An undirected graph is connected iff for
any two vertices u, v there exists a path from u to v.

Paths are allowed to repeat vertices and edges, but suppose we
forbid repetition. Which is easier: For a given graph, determine if
there is a path that visits all edges without repetition, or determine
if there is a path that visits all vertices without repetition? Try with
the graphs of Figure 13.2.

4. A cycle is a path that begins and ends at the same vertex and repeats
no edge. Which of the graphs of Figure 13.2 have cycles that visit
all edges? Which have cycles that visit all vertices without repeating
a vertex?

5. Draw any graph in which every vertex has degree at most two, and
observe that it consists of a collection of disjoint∗ paths and cycles.

∗Disjoint means that the paths and cycles partition the sets of edges and vertices.

Trees: different, equivalent definitions. Draw straight line edges
to form a connected graph on your 9 points. What is the smallest
number of edges that will make the graph connected? ? Does the
number depend on where the points are placed? ?

6. A graph is called a tree iff it is connected and has no cycles. Observe
that your graph is a tree under this definition, and that if you add
any edge you will form a cycle. Are all the graphs of Figure 13.3
really trees?

Figure 13.3: Some example trees: a) free b) binary, c) full binary, d) path

7. In 8.1.6, we’ve seen a recursive definition of rooted trees that
combines trees at their root nodes. Can you make your tree from 6
and the trees of Figure 13.3 in this way? (Does it matter what vertex
you choose as root?)

8. In a tree, a vertex of degree 1 is called a leaf. In your data structures
class, you may have seen a different recursive definition of trees that
adds one leaf at a time. Can you make your tree from 6 and the trees
of Figure 13.3 by repeatedly adding a leaf?

9. Any graph that you form by starting with one vertex then adding
one vertex and one incident edge until you have n vertices must have
n− 1 edges. We will see that all trees can be made this way. In fact,
any graph G with n vertices that has two of these three properties is
a tree, and so has the third property also:

1. Graph G is connected.
2. Graph G is acyclic.
3. Graph G has n− 1 edges.

Planar embeddings and planar graphs. “Graph” is an abstract
concept: vertices are given identities but no fixed locations. When
we draw a graph we embed it in the plane by assigning locations to
each vertex and edge, but the drawing does not change the abstract
graph.

In planar drawings or planar embeddings, edges are not allowed
to touch except at shared vertices. In question 6 you probably chose
a planar embedding for your tree, though nothing in the question
forbade edge crossings. You probably also drew edges as straight
line segments, although the question didn’t forbid more meandering
curves.

10. A classic question is to determine the family of planar graphs:
graph G is planar iff there exists an assignment of its vertices and
edges to points in the plane that is a planar drawing. All but the
last graph in Figure 13.2 are planar, although the first picture is not
a planar drawing. Create a planar drawing to show that it, too, is
planar.

11. Create a graph with few edges that has no planar drawing; that
for all assignments of vertices to points in the plane there exists
some pair of edges that are not incident on the same vertex, yet still
intersect.

12. Does your graph still require crossings even if you are not required
draw each edge (u, v) as a straight line segment uv, but may draw it
as a curve or sequence of segments that wends its way from u to v?

Yes, it still requires crossings. Any graph that can be drawn without crossings
using curved or multi-segment edges can also be drawn with straight edges; the
drawings look different, but the set of graphs considered planar is unchanged.
This claim will require proof.

In a planar graph the edges around a vertex
have a particular order. For example, we might
define next for giving the next edge counter-
clockwise (ccw) around a vertex, and its inverse
prev, so that, for all vertices u, v, w, we have
(v, u).next = (v, w) iff (v, w).prev = (v, w), and (v, u).nextn = (v, u)
iff the degree of v divides n.

13.

From this we can define the concept of a face,
which is a region bounded by a cycle of edges
and vertices. What I’ve just given, however, is an
incomplete description, and not a definition; not
every sequence defines a face. Can you create a
definition of a face?
Hint: use the order around vertices as well. Try to do this yourself and then check
the extreme cases of the next paragraph before before looking at my answer.

A good definition should, for example, say that everything outside
the drawing of a planar graph is a single face. Does your definition
apply to trees? Does it apply to disconnected graphs? (For now it is
fine to just define faces for connected graphs. To handle disconnected
graphs, you’ll need to know that any cycle separates the plane into a
bounded inside region and unbounded outside region.)

A face is a ccw cycle of vertices v0, v1, . . . , vk−1, indexed modk, so that
∀0<i≤k (vi , vi+1).next= (vi , vi−l). This implies that edges exist between consecu-
tive vertices of the cycle.

14. For planar graphs we have the graph and must find the points
so that we can draw it with no edges crossing. In some applica-
tions we are given the points and consider which graphs can be
drawn. With your nine points, grow a graph by adding non-crossing
line segments until you cannot add more. You should find that
every face inside the box is a triangle—your graph is a triangulation.
How many faces do you have? ? (Don’t forget the
unbounded face.) Do the numbers of edges or
faces depend on where you place the five points
inside the box? ? .

15. Darken a subset of edges of your trian-
gulation of that form a tree on the nine vertices. Add a dot
for each face, and connect dots in faces that are separated by
an edge that has not been darkened. What do you see? ? No-
tice that if you have v vertices and f faces, the pattern you
see would count edges e = (v − 1) + (f − 1) if it holds true.

Characters in first-person shooters, and the
terrains that they run around on, are often repre-
sented by collections of triangles that represent
surfaces in three dimensions. The explorations in
this chapter will culminate in a way compress a
class of triangulated surfaces losslessly—storing
them in few bits.

13.2 Foundational definitions

Let’s begin with foundational definitions of three important graph
variants: directed, undirected, and bipartite graphs. You will notice
that we have enough machinery in sets, tuples, functions, and rela-
tions to make these definitions, often in more than one way. This
leads to some flexibility in the definitions.

Don’t let this flexibility confuse you. If I state a definition in terms
of a relation and repeat it in terms of sets of tuples, the purpose is
that readers who already understand relations and those who are
more comfortable with sets and tuples should both agree that exactly
the same object has been defined. (If not, then one of us has made
a mistake. Either I need to correct what I’ve written or a reader
needs to refine their understanding.) You should adopt whatever
definition is more meaningful or memorable for you, as long as it
defines exactly the same object and is not circular. The flexibility
is in the definition, not in the concept; we modify a concept only if
we agree collectively that the modification is more useful for some
purpose.

Suggestion: Draw examples for each definition in a notebook
or the margins. Consider the extremes for each definition, such as
graphs with no edges, or with as many edges as possible. Count
the number of objects defined. These checks help to ensure that we
agree on the concepts.

16. The first sentence of this chapter defines a directed graph or
digraph: a pair G = (V, E), where V is a finite∗ set of vertices and

∗Infinite graphs exist, but are beyond the scope of this book.

E ⊆ V × V is a set of edges. Sometimes I say node and arc for
vertex and edge, especially when I work with two graphs and need
to distinguish between them. An edge (u, u), called a self-loop, could
appear in a directed graph. The maximum number of edges in a

Figure 13.4: 3 draw-
ings, 1 graph

directed graph with n vertices is n2; if there
are no self-loops the maximum is n(n− 1).

As already mentioned, we often draw
pictures of directed graphs. We do so by
specifying additional information: a posi-
tion (and maybe style) for each vertex, and
a straight or curved arrow for each edge.
This is often called a drawing or embedding
of a graph. Crossings may be present in an
embedding, or even necessary in any embedding, but they are not
part of the underlying graph. Thus, Figure 13.4 shows three draw-
ings of the same digraph.

17. Any binary relation R ⊂ E × E on a finite set can be drawn as a
directed graph with edge set R, and that the properties of the relation
show up in the drawing. Complete these statements; the first is done
for you.

• A reflexive relation has a self-loop for every vertex;
• An irreflexive relation has no self-loops.
• A symmetric relation has an edge iff it has its reverse.
• An anti-symmetric relation never has an edge and its reverse.
• A comparability relation has an edge into or out of every vertex.
• In a transitive relation, any two-edge path (u, v, w) with (u, v) ∈ R and
(v, w) ∈ R, has a shortcut, (u, w) ∈ R.

What about equivalence relations and partial orders? We’ll return to
those (in 27 and 34) after introducing some more terms.

An undirected graph∗ is a pair (V, E) in which E is an irreflexive,
symmetric relation. That is, E ⊆ V × V in which ∀u ∈ V , (u, u) 6∈ E,
and∀u, v ∈ V , if (u, v) ∈ E then (v, u) ∈ E. (If we drop the ‘irreflexive’
condition, we get a variant that allows self-loops.) We draw edges of
an undirected graph with no arrows, since joining u and v represents
both (u, v) and (v, u).

An equivalent definition could say that E consists of unordered,
two-element sets of vertices, rather than ordered pairs, but people
tend not to do that. I suspect that we become used to seeing an
ordered pair, (u, v), as an edge, so seeing a set {u, v} might cause
confusion.

18. The undirected graph with n = |V | vertices that has all pos-
sible edges, E = {(u, v) | u 6= v ∈ V}, is the complete graph,

Figure 13.5: Two
drawings of complete
graph K5

denoted Kn. It is considered to have
�n

2

�

= n(n− 1)/2 edges, one for each un-
ordered pair from V . (The complete di-
graph on n vertices has |V × V |= n2 edges,
as noted in 16.)

19. Another variation: a graph
G = (V, E) is bipartite iff the ver-
tices V can be partitioned into
two sets U and W , (that is, U ∪W = V and U ∩W = ;), so that E ⊆
U×W . A bipartite graph G = (U , W, E) can be considered undirected

∗When someone says “graph,” assume they mean undirected.

or directed from U to W . If m = |U |, n = |W |, then the complete
bipartite graph Km,n includes n ·m edges, namely E = U ×W .

Figure 13.6: Complete
bipartite graph K2,3

20. How could we change the definition to
allow bipartite graph edges to be directed
arbitrarily? There is a choice to be made
here: Do we allow an edge to appear in
either or both directions, as long as we have
no edges from U × U or W ×W? Or do we
allow only a single copy of each undirected
edge, directed either toward U or W? The
definitions are different.

The most natural definition, in my opinion, is the first. A directed bipartite graph
is a directed graph G = (U ∩W, E), with E ⊆

�

(U ×W)∪ (U ×W)
�

. This has no
edges in E ∩

�

(U × U)∪ (W ×W)
�

. Equivalently, this is a directed graph whose
symmetric closure is bipartite.

The alternative can be written as a disjoint union of sets of tuples, RU ∪RW , where
RU ⊆ U ×W and RW ⊆ W × U and RU ∩ R−1

W = ;. Can you find a better way to
state this? I initially thought I could describe the alternative as an antisymmetric
relation on U ×W , but type-checking made me realize that antisymmetry was a
property of binary relations, and I didn’t want to say I had a relation on (U ∪W)2

because I would lose the bipartite character.

21. Two vertices are said to be adjacent if they are joined by an edge;
a vertex is said to be incident on its edges. The neighbors of a vertex
v are the vertices joined by edges starting from v: N(v) = {w |
(v, w) ∈ E}. The degree of a vertex is the number of its neighbors:
d(v) = |N(v)|. What is the degree of every vertex in Kn? ? For a

variant of undirected graphs that allow self-loops, graph theorists
modify the definition to count self-loops a second time: d(v) =
|N(v)|+

�

(v, v) ∈ E
�

.∗

22. For a directed graph, the in-degree of vertex v is the num-
ber of incoming edges, din(v) = |{u | (u, v) ∈ E}|, and the
out-degree is the number of outgoing edges, dout(v) = |{w |
(v, w) ∈ E}|. Argue that total in-degree equals total out-degree.
Every edge contributes one to in-degree and one to out-degree.

23. For undirected graphs we can prove that the sum of all degrees is
even, which also means that the number of vertices of odd degree is
even.

Lemma 13.2.1. In any undirected graph, the number of odd degree
vertices is even.

Proof. If we add up all the degrees, then we count every edge twice.
Thus,

∑

{v∈V | d(v) is odd}

d(v) = 2e−
∑

{v∈V | d(v) is even}

d(v),

and since the right side is even, the left side must have an even
number of terms in the sum. QED

This is the type of proof sketch that a mathematician will accept, knowing
that if asked, they could fill in the details. However, as a character-building
exercise, let’s fill in all the details. If you already have enough character,
you may skip ahead to 24.

Recall that a number n is even iff it can be written as twice an integer:
∃k∈Z n = 2k. A number n is odd iff n+ 1 is even, that is ∃k∈Z n+ 1 = 2k,

∗Recall Iverson notation:
�

(v, v) ∈ E
�

is 1 if edge (v, v) is in E, and 0 if not.

which means ∃k∈Z n= 2k− 1. Here are two facts that we can prove. If you
believe the facts, you can skip over the proofs. If you don’t believe these
proofs, try your hand at writing proofs by induction.

Lemma 13.2.2. Any sum of even numbers is even.

Proof. Let n1, n2, . . . , nk be even numbers. I want to prove that S =
∑

1≤i≤k ni

is even.
By definition of even, there exist integers m1, m2, . . . , mk such that for

all 1 ≤ i ≤ k, we have ni = 2mi . We expand S to see that it is twice an
integer:

S =
∑

1≤i≤k

ni =
∑

1≤i≤k

2mi = 2
� ∑

1≤i≤k

mi

�

.

QED

Lemma 13.2.3. A sum of odd numbers is even iff the number of odd numbers
is even.

Proof. Let n1, n2, . . . , nk be odd numbers. I want to prove that S =
∑

1≤i≤k ni

is even iff k is even. By definition of odd, there exist integers m1, m2, . . . , mk

such that for all 1≤ i ≤ k, we have ni = 2mi − 1. We can try to write S as
twice an integer:

S =
∑

1≤i≤k

ni =
∑

1≤i≤k

2mi − 1=
� ∑

1≤i≤k

2mi

�

− k = 2
� ∑

1≤i≤k

mi

�

+ (−k).

Using the previous lemma we may conclude that S is even iff k is even. QED

Now, here is a more detailed proof of Lemma 13.2.1, that the number
of odd degree vertices is even.

Proof. First, observe that, in an undirected graph with e edges no self-loops,
the set size |E|= 2e, since each edge contributes two pairs to E: (v, w) ∈ E

iff (w, v) ∈ E. The sum of all degrees is even, because it counts the two pairs
for each edge:

∑

v∈V

d(v) =
∑

v∈V

|{(v, w) ∈ E}|=
�

�

�

�

⋃

v∈V

{(v, w) ∈ E}
�

�

�

�

= |{(v, w) | v ∈ V ∀(v, w) ∈ E}|

= |E|= 2e.

But we can split that sum into the terms with even and with odd indegrees,

∑

v∈V

d(v) =
∑

{v∈V |d(v) is odd}

d(v) +
∑

{v∈V |d(v) is even}

d(v) = 2e,

which we can rewrite with odds on the right side and evens on the left:

∑

∀v∈V d(v) is odd

d(v) = 2e+
∑

∀v∈V d(v) is even

−d(v).

From Lemmas 13.2.2 and 13.2.3, the number of odd degree vertices is
even. QED

24. Computer scientists may prefer a different proof. The combinato-
rial proof above considers a graph as it is; one could instead create
the graph: start with the set of vertices, then add edges one by one.
Show by induction that an invariant of this creation process is that
the number of odd-degree edges is even. (It is crucially important to
observe that every graph can be created. This is trivial for adding
edges, but may not be for other processes, or other graph types, such
as connected graphs to come in 42.)

Initially, all degrees are zero, so the number of odd degree vertices is even. In the
induction step, when you add an edge, you increase the degrees of both ends by
one, which either takes two evens to two odds, two odds to two evens, or an even
and an odd to an even and an odd. So the number of odds changes by +2, −2, or
0. Write this as a formal induction, using the 8-step template of Chapter 10.

25. Suppose that we convert a directed graph G = (V, E) into an
undirected graph G′ by dropping self-loops and adding the reverse
of every edge. Write an expression for the number of edges in G′

based on the sets V ,E that make up G:

l|E|−|{(u, u) ∈ E | u ∈ V}| − |{(v, u) ∈ E | (u, v) ∈ E, u 6= v}|/2

= |E| − (|{(u, u) ∈ E | u ∈ V}|+ |{(v, u) ∈ E | (u, v) ∈ E}|)/2.

Take out each self-loop, and one of each of the other edges that is paired with its
reverse.

13.3 Modify, count, draw, and color graphs

Questions in this section skim the surface of the many things that
can be done with graphs. Later sections will go deeper into topics
needed for particular applications.

13.3.1 Modifying graphs

26. Here are two ways to make new graphs from old: A graph G′ =
(V ′, E′) is a subgraph of G = (V, E) iff V ′ ⊆ V and E′ ⊆ E ∩ (V ′ × V ′).
Graph G′ is the vertex-induced subgraph iff E′ = E ∩ (V ′ × V ′); that
is, we keep all edges having both ends in V ′. Give an example of a
graph G and a subgraph of G that is not a vertex-induced subgraph
of G.
In a graph that contains an edge (u, v), any induced subgraph that contains
vertices u and v must also contain (u, v), so it is enough to include u and v, but
omit the edge (u, v).

27. A clique in a graph or digraph is a vertex-induced subgraph that is
complete—it contains all possible edges. Argue that any equivalence
relation, considered as a graph, can be partitioned into cliques, one
for each equivalence class.

Recall that R ⊆ A2 is an equivalence relation iff R is reflexive, symmetric and
transitive, and that equivalence classes are the sets defined for each a ∈ A as
[a] = {b | a R b}.
What we are being asked to show is that ∀a, b ∈ A, there is an edge (a, b) in the
graph iff their classes are the same, [a] = [b]. If we recall that equivalence rela-
tions partition (See Lemma 12.3.2), then this is easy, because both are equivalent
to saying that a R b.

28. The complement of a graph G = (V, E) is the graph G =
(V, (V×V) \ E), which is the graph with an edge in G iff that edge
is missing from G. What is the complement of the bipartite graph
K4,5? A graph with two cliques: K4 and K5.

29. One more graph modification: For a graph G = (V, E), the operation of

contraction of an edge (u, v) ∈ E, denoted G \ (u, v), constructs a new graph
G′ = (V ′ = V \ {v}, E′) where E′ eliminates (u, v) and replaces v by u in all
other edges. Can you come up with a good way to define the edge set E′

using set notation?

I’m not happy with this, but it seems to work:
E′ = (E ∪ {(w, u), (u, w) | (w, v) ∈ E, w 6= u})∩ (V ′ × V ′).

A graph G′ = (V ′, E′) is a minor of G = (V, E) if it can be obtained by
contracting and omitting edges. Minors can reveal simple structure in large
graphs, as we shall see.

13.3.2 Counting graphs

30. From the count of edges in 18, many undirected graphs are there
on n vertices? 2(

n
2) How many directed graphs? 2n2

How many
bipartite (undirected) graphs when the vertex set is partitioned into
sets of size n and m? 2nm

For these counts, we consider the vertex sets to be labeled,

Figure 13.7: Two la-
beled graphs that are
isomorphic without
labels

and consider graphs to be the same if the
edges, which are pairs of vertex labels, are
exactly the same; e.g., the two graphs of
Figure 13.7 are different.

How many labeled, vertex-induced sub-
graphs does G = (V, E) have? One for each
subset of V , so 2|V |.

How many labeled subgraphs of G have
all the vertices V? One for each subset of E,
so 2|E|. There may be a good way to count
the total number of labeled subgraphs of G, but I doubt it, because

subsets V and E can’t be chosen separately: you can only delete a
vertex if you delete all its edges, too.

31. A different, and much harder question, is how many graphs are there if
you consider two graphs the same if it is possible to relabel the vertices of one
so that the edge sets become identical. Relabeling defines an equivalence
relation, graph isomorphism (from Greek iso=equal, and morphē=shape),
which we know partitions the set of all graphs into equivalence classes.

The difficulty in counting is that not all equivalence classes have the

Hint:
There are 11 classes:
1 each with 0, 1, 5, and
6 edges, 2 each with 2 or
4 edges, and 3 classes with
3 edges.

same size. Draw an example unlabeled graph
from each isomorphism class of (undirected)
graphs on 4 vertices. But first read the next ques-
tion, because it can cut your work almost in half.

32. Prove that a relabeling makes two graphs
isomorphic iff it makes their complements iso-
morphic. (You’ll want to use the definition of
complement from 28 and to write out the meaning of isomorphism in sym-
bols.) One consequence is that it is enough to determine the isomorphism
classes for graphs of up to

�n
2

�

/2 edges because those with more edges will
be the complement of those with fewer. (Can you ever have an odd number
of classes? ?)

33. How many labeled graphs fall into each class of question 31? Note that
the total number of labeled graphs with 4 vertices and i edges is

�

�4
2

�

i

�

=
�

6
i

�

.
Hidden here are the numbers of ways to label graphs that have two or

three edges:
• There are two classes for two edges:

– 3 ways to make two disjoint edges: vertex 1 connects to one of three vertices,
then the other edge is determined.

– 12 ways to make a path: choose the vertex order (4!), use the first three to
make a path, then divide by two because reversing the order of the first three
gives the same path.

• There are three classes for three edges:

– 4 ways to choose one vertex to have degree 3.
– 4 ways to choose one vertex to have degree 0: the remaining three form a

triangle. This is the complement of the previous.
– 12 ways to make a path: choose the vertex order (4!), then divide by two

because reversing the order gives the same path.

13.3.3 Drawing partial order graphs

34. Recall that a relation is a partial order iff it is anti-symmetric,
transitive, and either reflexive or irreflexive. Prove that the graph of

Hint:
First show that at least
one vertex has no arrows
in. Do induction by delet-
ing such a vertex and
adding it back.

any partial order with a finite number of el-
ements has a downward drawing: you can
place the vertices so that all edges go from
higher to lower y coordinates. (This state-
ment says nothing about possible edge cross-
ings because they are assumed not to affect
the graph.)

35. The Hasse diagram of a partial order is a graph in which we
omit any edge (u, v) that can be inferred because there is a path
from u to v. That is, we draw edges of a relation whose transitive
closure is the partial order. For example, the Hasse diagram for the

poset∗ [1..12] under ≤ is just a vertical path from 12 down to 1.
Draw the Hasse diagram for [1..12] under the ‘divides’ relation (|).

Figure 13.8: Hasse
diagram for divides

36. The Hasse diagram simplifies downward
drawings (34) by removing edges from al-
most all graphs of partial orders. What fam-
ily of graphs is not simplified? Hint:See 19.

Bipartite graphs with edges directed from one set to the
other are the only graphs that are the same as their Hasse
diagrams.

13.3.4 Coloring

It is a challenging puzzle in general to color
the vertices of an arbitrary graph with the minimum number of colors
so that no edge joins two vertices of the same color. For special types
of graphs it is possible to determine the maximum, minimum, or
even the exact number of colors. (Unfortunately, the map four-color
theorem takes more machinery than I want to introduce in this book,
but we revisit this in Section 13.6.)

37. Show that the number of colors to color any subgraph of a graph is
at most the number of colors to color the graph. Give an example to
show that contracting an edge of a graph may increase the number
of colors required. Define some notation to be able to state claims
precisely and concisely.

∗Recall that a poset is a set with a partial order relation

38. Show that any graph with maximum vertex degree d can be
colored with at most d + 1 colors.

Do induction: remove a vertex v of degree d or less, color the graph with d + 1
colors, and argue that you can add v back and color it with one of the d+1 colors.

39. Show that the complete graph Kn requires n
colors. (You can use 38 for the upper bound.)

Again, do induction: Here is the idea—what is the induction
hypothesis that supports it?
K1 obviously requires 1 color. If you remove one vertex v
from Kn you get Kn−1, which requires n− 1 colors by the IH.
Since v connects to all n− 1 other vertices, you need a new
color for v.
IH: For all 1≤ k < n, Kk requires k colors.

40. Show that a graph is bipartite iff its vertices
can be colored with two colors. (Exercise 9.8
nicely illustrates the power of two-coloring.)

In a bipartite graph, G = (U , W, E), all edges E ⊆ U ×W ,
so coloring U and W with different colors shows that G is
2-colorable.
Similarly, if G = (V, E) can be two colored, then partition
V = U]W by vertex color. Since every edge has both colors,
E ⊂ U ×W , and G is bipartite.

13.4 Paths and cycles

A path in a graph is a sequence of vertices P = (v0, v1, . . . , vk) with
each adjacent pair, ∀0≤ i < k, joined by an edge (vi , vi+1) ∈ E. The
length of a path P is its number of edges, k. A path is simple if it
visits no vertex more than once. (Notice that these definitions allow
repeated edges on a path, but not on a simple path.)

A cycle is a path that starts and ends at the same vertex and has
no repeated edge. The easiest way to talk about a k-edge cycle is to
let the vertices be (v0, v1, . . . , vk−1) and index mod k, so vk = v0. A
simple cycle has no repeated vertex.

41. How would we say mathematically that path P never repeats an
edge?

A common way is to say something like this: path P never repeats an edge iff
∀0≤i, j<k

�

(vi , vi+1) = (v j , v j+1)
�

⇒ (i = j). That is, if you have what looks like a
repeat, you’ll find it is really two copies of the same edge. Another way is to use the
fact that sets suppress repeats: make the set of edges EP = {(vi , vi+1), (vi+1, vi) |
0≤ i < k} and observe that path P never repeats an edge iff |EP |= 2k.

42. An undirected graph is connected if there exists a path from every
vertex to every other. Let’s write this out with all the quantifiers in
front. A graph G = (V, E) is connected iff, for all pairs u, w ∈ V , there
exists a non-negative integer k, and a sequence v0, v1, . . . , vk ∈ V k+1

with v0 = u, vk = w, and, for all 0≤ i < k, (vi , vi+1) ∈ E. What is the
negation?

A graph G = (V, E) is not connected iff there exists a pair u, w ∈ V , such that for
any integer k ≥ 0 and any sequence v0, v1, . . . , vk ∈ V k+1, either v0 6= u, vk 6= w,
or ∃0≤ i < k, with (vi , vi+1) 6∈ E.

(BTW, a directed graph is called strongly connected if there is a
path from every vertex to every other.)

43. The connected components of a graph G are the maximal connected
subgraphs of G. Recall from Qcount 26 that a subgraph takes a subset
of vertices and edges to make a new graph G′, which is connected
iff there is a path between any pair of its vertices, and is maximal if
adding any more vertices and edges from G will make it disconnected.
For example, we can think of the star of David as a graph with six
vertices and six edge that has two triangles as connected components.
If we added six vertices at the crossings, then there would be 18
edges in a single connected component. For an undirected graph
G = (V, E), write a recursive definition of the set of vertices in the
connected component that contains v ∈ V .

Base: v is in the connected component of v.
Rec. Rule: if u is in the connected component of v, then N(u) is in the connected
component of v.
Closure: The only elements of the connected component of v are those included
by the base or a finite number of applications of the recursive rule.

44. See if you can prove the following, which we will need in 48.

Lemma 13.4.1. In a connected graph with vertices of even degree,
removing a single edge leaves the graph connected.

Proof. Removing one edge e leaves exactly two vertices of odd degree. If a
connected component contains one, it must also contain the other, since every
graph has an even number of vertices of odd degree. But that means there is a
path Q between the odd degree vertices, and any path that formerly used edge e
can instead use Q or its reverse. QED

45. What graphs can be drawn without lifting the pen or retracing a
line? Such graphs are called Eulerian, in honor of L. Euler’s study of
the classic Königsberg bridges problem.

Consider refining statements that would be true about graphs
that can and cannot be drawn.

X : A graph can be drawn if and only if there exists a path that visits every edge
exactly once.

Y : A graph with k edges can be drawn iff there exists a path of length k that
visits every edge.

X : A graph cannot be drawn if and only if all paths that visit every edge repeat
some edge.

Y : A graph with k edges cannot be drawn iff all paths of length k miss some
edge.

Let’s check this for extreme graphs: what if we have no edges? Will
we say such a graph can be drawn, or do we want to visit all vertices,
too?∗ Let’s insist that we want to visit every vertex, too, so we’ll
want to add a condition that our graph is connected.

∗This type of disambiguation is not just “academic.” It an important part of
specifying what is to be solved, especially if you are to be under contract to provide a
solution.

http://www.cut-the-knot.org/do_you_know/graphs.shtml

We’ve seen in 41 how to say that no edge of a path repeats. How
would we say mathematically that a path P = (v0, v1, . . . , vk) visits
all edges of a graph G = (V, E)? We can create the set of edges
EP = {(vi , vi+1), (vi+1, vi) | 0≤ i < k}, and check that EP = E.

Y2: A graph G = (V, E) with k edges can be drawn if and only if G is connected
and ∃ a length-k path, P = (v0, v1, . . . , vk), whose edge set EP = E.

46. Can you think of a more elegant way to say that no edge repeats?
Rather than just making the edges of P, we could also make its graph
GP = (VP , EP), where VP = {vi | 0≤ i ≤ k} and EP is as defined above.
Argue that the following is equivalent to Y :

Y3: A graph G = (V, E) with k edges can be drawn iff there is a length-k path P
whose graph GP = G.

47. Now start with a path P, and look at the degrees of vertices of
its graph GP . It is pretty clear that we need all vertex degrees to
be even, except for paths where the start and end are different and
have odd degrees. Recall that “clearly” in mathematics means that a
writer is getting lazy. Explain why this should be clear.

Except for the start and end vertices, we can pair every edge coming into a vertex
with the next edge out, so the degrees are even. (Or we can prove this formally
by induction on the length of a path.)

48. What may not be clear is that this condition is sufficient: in a
connected graph, if all degrees are even, except possibly for two
vertices that will become the start and end, then there is a path that
visits every edge once.

Lemma 13.4.2. Every connected graph with at most two vertices of
odd degree has an Eulerian path. If there are odd degree vertices, they
must be the start and end of the path, otherwise the path can be taken
to start and end at any vertex.

Here are two proofs: which do you prefer?

Proof. In this proof, we assume that we have a connected graph
G with two odd degree vertices, v1 and v2. If initially all vertices
have even degree, then either we have the graph with a single
vertex, which satisfies the lemma with a path of length zero, or
we can remove any edge to form two vertices of odd degree. By
Lemma 13.4.1 this graph remains connected,∗ and if we can find an
Eulerian path joining this pair, we can close it to a cycle by adding
back the edge.

So, it is enough to prove that G has an Eulerian path that starts
at v1 and ends at v2, We prove this by induction on the number of
edges, n.

Base case n = 1: The single edge (v1, v2) path satisfies the lemma.
Ø (Initially I was going to use all simple paths and cycles as base
cases, but discovered that I could reduce to a single edge.)

In the induction step, consider a connected graph G with n> 1
edges and two odd degree vertices, v1 and v2. We want to find an
Eulerian path between them.

IH: We may assume that any graph with 0 ≤ k < n edges that
is connected and has two odd degree vertices has an Eulerian path

∗This condition is easy to overlook, but important for correctness. Fortunately we
did it in 44.

between them.
If G has a vertex of degree 1, say v1, then remove v1 and its

incident edge (v1, w) to make a smaller graph G′. Note that w 6= v2,
because the single edge case was covered in the base case, so G′

has odd degree vertices w and v2. It is also connected, because we
can find a path between any pair of its vertices by finding a path in
G and replacing any instances of w, v1, w with w to avoid using the
removed edge. (Note that v1 is not in G′ so it won’t be used as the
start or end of the path.) Therefore, the induction hypothesis gives
an Eulerian path from w to v2; we prepend v1 to get an Eulerian
path for G.

Otherwise v1 has degree > 2. Find any simple path Q from v1 to
v2 and remove an edge (v1, w) so that w 6= v2 and (v1, w) is not the
first edge of Q. This forms a smaller G′ that again has odd degree
vertices w and v2, and is again connected—this time because any
path between a pair of vertices in G can be transformed to a path in
G′ by replacing the edge (v1, w) or (w, v1) by Q or its reverse. Again,
the IH gives an Eulerian path for G′ from w to v2; we prepend v1 to
get an Eulerian path for G.

This completes the proof. QED

We can instead focus on loops of edges.

Proof. We will assume that G is connected, and that all vertex de-
grees are even. If we begin with two odd degree vertices, connect
both to a new vertex so all degrees are even. After we find an Eu-
lerian cycle, remove the new vertex and edges to break it into an
Eulerian path.

We prove that any connected graph with only even-degree ver-
tices, G, has an Eulerian cycle by induction on its number of edges,
n.

Base case n= 0; The graph with one vertex and no edge has a
one-vertex Eulerian cycle. Ø

In the induction step, consider a connected graph G with n≥ 1
edges and even degree vertices.

IH: We may assume that any graph with 0≤ k < n edges that is
connected and has even degree vertices has an Eulerian cycle.

Find any cycle C in G by removing one edge (u, v), finding a path
joining u to v (which exists in the remaining graph by Lemma 13.4.1),
then closing it with edge (u, v). Now, remove the edges of cycle C
from the graph G, and gather the connected components. Each has
even degree, so the IH says each has an Eulerian cycle. Now, as
you walk around C , the first vertex you hit of a component, take
a detour to visit its Eulerian cycle before continuing. Since G was
connected, and components of G−C are maximally connected—they
need edges of C to grow into a single connected component—this
walk will make an Eulerian cycle for the entire graph G.

This completes the proof. QED

49. The task of finding a Hamiltonian path, which visits every vertex
exactly once and need not visit all the edges, has no known simple
criterion like this one—it is in the family of NP-hard problems, which
means that you can, for any graph, efficiently verify that a given
path is Hamiltonian, but that no algorithm is known to efficiently
find a path or prove that none exists.

50. What can be said about directed graphs? When does a directed
graph have a path that visits every edge?

Prove that you have an Euler tour iff the graph is connected and for every vertex v,
in-degree(v) = out-degree(v). You have a path if this is true with two exceptions,
a start vertex u with in-degree(u) = out-degree(u)− 1, and end vertex w with
in-degree(w) = out-degree(w) + 1.

13.5 Trees

Trees are special graphs that are ubiquitous in computer science, in
many variations (undirected, directed, rooted, balanced, . . .)

51. Here is one way to define the simplest variant: An undirected
graph is a forest iff it has no cycles (it is acyclic). An undirected graph
is a tree iff it is a connected forest. Draw three undirected examples:
a tree, a forest that is not a tree, and a graph that is neither. For
what values of n is the complete graph Kn a tree? ?

52. A spanning tree of a undirected graph G is a subgraph that includes
all vertices of G and is a tree. Draw a spanning tree for your graph
in Qcount 51.

13.5.1 Equivalent definitions for rooted trees

In the introduction, questions Q 6–Q 8 suggested
three different possible definitions of rooted trees:
by graph properties, top-down recursive,
and leaf-based recursive. These will define
three sets graphs, S, T , and L, which we

will prove are, in fact, the same; each of the
three definitions gives the same notion of rooted trees. Because
previous experience with trees may make some readers too ready
to believe this, this section steps away from the question/hidden
answer format used in the rest of this chapter to make it easier to
compare the details of the different definitions and proofs. You are
still encouraged to try writing your own proofs before reading the
ones written here.

The first definition: let S be the set of connected, acyclic graphs
that have a vertex chosen as root. This definition means that a
single vertex can be a rooted tree, but the graph with no vertices
is not a rooted tree. This contrasts with the recursive definition of
binary trees from Subsection 8.1.6. In computer science, every binary
tree node has two pointers to children, even if they are set to null.

The second definition, which generalizes
the recursive definition of binary trees to the
set of all rooted trees T , changes the base
case to the single-vertex tree.

1. Base: The single-vertex tree # ∈ T , with this vertex as the root.
2. Recursive Rule: For any two rooted trees s, t ∈ T , form a new tree whose root

is the root of t by making the root of s be a child of the root of t. This tree is in
T .

3. Closure: Only graphs generated from the base by a finite number of applications
of the recursive rule are in T .

The third definition is also recursive, but builds trees by adding
leaves instead of combining at the root. Note how the root never

changes for this definition of a set of rooted trees, L.

1. Base: The single-vertex tree # ∈ L, with this vertex as the root.
2. Recursive Rule: For any tree t ∈ L and any vertex v ∈ t, form a new tree by

adding as a child of v a new vertex # that has no children itself. This tree is
in L.

3. Closure: Only graphs generated from 1 by a finite number of applications of
rule 2 are in L.

Let us prove formally that S = T = L; that all three definitions
define the same set of rooted trees. I will prove first that S = T by
showing that every T -tree is connected and acyclic, then that every
S-tree can be made from T -trees.

Proving T ⊆ S: I want to show that if a graph G is a T -tree, then G
is an S-tree. Since if G is not a T -tree this “if” statement is (vacuously)
true, I can start my proof by assuming that G is a T -tree. I want to
show that G is an S-tree, which means that I want to show that G is
connected (there exists a path between any two vertices) and has
no cycles (all paths of length > 0 that leaves a vertex and returns
must repeat some edge.)

Notes: I chose to do my induction on the number of vertices, but could
use the number of edges, or on the number of times the recursive
rule is used to make G. My step S7 has to work for any given G,
which is why it has a “take G apart and reassemble” feel. For this
first proof, I try to err on the side of too much detail rather than too
little, just to make sure I’ve got things right.

1,2. We show that all T -trees G are connected and acyclic, by induction on the
number of vertices n.

3. Base n= 0: the empty graph has no vertices or cycles at all, so satisfies the
definitions trivially.
Base n = 1: the single vertex graph has the 0-edge path, and no paths of
length > 0, so it also satisfies the definitions.

4. Ind. step: Someone gives me a T -tree G with n> 1 vertices;
5. IH: I may assume that, for any T -tree H with 0 ≤ k < n vertices, H is

connected and acyclic.
6. I want to show that G is connected and acyclic.
7. Since G has n> 1 vertices, it must have been assembled by joining the roots

of two T -trees, G1 and G2, by an edge e. Since each of G1 and G2 have fewer
than n vertices, the IH applies (twice) to show that each are connected and
acyclic.
Now, to see that G is connected, we show there exists a path between any
two vertices u and v. Since G1 and G2 are connected, if u and v are together
in one of these trees, we know there is a path between them. Otherwise, we
can assume, by renaming if necessary, that u ∈ G1 has a path to the root of
G1 and v ∈ G2 has a path to the root of G2, and we can connect these roots
by edge e to make a path from u to v.
Finally, to see that G is acyclic, we consider any path of length > 0 that starts
and ends at the same vertex. If the path stays completely in G1 or G2, we
know it must reuse an edge, because G1 and G2 are acyclic. If it uses vertices
of both, then it must cross edge e at least twice, because that is the only
connection between G1 or G2. Therefore, G is acyclic. QED

Proving S ⊆ T : I want to show that if a graph G is a S-tree, then
G is an T -tree. I can start by assuming that G is a S-tree. I want to
show that G is an T -tree, which means that it is either a base case
or can be made by joining roots of two T -trees by a new edge.
Notes: Notice carefully which things I know and which I don’t when
I start taking G apart. I always know that G is connected and acyclic,
because that is given to me. I don’t initially know that its fragments
are. I even have to prove that there exists an edge e from the root to
delete (I choose to delete such an edge because I know that is how I
want to put G back together), I have to show that deleting e leaves
two connected pieces, that these pieces are also acyclic, and have
fewer vertices than G, and only then do I know that I am able to
apply my Ind. Hypothesis. Once I do, I am done; this is in contrast
to the previous proof where I could use my IH right away, and most
of the work came after. (That happens with recursive definitions.)

1,2. We show that all S-trees G are T -trees by induction on the number of
vertices n.

3. Base n= 0, 1: the empty graph and single vertex graph are both S-trees and
base case T -trees. Ø

4. Ind. step: Someone gives me an S-tree G with n> 1 vertices, which means
that G is connected and acyclic.

5. IH: I may assume that, for any S-tree H with 0≤ k < n vertices, H is also a
T -tree.

6. I want to show that G can be built from two T trees by the recursive rule.
7. Since G has n> 1 vertices, and is connected, there must be some edge e that

connects the root to a child. Delete e.
I claim that the graph falls into two connected components, G1 and G2: The

endpoints of e cannot remain connected after we delete e because otherwise G
would have a cycle. Furthermore, there cannot be more than two components
after we delete e, since adding e back can unite at most two components and G
is a connected graph with one component. (BTW, these are all consequences
of paths being an equivalence relation, as you prove in Exercise 13.2.)
I also claim that G1 and G2 are acyclic, because any cycle in one of them
would also be a cycle in G, and we know that G is acyclic. This means that
G1 and G2 are also S-trees.
Since each loses at least the root of the other, they also have less than n
vertices, and we can apply the IH twice to see that G1 and G2 are T -trees.
Therefore G is made by joining the roots of two T -trees, G1 and G2, and is
itself a T -tree. QED, by induction.

Useful facts about trees: Now that I know that S = T , I can prove
that every tree with n> 1 vertices does have a leaf, which is a vertex
of degree one that is not the root. I’ll sketch the inductions for two
ways, knowing that you are able to fill in the detailed steps.

Lemma 13.5.1. Every S-tree with n> 0 vertices has n− 1 edges.

Proof. Since S-trees are exactly the T -trees, we prove this by induc-
tion for T -trees on the number of vertices n.

Base n= 1: single vertex, no edge Ø
Ind. Step: Given a T -tree G with n> 1 vertices, we may assume

for all 1≤ k < n that a k-vertex tree has k− 1 edges. By removing
one edge, G splits into T -trees of n1 and n2 = n− n1 vertices. The
total edges of G are 1+ (n1 − 1) + (n2 − 1) = n− 1. QED

Lemma 13.5.2. Every S-tree with n> 1 vertices has a leaf.

Combinatorial proof. In an S-tree G = (V, E), the sum of all degrees
∑

v∈V = 2|E| = 2|V | − 2. Since G is connected, no vertex has degree
zero, and to have the sum be 2|V | − 2, there must be at least two
vertices of degree 1. Even if one of those is the root, there still
remains a leaf of degree 1. QED

Proof by induction. on the number of vertices as an alternative.
Base n= 2: the only two-vertex tree has a leaf.
IH: every tree with 2≤ k < n vertices has a leaf. Any given tree

with n> 2 vertices was made by joining the roots of two smaller trees,
one of which had at least 2 vertices, so had a leaf. Only the roots
change degrees during the join process, so the leaf persists. QED

Proving S ⊆ L: As before, assume that G is a S-tree. I want to
show that G is an L-tree, which means that it is either a base case or
can be made by adding a leaf to an L-tree.
Notes: Let’s do this direction first, because it needs Lemma 13.5.2 to
take G apart as an S-tree so that we can reassemble it as an L-tree. If
we hadn’t proved that separately, then we’d need to prove it within
this induction, which would make things messier.

1,2. We show that all S-trees G are L-trees by induction on the number of
vertices n.

3. Base n= 0, 1: the empty graph and single vertex graph are both S-trees and
base case L-trees. Ø

4. Ind. step: Someone gives me an S-tree G with n> 1 vertices, which means
that G is connected and acyclic.

5. IH: I may assume that, for any S-tree H with 0≤ k < n vertices, H is also a
L-tree.

6. I want to show that G can be built from an L tree by the recursive rule.
7. Since G is an S-tree with n> 1 vertices, it has a leaf v with parent u; remove

v and edge (u, v) to make graph G′.
I claim that G′ is an S-tree with n− 1 vertices: First, it is connected because
any two vertices s, t ∈ G′ could be connected by a path in G, and if that path
visited v it would do so by . . . uvu . . ., which we can replace by u to get a path
in G′. Second, it is acyclic because G was acyclic, and removing an edge and
vertex cannot make more cycles. Third, it lost vertex v.
Thus, the IH applies to G′, showing that it is an L-tree, and we can replace v
and (u, v) to show that G is also an L-tree.

8. QED

Proving L ⊆ S: I want to show that if a graph G is a L-tree, then G
is an S-tree. As before, assume that G is an L-tree, and show that G
is connected (there exists a path between any two vertices) and has
no cycles (all paths of length > 0 that leaves a vertex and returns
must repeat some edge.)

Notes: This direction is easier. We could even use weak induction
because we need only the k = n− 1 case of the IH.

1,2. We show that all L-trees G are connected and acyclic, by induction on the
number of vertices n.

3. Base n = 0, 1: the base case L-trees, the empty graph and single vertex graph,
are both S-trees. Ø

4. Ind. step: Someone gives me an L-tree G with n> 1 vertices;

5. IH: I may assume that, for any L-tree H with 0≤ k < n vertices, H is connected
and acyclic.

6. I want to show that G is connected and acyclic.
7. G must have been made by adding a vertex v and edge (u, v) to an (n− 1)-

vertex L-tree, G′. The IH tells me that G′ is connected and acyclic. But
then G must be connected, because we can connect v to any other vertex
by first connecting to u and then taking a path in G′, and all other pairs are
connected in G′. Furthermore, G is acyclic, because no cycle of length > 1
can touch v without using (u, v) twice, and cycles that don’t touch v would
be cycles in G′, but there are none.

8. QED, by induction.

We conclude with this characterization of trees from Q 9.

Theorem 13.5.3 (2 of 3⇒tree). Any graph G with n vertices that
has two of these three properties is a tree, and so has the third property
also:

1. Graph G is connected.
2. Graph G is acyclic.
3. Graph G has n− 1 edges.

Proof. If we have 1 and 2, we have an S tree, and Lemma 13.5.1
gives the third. 1 and 3 were enough to prove that there is a leaf
(Lemma 13.5.2) that can be plucked while leaving the graph con-
nected. Thus, by induction, any connected graph with n− 1 edges
can be built as an L-tree. And for any acyclic graph, each connected
component is a tree with one fewer edges than vertices, so to total
n− 1 edges, we must have only one connected component. QED

13.5.2 Counting Trees

53. How many different trees on n vertices are possible?
For this, we must decide what we mean by

different. If we think of vertices drawn as points
in the plane, or labeled with distinct ids, we
could mean that trees are the same if they have
the same set of edges. So let’s count labeled trees
on the vertex set [1..n].

Here is a way to disassemble a labeled tree
and form an (n − 2)-tuple of integers (ai) ∈
[1..n]n−2 known as the Prüfer code: for steps i = 1 to n − 2, re-
move the smallest leaf, and record the number of its neighbor as
ai . It is clear that this gives a sequence for every tree. In fact it is
invertible: determine how to return to the tree from the sequence.

Sketch: Initialize every vertex to degree 1, then go backwards through the se-
quence, incrementing the degree of ai and marking the lowest unmarked vertex
of degree 1.

54. Because there is a bijection from labeled trees to Prüfer codes, the
number of labeled trees on [1..n] is nn−2.

55. But if we think of vertices as unlabeled and indistinguishable, we
could define an equivalence relation that considers two trees to be
the same if there is some way to permute the vertex labels of one
so that both have the same set of edges. (This is a tree version of
isomorphism from 31.) It builds character to write down this relation,
and formally prove it is an equivalence relation. What are the two
unlabeled trees on four vertices?

http://en.wikipedia.org/wiki/Prufer_sequence

The number of unlabeled trees is much harder to count: it grows
a little slower than 3n. If you are interested, you can start with
sequence A55 in the On-Line Encyclopedia of Integer Sequences and
its references. The number of rooted unlabeled trees, sequence A81
is a little easier, but still has no closed form.

56. There is yet another notion of difference for trees that is natural
in data structures: the vertices are unlabeled, but the edges coming
out of each vertex u are stored in some order—the neighbors N(u)
are stored not in a set, but a (circular) sequence. Two ordered trees
would be considered the same if we can relabel vertices so that
corresponding neighbor sequences become the same. Draw pairs of
trees that distinguish between this definition and those of 55 and 53.

57. One nice way to write down a rooted ordered tree uses strings
from {[,]}∗ that have balanced brackets. For the base case, represent
a single node tree by the string []. For the recursive rule, if S
and T are strings of balanced brackets that represent rooted trees,
then cons(S, T) makes the root of S a child of the root of T . E.g.
cons([], [[]]) = [[] []] makes a single node a child of a two-node
tree, to produce a binary tree on three nodes.

We can omit the outermost pair of brackets, so that an ordered
tree with m+ 1 nodes becomes a string with m pairs of brackets,
open [and close], in which no prefix has more close] than open [.
We can count these by choose and the sum rule. What five strings
represent the five rooted ordered trees on 4 vertices? ?

58. It is easy to count the number of strings of 2m brackets with m
open: just choose locations for the opens:

�2m
m

�

. This set contains
unbalanced strings that have a prefix with more closes than opens.

http://oeis.org/A000055
http://oeis.org/welcome
http://oeis.org/A000081

To count these, create a bijection between the set of unbalanced
strings having m [and m], and the set of all strings with m− 1 [
and m+ 1]: Run your finger along an unbalanced string until you
pass the first position that has more close] than open [, then swap
braces [⇔] for the rest of the string. Argue that this produces a
string with m+ 1 close] and m− 1 open [braces, and that this is
invertible–for every string of 2m with m+ 1 close], you can make
a unique unbalanced string of m open and close that violates the
prefix property.

59. This gives the count of binary trees of m+ 1 nodes as the mth
Catalan number:
�2m

m

�

−
� 2m

m+1

�

= (2m)!
m! m! −

(2m)!
(m+1)! (m−1)! =

�

1− m
m+1

�

· (2m)!
m! m! =

1
m+1

�2m
m

�

.

60. The full binary trees, in which every non-leaf node has two children,
a left and a right, are the most useful subset of the ordered trees of
56. They can also be represented as balanced strings of braces. Here
we represent a leaf by an empty string, and a non-leaf node with
child strings L and R by [L]R. Now with n non-leaf nodes we get a
string of n pairs of balanced braces, also counted by the nth Catalan
number.

The fact that ordered trees and full binary trees each have a
bijection to balanced strings of braces means they have a bijection
to each other. Describe this bijection, and its implication for storing
ordered trees in a binary tree data structure.

61. The most common way to store a tree would use pointers for each
edge. Since each pointer must be at least lg n bits long to select one
of n nodes, the total memory for pointers is at least n log n bits. The

http://en.wikipedia.org/wiki/Catalan_number
http://en.wikipedia.org/wiki/Catalan_number
http://en.wikipedia.org/wiki/Catalan_number

connection to balanced braces shows that 2n bits suffice to store a
tree structure, a significant savings. You can think of reading a string
of braces as a recipe to traverse and build a tree: for each open [,
you create a new edge and go down it to a new node, and for each
close] you go back up the edge you on which you came down to
you current vertex. We will use this idea to compress planar graphs
in 78.

13.6 Planar Graphs and Triangulations

62. Recall that in 14 you created a triangulation on your 9 points
by adding as many edges connecting points as you could without
two edges crossing. How many edges could you add to your set of 9
points? Is there more than one way to add edges? Do you always
get the same number of edges? The same number of triangles?

63. Your drawing should satisfy Euler’s relation on the number of
vertices, edges, and faces of a planar graph: f − e + v = 2, if you

Figure 13.9: Platonic
solids. (photo: Yvette
Soler)

remember to count the face outside the rect-
angle. This is like putting the graph on a
sphere, so check that Euler’s relation also
holds for objects like the Platonic solids: the
regular tetrahedron, hexahedron (aka cube),
octahedron, dodecahedron, and icosahe-
dron.

64. One important property of drawings in
the plane: any cycle separates the plane into one bounded region (or

http://en.wikipedia.org/wiki/Platonic_solid
http://en.wikipedia.org/wiki/Platonic_solid
http://www.flickr.com/photos/jesseyvette/5616267350/
http://www.flickr.com/photos/jesseyvette/5616267350/

more if the cycle is allowed to intersect itself) and one unbounded
region. (We get the same on a sphere if we arbitrarily distinguish
some region as “unbounded,” perhaps by adding a “point at infinity.”)
This is one form of the Jordan curve theorem, which is usually stated in
continuous term that rule out wild behavior such as infinite changes
of direction. (Since cycles in a graph are finite, all we need is that
edges aren’t wild, and sraight lines or arcs certainly qualify.)

A consequence of the Jordan curve theorem is that any drawing
of K3,3 in the plane must have a crossing. Start with a 4-cycle K2,2 on
a sphere, then add each remaining vertices and their edges. Explain
why this must happen as depicted in the margin if we try to avoid
crossings.

Draw the 4-cycle K2,2 on a sphere without crossings and you must
get two regions bounded by the cycle. Add one more vertex to
make a K3,2. You must put it in one of the two regions; we’ll call
the other one unbounded. Now, the last vertex must be in the
unbounded region, since that is the only region incident on the
original two vertices it must connect to. But now the final edge
must cross the cycle to go from unbounded to bounded.

65. We can prove Euler’s relation in the form e = (f − 1) + (v − 1) by
partitioning the edges into two spanning trees. First, make one for
vertices: For every vertex p, try to choose an edge by the following
rule: if an edge goes straight down from p, choose it, otherwise
choose the lowest edge that goes to the right from p. Argue that this
chooses v − 1 edges, and that they form a connected graph. Thus,
by 9, they form a tree spanning all vertices.

Every vertex except the rightmost (lowest rightmost if there are ties) chooses an
edge down or to the right. If you follow chosen edges you keep going down or
right until you reach the lowest rightmost point. Since, all vertices are connected
with v − 1 edges, we have a tree.

66. Argue that the unchosen edges form a spanning tree of the faces.
Here we don’t initially know their number, so must argue that they are
connected and acyclic. It helps in drawing pictures on your scratch
paper to draw the duals of the unchosen edges as arcs connecting
nodes in the faces incident on the unchosen edges.

Suppose, for the sake of deriving a contradiction, that there is a cycle of faces
among the unchosen edges. If we draw the dual cycle, we notice that no chosen
edge may cross, and an unchosen edge may cross it only once. Any unchosen
edge involved in the cycle puts a vertex inside and a vertex outside the cycle. But
the chosen edges form a spanning tree of the vertices, so some chosen edge must
cross an edge of the cycle, a contradiction.

On the other hand, suppose that the duals of unchosen edges form a graph that is
not connected. So there is a non-empty collection of faces for which you cannot
reach the infinite face by crossing only unchosen edges. This means that every
edge around this collection must be chosen, but that would give a cycle of chosen
edges, which is also a contradiction.

As a result, the duals of unchosen edges form a spanning tree of the faces, and we
know that there are f − 1 of them. This proof works equally well on the sphere
and on the plane.

67. We can determine how the number of triangles and edges is
related to the number of vertices by combining Euler’s relation with

the fact that summing face degrees counts edges twice. This is
important to know when allocating space to store meshes for video
game scenes or characters. Argue that if b is the number of points on
the boundary of a triangulation, then the number of triangles inside
the hull is exactly 2v − 2− b, and number of edges is 3v − 3− b.

Define notation to help. The number of triangles t = f − 1. If we count every
triangle 3 times, we count boundary edges once and interior edges twice, so
b+ 3t = 2e. We use this to eliminate 2e from two times Euler’s relation: 2(t +
1)− (b + 3t) + 2v = 4. Simplifying gives the expression for t, and plugging in
gives the expression for e.

68. The Platonic solids are those in which every vertex has the same
degree dv and every face has the same degree d f . Now that we know
that Euler’s relation, f − e+ v = 2 holds, show that there can be only
five Platonic solids.

Summing degrees gives f d f = vdv = 2e, so Euler says 2e/d f − e+ 2e/dv = 2, or
e = 2d f dv/

�

4− (d f −2)(dv−2)
�

. Since each degree is at least 3, the denominator
is positive only if the larger degree is less than 6, and smaller degree is 3. This
leaves five pairs (dv , d f), each of which generates a Platonic solid.

69. One of the great things about learning new mathematical tricks
and tools in computer science is that you get to use them in unex-
pected applications. Suppose that you have a massive multiplayer
game in which players are traversing a terrain represented as a tri-
angular mesh in which each triangle knows the coordinates (x , y, z)
of its vertices, and has pointers to the three neighboring triangles.
Assume that if you ignore the z-coordinates, you see a triangulation
in the plane with no triangle edges crossing.

Notice that you can determine whether a non-boundary edge
would be chosen for a spanning tree of 65 by knowing the other
vertex of its two neighboring triangles and the “downward” direction
(easiest if this is parallel to the negative y axis, but with a little
trigonometry, it can be any direction.) This requires no modification
or marking of the triangulation itself.

70. Turn this into a way to visit every triangle by treating the spanning
tree as walls of a maze and walking with your left hand on the wall.
All you need to remember is how you entered your current triangle.

71. Show that if you number each triangle the first time you visit
it, then any line in the downward direction encounters triangles
in increasing order. In other words, if I draw triangles when I first
encounter them, and am standing at y = −∞, then I’ll be drawing
in back to front order and will end up seeing only the triangles I
am supposed to see. This is called the “painter’s algorithm,” and
multiple players can be using it simultaneously on the same mesh.

72. Euler’s relation holds on the plane and sphere because there are
no holes or handles. On a donut or Klein bottle world the count
would be a little different: f − e + v = 0. To extend the formula
would take me too far afield, so I leave that for your own exploration
or another course. But do look at your proof in 66 and figure out
where it would break down on a donut.

My proof in 66 does not work on a donut or Klein bottle because these surfaces
have cycles that do not separate the surface into two pieces.

73. No-one knows if two point sets in general position always have

compatible triangulations∗: Given any two point sets A= {a1, . . . , an}
and B = {b1, . . . , bn}, is there always a set of pairs E ∈ [1..n]2

that defines a triangulation of both sets? That is, EA = {(ai , a j) |
(i, j) ∈ E} are a maximal non-crossing set of segments for A, and
EB = {(bi , b j) | (i, j) ∈ E} are a maximal non-crossing set of segments
for B. I think the answer is “yes,” if the points are in general position:
no line contains more than two points and if A and B have the same
numbers of points on their convex hulls (the shape formed if you
snap a rubber band around a set of points). You can make two point
sets for which the answer is “no” if you violate one of those two
conditions. Having compatible triangulations might give a nice way
to morph one set of points onto another.

74. Another open problem is to connect the dots: For any triangulation
with e edges and an m extra points, can you find a path that connects
all the points and has less than 2e crossings with edges? Here the
question is not to compute the fewest crossings, but to guarantee
that there is always a way to cross few edges. This would be a good
order of player positions if you wanted to determine which triangle
each player was standing on by having your search algorithm step
through the triangles between consecutive players positions.

13.6.1 Drawing and encoding planar graphs

Walter Schnyder [23] showed how to partition the edges

∗The Open Problems Project, P38

http://cs.smith.edu/~orourke/TOPP/P38.html

of a triangulation in the plane into three directed
spanning trees, colored red, green, and blue, that
cross in a very controlled way: except for three
root vertices on the infinite face, every vertex
has three outgoing edges, one red, one green,
and one blue in counter-clockwise order. Any
incoming edges arrive between the outgoing edges of the other two
colors. This strange property has surprising implications for drawing
planar graphs on graph paper and compressing them.

75. Show from this property, and the fact that no graph edges cross,
that all single color paths end at a root, and that two paths of different
colors cross in at most one vertex.

Figure 13.10: Show-
ing that red cycles are
impossible

Since every non-root vertex has outgoing edges of each
color, the only way to follow one color and not reach a
root would be to find a cycle. Suppose, for the sake of
deriving a contradiction, that at least one single-colored
cycle of non-root vertices exists, and focus on the cycle
that encloses the smallest number of faces.

It cannot enclose a smaller cycle, nor can it enclose a root vertex since those lie
on the infinite face. But observe how another color comes into the cycle: If the
cycle is red, and bounds a region to the left, then each cycle vertex starts a green
path into the cycle that cannot exit the cycle, reach a root, or form a green cycle.
Other colors and sides lead to similar contradictions. Thus, there can be no cycle.

Figure 13.11: Red and
blue intersecting twice.

Consider two paths, red and blue, which must end at
roots. Extend them to infinity without crossing in the
infinite face. Note that blue must cross the red path left
to right (from red’s perspective), so to cross twice, we
must have a region bounded by portions of blue and red
that contains the start points of both the blue and the red
paths.
Each vertex starts a green path into this region, but there
is no exit or root. This contradicts the assumption that
the red and blue paths can intersect twice.

76. Let’s see how to find a coloring. First, assume that
the graph is fully triangulated, so that every face is a tri-
angle. If necessary, add curved edges outside the convex
hull so that the infinite face is a triangle with three vertices:

Figure 13.12: Vertices
r, g, and b and their
spanning trees.

r at top and g b horizontal, as in Fig-
ure 13.12. These three vertices, the only
exceptions to the coloring rules, each have
a single outgoing edge: color edge (r, g)
green, (g, b) blue, and (b, r) red. Direct all
other edges incident on r toward r and color
them red. Now, can you figure out a proce-
dure that will color the rest of the edges by
the rules? The first box is a hint.

Remove triangles incident to edges colored red; the remaining triangles are in a
region bounded by g b and a path from g to b. Edges of this path will eventually
be colored blue or green.

Following the hint, let v be the first vertex after g on this path that has no edge
to non-adjacent vertices on this path. Direct the two path edges away from v and
color them green and blue, then direct all uncolored edges into v and color them
red. Remove the incident triangles and continue.

Show by induction that your procedure will succeed.

77. Notice how every vertex, except r g b, lies on a red, a blue, and
a green path to the vertices r, g, and b, respectively. These paths
define three regions; include each path with the region to its left.
For each vertex, count up the number of vertices in the regions on
and to the left of the red and the green paths, and make those the
coordinates of that vertex. This assigns each vertex a coordinate on
an (n− 2)× (n− 2) grid. The graph can now be drawn compactly,
with straight lines.

I don’t have a concise proof that the drawing has no edge
crossings—there are too many cases for how the four vertices of
the two edges can lie in their two spanning trees. A more indirect
proof may be better, but that is best left to a graph theory course.
But perhaps you could work through one case using the observations
of 75.

78. We can use the Schnyder trees to count and to compress trian-
gulations. This type of compression is used in video games because
most scenes and characters are represented by meshes of triangles
that are painted with textures.

The left-to-right (counter-clockwise) way to assign colors in 76
leads to a clockwise way to find a spanning tree of all vertices that
uses one edge leaving each vertex. Start at the top of root r, and
trim the edges to g and b, leaving stubs behind. Then repeat until

you return back to the top of r: continue clockwise around your
current vertex v until you meet either an edge (u, v) that has not
been trimmed, or the edge (v, w) that brought you to v. In the first
case, go “down” edge (u, v) (opposite its direction), make u your
current vertex, and trim the other two edges out of u to stubs. In the
second case, return “up” edge (v, w) and continue with w as your
current vertex.

Prove that this visits every non-root vertex once, so that you have
a spanning tree of all vertices but g and b, and each vertex has two
stubs.

79. The cool thing is that you can repeat this clockwise traversal
to rebuild the triangulation from the spanning tree. Start at r and
create g and b for the two stubs. Now, traverse like in 61: each
time you go down, make an edge to a new vertex. Each time you
hit a stub, create an edge to close the triangle clockwise from the
current vertex. Each time you go up, you change your current vertex.
Convince yourself that this gives back the original triangulation.

80. The traversal in 61 used two symbols. Here it looks at first as if
we need three, for down, up and stubs. However, at each traversed
vertex we hit both stubs before we go up, so we can encode down as
1 and both stubs and up as 0, and simply keep track at each vertex
how many zeros we’ve seen so far. How many 0s and 1s suffice,
therefore, to encode a triangulation? How many triangulations are
there?

We encode the triangulation as a string of 4(n−2) bits, n−2 of which are 1s. The
total number of such strings is an upper bound on the number of triangulations:
�4(n−2)

n−2

�

< 23.2452n. Thus, you can represent a triangulation with the 4n bits easily,
and compress further to 3.25n bits with a little more effort.

13.7 Exercises and Explorations

Quiz Prep 13.1. Draw a graph . . .

1. that has a cycle (highlight it) that is not simple. ?

2. that is two-colorable (and therefore bipartite), and not a tree.

3. that is planar and requires four colors K4 works

4. that has more than one Eulerian cycle.

5. that has no Eulerian path.

6. that has a Hamiltonian path (highlight the path).

7. with no Hamiltonian path.

8. that is connected, but may or may not be strongly connected if each edges is
given a direction.

9. that is connected, but cannot be strongly connected if every edge is directed
toward one of its vertices.

Exercise 13.2. In an undirected graph G = (V, E), define the rela-
tion “is reachable from” on vertices: ∀a, b ∈ V we say that a R b iff
there exists a path starting at b that ends at a. Prove that R is an
equivalence relation: that is, it is reflexive, symmetric, and transitive.
What are the equivalence classes of R in graph terminology? É

Exercise 13.3. Prove that an undirected graph G is a tree iff it has
a unique path between any pair of vertices.

Prove that an undirected graph G is a tree iff adding any edge
(u, v) that is not already present forms a single cycle.

Exercise 13.4. In the Max in a list algorithm of Section 11.2, show
that an algorithm that performs fewer than n− 1 comparisons will
return the wrong maximum on some list. Consider the graph whose
vertices are list entries with an edge between two vertices iff their
list entries are directly compared.

É

Puzzle 13.5. Sprouts is a pencil and paper game invented by J. H.
Conway and M. S. Paterson. Start with n spots on the paper. Each
player in turn draws a line connecting two spots that are the ends
of less than three lines without crossing any existing lines or spots.
This line sprouts a new spot, which can be used once more. The last
player who is able to do this wins. Since new spots are created, it
may not be obvious that this game terminates. Show that it does, and
figure out the minimum and maximum number of plays as a function
of n. (There is a conjecture that the first player can guarantee a win
iff n mod 6 ∈ {3,4,5}, and this has been verified by computer for
n< 45 spots.)

Puzzle 13.6. Dominoes are wooden rectangles with
numbers on each end. Under what conditions can an

Hint:
In what ways could you
make a graph from a set
of dominoes?

arbitrary collection of dominoes be lined up
end to end so that the numbers match where
they touch? (I have a double-9 set, and
I’ve seen double-12, but as a puzzle you can
think of numbers being [1..n] on each side. You don’t get the all the
dominoes in a set, though. . .)

Figure 13.13: Swap-
ping minds

Puzzle 13.7. Prove the Futurama theo-
rem [13], which writer Ken Keeler created
for the Season 6 episode, “The Prisoner
of Benda:” Professor Farnsworth and Amy
have created a mind-swapping machine. Af-
ter using it on several characters, they dis-
cover that no pair of minds can survive a
second swap, although two minds can swap
back with the help of some fresh bodies.

If n people are in the wrong bodies be-
cause of some unknown set of swaps. how
many helpers are needed to sort everyone out? (Convince yourself
that one extra body is not enough.) Keeler’s Futurama theorem says
that you never need more than two. Describe how, and prove that
your method works.

You’ll want to begin by assigning names to bodies and minds –
defining notation can help clarify questions. Since bodies are put
into the machine, I suggest numbering bodies so that body i wants
mind i, but initially contains mind mi .

Hint:

Start by arranging bodies so that body mi is just ahead of body i. Note that this
puts bodies into one or more cycles so that each mind wants to move into the
body just ahead. Determine how to fix each cycle with two helpers.

É

Exploration 13.8. Many puzzle-based video game include graph
puzzles. Two examples:

Minesweeper: On a grid of vertices, the game creates invisible edges from each
mine to its eight neighbors. Clicking on a vertex reveals a mine (you lose)
or its in-degree. Whenever in-degree is zero, then the computer recursively
clicks all eight neighbors for you, too.

Bejeweled: On a grid of colored vertices, create edges between pairs of same-
color vertices whose positions differ by one in x or by one in y . Clicking on
any vertex removes the entire connected component; larger components
earn larger scores. Vertices drop down to fill in, and the game continues.

Notice how these games hide information, or change it dynam-
ically; these are two examples of information/action handles that
can be added to mathematical puzzles to turn them into games [5].
Other handles include online (e.g., Tetris) or discrete repair (e.g.,
Planarity).

Identify a graph from a puzzle in a game that you have played,
and any information/action handle that was used. Describe whether
looking at it as a graph gives you new insights into the solution.
Manage your time, though. You may not count more than 5 minutes
of replaying the game as “doing homework.”

http://planarity.net

Exploration 13.9. In one classic peg puzzle, you have a line of ten
holes that start with 4 blue pegs on the left, two empty holes, then 4
blue pegs on the right. A peg may move into an empty hole that is
adjacent, or by jumping over a single peg of the opposite color, but
blue pegs must move right and red pegs must move left. The goal is
to get the pegs to swap: all 4 red at left and all 4 blue at right.

First, if we were to build a graph to capture all possible arrange-
ments and the movements between them, what would we find?

• How many different arrangements of colored pegs in holes are possible? ?

• How many of these arrangements have a pair of reds blocking a pair of
blues? ?

• In any given arrangement, what is the maximum number of possible moves?
?

• How many jumps will have to take place to go from the initial arrangement
to the solution, and how many single step moves?

So the graph here would be too big to build by hand, but easily
managed by computer. With the graph you could answer many ques-
tions: How many arrangements allow no moves? How many of those
can you reach from the start position? How many arrangements
allow the maximum number of moves? And, of course, is there a
solution? É

Exploration 13.10. Radia Perlman summarizes her 1985 pa-
per [18] as a poem (a pastiche on Joyce Kilmer’s “Trees”).

Algorhyme
I think that I shall never see

A graph more lovely than a tree
A tree whose crucial property
Is loop-free connectivity.
A tree which must be sure to span
So packets can reach every LAN.
First the Root must be selected
By ID it is elected.
Least cost paths from Root are traced.
In the tree these paths are placed
A mesh is made by folks like me
Then bridges find a spanning tree.

This work is the source of the Spanning Tree Protocol (STP), which
routers use to prevent bridge loops that mess up network routing
tables. Find this paper and read it to create a summary of how the
bridges find a subgraph guaranteed both to be a tree and to span.

Exploration 13.11. Listen to Robert Lang’s TED talk on how math
has affected the art of origami design.

Many origami models fold completely flat before they are shaped
into their 3-d forms. If you unfold such a model, you’ll see creases
for mountain and valley folds (turning the paper over makes moun-
tains into valleys, and valleys into mountains). Lang mentions four
mathematical rules for crease patterns of flat origami:

1. Crease patterns are planar graphs whose faces can be colored with two
colors.

http://www.wildpackets.com/resources/compendium/interconnect_devices/bridges_loop
http://www.wildpackets.com/resources/compendium/interconnect_devices/bridges_loop
http://www.ted.com/talks/robert_lang_folds_way_new_origami.html

2. At any vertex, the number of valley and mountain folds always differ by
two. [Maekawa’s theorem]

3. Around any vertex, the odd numbered angles add up to 180 degrees, as do
the even. [Kawasaki’s Theorem.]

4. A sheet can never penetrate a fold.

Prove the first three rules. Note that Kawasaki’s theorem is trivial if
all creases extend through a point p, so create a fold where some
creases end at p to see if you still believe it.

http://mathworld.wolfram.com/MaekawasTheorem.html
http://en.wikipedia.org/wiki/Kawasaki's_theorem

Chapter 14

Discrete
Probability

If the host is required to open a door all the time and offer
you a switch, then you should take the switch. But if he has
the choice whether to allow a switch or not, beware. Caveat
emptor. It all depends on his mood.
My only advice is, if you can get me to offer you $5,000 not
to open the door, take the money and go home.

—Monty Hall (né Monte Halperin) [25]

The origin of the study of discrete probability was an exchange of
letters between between Pascal and de Fermat about how to split
the pot in an interrupted gambling game by carefully counting the
set of possible ways that the game could have continued. From
this has developed a number of simple, carefully-chosen definitions
that lead to some surprising and powerful conclusions. Probability
helps us work with large or uncertain data sets and processes; the
mathematics that I illustrate with coin flips and dice rolls directly
applies in trendy applications of computing like data mining, risk
analysis, quantum physics, network modeling, decision theory, and
statistical thermodynamics.

430

((todo. this chapter is not complete or even ready for read-
ing.))

Objectives: After working through this chapter and its exercises
you will be able to use the language of discrete probability to ((todo.
This chapter is only half here. finish this))

probability of events in sample spaces random variables expecta-
tion

Averaging smooths out special cases. If we know that the average
is large, then we know that some cases must be large.

bookkeeping device, analyze typical rather than worst-case be-
havior, discover possibilities by studying average.

14.1 Definitions

A random experiment, such as flipping a coin, throwing two dice,
shuffling a deck of cards, or being dealt a hand of 5 cards, is a
repeatable experiment that may not always have the same outcome.
Each individual outcome is an elementary event, any set of outcomes
is an event, and the set of all possible outcomes is called the sample
space.

For example, the sample space of rolling two 6-sided dice, one
white and one De Morgan, has 36 elementary events, including
snake eyes, . In the game of Craps, the first roll of two dice
can lead to the events of rolling craps and losing with 2,3, or 12
spots, { , , , }, rolling a natural and winning with 7

http://en.wikipedia.org/wiki/Craps

or 11, { , , , , , , , }, or rolling any other
combination and having to roll again.

For a sample space S, the set of all possible events is the power set
2S . The subset ; is the null event, which can never happen, and whole
set S is a certain event, which must happen. Two events A, B ⊆ S are
called mutually exclusive if A∩ B = ;; craps and natural are mutually
exclusive, but snake eyes and craps are not.

A probability distribution for sample space S assigns to each
subset∗ of the sample space S a real number satisfying three simple
axioms:

A1. For all A⊆ S, the probability Pr{A} ≥ 0, and
A2. Pr{S}= 1,
A3. For mutually exclusive events A, B ⊆ S, we have Pr{A∪ B}= Pr{A}+ Pr{B}.

From these axioms, we can already draw some conclusions. Can you
justify each of these?

C1. Pr{;}= 0.

Use set properties & A3, then subtract: Pr{A}= Pr{A∪ ;}= Pr{A}+ Pr{;}.
C2. If A⊆ B, then Pr{A} ≤ Pr{B}.

Use set props, A3 & A1: Pr{B}= Pr{A∪ (B \ A)}= Pr{A}+ Pr{B \ A} ≥ Pr{A}.
C3. For any A, B ⊆ S, we have Pr{A∪B} = Pr{A}+Pr{B}−Pr{A∩B} ≤ Pr{A}+Pr{B}.

Set props, A3 & A1: Pr{A∪ B}= Pr{A∪ (B \ A)}= Pr{A}+ Pr{B} − Pr{A∩ B}.

∗The mathematician will say, “Not necessarily all sets,” and define σ-algebras,
which are non-empty families of sets that are closed under complement and finite
union, but we need not worry about that refinement here.

http://en.wikipedia.org/wiki/Sigma-algebra

Notice that any probability distribution is a function defined on sub-
sets of the sample space, Pr: 2S → R. It is traditional to use slightly
different notation because there are other functions (in particular,
random variables, defined in Section 14.2) that have the same do-
main and range but are not necessarily probability distributions.

Two events A, B ⊆ S are independent iff Pr{A∩B} = Pr{A} ·Pr{B};
that is, iff knowing that you have a sample in one event gives you no
clue whether that sample is in the other. Thus, whether you roll even
and craps is independent, but whether you roll even and natural is
not.

We say that a 6-sided die is fair iff the outcome of each roll is
independent, and the probability of each face is 1/6, giving the uni-
form distribution. Axioms A1–A3 determine that the probability for
any other event A⊆ [1..6] equals |A|/6. For example, the probabil-
ity of is 1/6, the probability of less than 3 spots is 2/6, and the
probability of even is 1/2. With two fair dice, one white and one
De Morgan, each of the 36 elementary events would be assigned a
probability of 1/36. The probability of snake eyes is 1/36, of craps
is 4/36 = 1/9, and of a natural is 8/36 = 2/9. With probability
1− 3/9= 2/3, you’ll need to roll again.

With two white dice, there are only 21 different events, because
we cannot distinguish between the two ways to roll a 3, for example,
if we cannot tell which die shows which value. The 6 events of
rolling doubles (. . .) would each have probability of 1/36,
and the other 15 events of rolling two different numbers would have
probabilities of 2/36= 1/18. You can check that 6/36+ 15/18= 1.

14.1.1 Monty Hall and sample spaces

Let’s look at how phrasing a popular puzzle, the Monty Hall ques-
tion [26], in the language of sample spaces and events helps us
clarify assumptions. You are a contestant on a televised game show.
Monty Hall will show you three doors; one door hides a new car, the
remaining two doors each hide a goat. You will choose one door, and
Monte Hall, because he knows where the car is, he will then open a
door that you did not choose and show you a goat. Do you switch
to the other unopened door, stay with you first choice, or does it not
matter?

As I have phrased the problem, you want to switch. In order to
see why, let’s consider the sample space of 27 triples S = {1,2,3}3,
where the triple (A, B, C) indicates that you initially chose door A,
Monty Hall opened door B, and in the end you learn that the car
was behind door C .

Before the game begins, any triple is possible. Once the car is
placed, 2/3 of the triples are impossible, but you don’t know which.
You can think of the car placement as a random experiment∗ that
partitions S into 3 disjoint events, S = S1] S2] S3, with each event
SC being the set of the nine triples ending with with C . You might
as well assume that each event has probability 1/3. (We will revisit
this assumption below.)

Let us also assume that your initial choice A and the location C
of the car are independent: This implies that you have no inside
information or extra-sensory perception, and that Monty is neither

∗For the individual contestant, who gets one chance to play, it isn’t really a random
experiment, but for Monty (and for the composite of all contestants) it is.

predicting your guess, nor cheating by moving the car after your
guess.

Figure 14.1: Elementary
events possible after choos-
ing door A= 1; Monty cannot
chose the options crossed off.

Now, suppose that you initially
choose door A= 1. Figure 14.1 lists the
nine possible elementary events of the
form (1, B, C) that can remain in the
sample space after your choice. Each
column C contains three elementary
events remaining in the set SC , which
we assumed has probability 1/3.

The problem statement constrains
Monty’s choice of his door B in two
ways: he cannot open the door that
you opened, and he cannot open the door that hides the car. Fig-
ure 14.1 indicates that if your initial guess was correct (C = 1), then
Monty has a choice between two doors with goats, but in the other
two events Monty’s choice is forced, so he is essentially telling you
where the car is.

If you stay with your initial choice, you win only in event S1, but
if you switch, you win in both events S2 and S3. Since each event
happened with probability 1/3, you double your chance of winning
if you switch.

Calculating probabilities makes sense only for experiments that
can be repeated under the same conditions, so it is important to
be precise about these conditions.∗ A slight change to the problem

∗After Maralyn vos Savant [26] popularized this puzzle, the real Monty Hall showed
her statement was ambiguous because it didn’t force him to offer the switch: on the

statement can change the probabilities. For example, suppose that
after you choose door A, Monte Hall will always open door B =
1 + (A mod 3), no matter what is behind it. If he reveals the car
(event SB with probability 1/3), you lose immediately. Otherwise
you now know you are in one of the other two events, each of
probability 1/3, and it doesn’t matter whether you keep your door
or switch.

Your chances are much better if Monty Hall must show you a goat
than if he just happened to show you a goat, even though the snapshot
of the game at the instant you make your switch/stay decision looks
the same. This sensitivity to the conditions and assumptions is one
reason this puzzle generates much debate.∗ Mathematical language
encourages us to be precise about the conditions and assumptions
that underly our conclusions.

We assumed that the car was equally likely to be behind any of the three
doors. What if we have kept track of the history, and expect it to be behind
door i with probability pi? If we choose the door with smallest probability
and switch, then we would win with probability 1−min{pi}. So Monty’s
best strategy is to make that minimum as large as possible, by setting all
pi = 1/3.

We also assumed that A and C were independent. Suppose, however,
that Monty knows that you plan to initially choose door j with probability
q j and then switch; he can put the car behind the door you are most likely
to choose, and you win with probability 1−max{q j}. So your best strategy
is to choose your door A uniformly at random—setting all q j = 1/3. This

show, he could open A if that hid a goat, or offer cash not to open any door [25].
∗vos Savant reports tens of thousands of letters on this puzzle, including over

1,000 from PhD’s incorrectly arguing that switching gave no advantage [14, 25].

makes the maximum as small as possible.

14.2 Random variables and expectation

A random variable X is a function on subsets of a sample space
X : 2S → R, Think of it as a variable whose value you won’t know
until you actually carry out a random experiment. Examples include
the number of spots on two dice, which you don’t know until your
roll them, or the amount you win on a lottery ticket (minus the price
you paid for it), which you don’t know until the numbers are called
(this amount is almost always negative).

Although we do not know the value of a random variable, we can
determine its expected value or expectation: the sum over the possible
values of the random variable, each weighted by the probability that
it takes on that value: E(X) =

∑

r∈R rPr{X = r}. For example, what
is the expected number of spots on one roll of a fair die? Let X be
the random variable for number of spots showing with one roll. The
expected number of spots showing,

E(X) = (1+ · · ·+ 6) 1
6 =

6·7/2
6 = 7

2 = 3.5

What is the expected number of spots showing on two fair dice? The
sample space is [2 . . . 12], and you roll 2 spots in 1/36 ways, 3 spots
in 2/36 ways, . . . , 7 spots in 6/36 ways, 8 spots in 5/36 ways, . . . ,
12 spots in 1/36 ways, from which we could calculate the expected
number of spots. But there is a much easier way using the next
lemma.

We can do arithmetic on random variables to make new random
variables. If X : 2S → R and Y : 2T → R are random variables and
α ∈ R is a real number, we can make new random variables

A= αX Do the experiment for X and multiply the number you get by α.

B = X + Y Do the experiment for X , then for Y , and sum the results.

C = X Y Multiply the results of experiments for X and for Y .

Note that X + X may be ambiguous: does it involves two separate
experiments, or is it the same as 2X , which doubles the result of one
experiment? To avoid confusion, name two separate variables if you
mean two experiments. For example, to roll two six-sided dice, let
random variable X b be the number of spots on a roll of a De Morgan
die, and Xw be the spots on a white die. Their sum, X b + Xw, is a
function from sets of two dice rolls to the values in [2..12]. It is
surjective, hitting both even and odd values, where 2X b hits just the
evens.

The next lemma says that the expectation of a sum is the sum
of expectations.∗ Thus, rolling one De Morgan and one white dice,
E(X b + Xw) = E(X b) + E(Xw) = 7.

Lemma 14.2.1. For random variables X and Y , and real α, the ex-
pectation E(αX+Y) = αE(X) + E(Y).

1. E(X + Y) =
∑

r∈R rPr{X+Y = r} defn of expectation
2. =

∑

r∈R

∑

x∈R rPr{X=x ∧ Y=r − x} defn rnd var X + Y

∗A mathematician would say that expectation is a linear functional.

3. =
∑

x∈R

∑

r∈R rPr{X=x and Y=r − x} reorder sums
4. =

∑

x∈R

∑

x+y∈R(x + y)Pr{X=x ∧ Y=y} replace r = x + y
5. =

∑

x∈R

∑

y∈R(x + y)Pr{X=x ∧ Y=y}
∑

x+y∈R ≡
∑

y∈R

6. =
∑

x∈R x
∑

y∈R Pr{X=x ∧ Y=y} distribute &
7. +

∑

y∈R y
∑

x∈R Pr{X=x ∧ Y=y} reorder sum
8. =

∑

x∈R xPr{X=x}+
∑

y∈R yPr{Y=y} first term sums all y
9. E(X) + E(Y) defn of expectation.

QED

Stop and work through that detailed derivation, because it will
give you an appreciation for being able to use the linearity of expec-
tation without needing to derive it afresh each time. No single step
is hard.∗

An indicator random variable takes on the value one if an event
happens and zero otherwise: I : 2S → {0,1}. Expectation for an
indicator random variables is especially simple: E(I) = 0 · Pr{I =
0} + 1 · Pr{I = 1} = Pr{I = 1}. As we will see, indicator random
variables are useful bookkeeping devices for analyzing events that
may occur in computer programs. Here is another example.

In ?? we saw that, for a given r, if you choose a large enough
complete graph, Kn, then no matter how you two-color the edges,
you will always find a complete subgraph Kr that is monochromatic.
Here we use expectation to show the opposite for small graphs:

Lemma 14.2.2. For a complete graph Kn with n≤ 2r/2, there exists
a coloring with no monochromatic Kr .

∗In fact, once you work through it, you’d probably be happy if I combined steps,
but because of the importance I made this proof unusually detailed.

Proof. Let each edge of the graph independently choose red or
blue with probability 1/2. The probability that a given r-clique
is monochromatic is (1/2)(

r
2)−1, because once the first edge chooses

its color, every other edge must choose the same.
The number of r-cliques in complete graph Kn is

�n
r

�

. The ex-
pected number of monochromatic r-cliques is the product of these;
can you explain why?

Denote the vertex set of our complete graph Kn by V = [1..n]. For each r-clique
Y ∈

�V
r

�

, define an indicator random variable XY = IRV(all edges
�Y

2

�

have the
same color); that is, XY = 1 iff Y is monochromatic. The expected number of
monochromatic r-cliques is therefore the sum over all r-cliques Y of XY . Using
linearity of expectation, we can calculate the expected number of monochromatic
r-cliques as a function of n and r:

E
�

∑

Y∈(Vr) XY

�

=
∑

Y∈(Vr) E (XY) =
�n

r

�

/2(
r
2)−1.

For r ≥ 2,
�n

r

�

< nr and r2/2 ≤
�r

2

�

− 1. By the hypothesis of
this lemma, n ≤ 2r/2, so the expected number of monochromatic
r-cliques is less than one. But since the number of monochromatic r-
cliques in any coloring is an integer, for the average over all colorings
to be less than one, then at least one coloring has no monochromatic
r-cliques. QED

((todo. Decide how much to say about games here, or make a game
theory.)) The proof of Lemma 14.2.2 actually implies that at least half the
random colorings of Kn, with ??, do not have monochromatic r-cliques.
But checking that a coloring has no monochromatic cliques is still time
consuming!

This is a non-constructive proof and gives no idea how to actually find
such a coloring. You can turn this into a Maker-Breaker game: Start with
n vertices and no edges. Maker proposes an new edge (i, j) and Breaker
assigns the color red or blue. Maker wins if a monochromatic r-clique is
created.

Maker can win if the game is played for 22r+1 rounds using a recursive
strategy, starting with a set of vertices V . The ith time, select and remove a
vertex vi from V , then ask for the colors of all edges (vi , w) for all w ∈ V \{v1}.
Keep vertices in V whose edges are the majority color, and discard the rest,
then proceed to the next recursive call. If you end with at least N(0) = 1
vertex, then you began the jth-from-last recursive call with at least N(j) =
2N(j − 1) + 1= 2 j+1 − 1. Thus, you began with at least N(2r − 1) = ·4r − 1
vertices.

On the other hand, Breaker can make the game go at least 2r/2 rounds
as follows: Let V be the set of vertices whose edges Maker has requested
colors for, ((todo. finish)).

Calculation with random variables eventually becomes so natural
that they are often used to specify event sets and their probabilities.
E.g., one can write Pr{X b + Xw = 2}= 1/36, because the only way
to get 2 is to roll snake eyes, , and Pr{X b + Xw = 7} = 1/6
because six different rolls add to 7. Recall that probability and
random variables are both functions that map event sets to reals. So
if we defined f = Pr : 2S → R and g = X b + Xw : 2S → R, then this
notation would be written f (g−1(7)) = 1/6, meaning that g−1(7) is
the set of events (dice rolls) with value 7, and f (·) is the probability
of those events.

Table 14.2: Rolling one die for pairs of colors: events, probabilities, and
winners.

Green
5/6 1/6

Yellow

3/6 15
36 G 3

36 G

3/6 15
36 Y 3

36 G

Yellow
3/6 3/6

Red

1/6 3
36 Y 3

36 Y

5/6 15
36 R 15

36 Y

Red
1/6 5/6

Green

5/6 5
36 G 25

36 R

1/6 1
36 G 5

36 G

14.2.1 Non-transitive dice

Let’s use this notation to analyze a scam suggested by James Grime
and Brian Brushwood: non-transitive dice.

Make three pairs of dice in traffic-light colors: a Green pair with
five s and one , a Yellow pair with three s and three s, and a
Red pair with one and five s. Let a friend choose one die, and
you choose the color above on a traffic light (with wrap around: you
choose Red if they chose Green). Now, you both roll, and the die
showing the most spots wins that roll. First person to win 7 rolls
wins the game.

From a table of possibilities (Table 14.2) you can calculate the
probability that Green beats Yellow on a single roll. Work out the
possibilities for Yellow-Red and Red-Green pairs, and find their
probabilities, too. ? You’ll observe a non-transitive relationship:
G > Y > R> G. That is, Green likely beats Yellow, Yellow beats Red,
and Red beats Green.

Below you can work out you probability of being first to win 7
rolls by counting the possible roll sequences. ?

http://singingbanana.com/dice/article.htm
http://revision3.com/scamschool/non_transitive_dice

Table 14.3: Rolling two dice for pairs of colors: events, probabilities, and
winners.

Green

25/36 10/36 1/36

Yellow

1/4 25
144 G 10

144 G 1
144 G

2/4 50
144 Y 20

144 G 2
144 G

1/4 25
144 Y 10

144 Y 1
144 G

Yellow

1/4 2/4 1/4

Red

1/36 1
144 Y 2

144 Y 1
144 Y

10/36 10
144 R 20

144 Y 10
144 Y

25/36 25
144 R 50

144 R 25
144 Y

Red

1/36 10/36 25/36

Green

25/36 25
1296 G 250

1296 G 625
1296 R

10/36 10
1296 G 100

1296 G 250
1296 G

1/36 1
1296 G 10

1296 G 25
1296 G

First, however, James and Brian suggest that the scam can con-
tinue after you tell your friend about the traffic light order: you
choose first and let your friend choose the color that beats it. But
now, double the stakes, double the target, and each roll two dice.
You are still more likely to win, because the order reverses when
rolling two dice: G < Y < R< G. Can you work out the probabilities
for winning one roll ? , and for being first to 14 winning rolls? ?

(The probabilities of a Red pair over a Green pair is not much over
50%, so there you’ll still need some luck.)

When the probability of winning one roll is p, what is the proba-
bility of winning the best two out of three, best four out of seven, or
n out of 2n− 1? To work out an exact answer, we could use either
of two natural sample spaces: 1) play until someone wins for the
nth time, or 2) play 2n− 1 rounds and see who won the most. If we
let k be the number of times we lose, for 0 ≤ k < n, then we want
to know in 1) the probability of all sequences of length n+ k with
n wins and k losses, and in 2) the probability of all sequences of
length 2n− 1 with 2n− 1− k wins and k losses. These counts give
two formulae that each look similar to the binomial theorem: figure
them out, and check that they agree for small n.

∑

0≤k<n

�n−1+k
k

�

pn(1− p)k =
∑

0≤k<n

�2n−1
k

�

p2n−1−k(1− p)k.

As n grows, these expressions become quite hard to calculate
because numbers like pn become very small, while

�2n−1
k

�

becomes
very large. In most computer languages the computer approximates
real numbers in scientific notation, limiting both the size of the
exponent and the precision of the mantissa. Try to find the n values

for the single and pair rolls so that you win the best n of 2n − 1
at least 90% of the time—for pairs, direct computation gives me
‘infinity,’ which is incorrect.

Probability gives some useful tools for bounding probabilities using
expectations. The first is really trivial, once you get past the notation and
the fact that it is named.

Theorem 14.2.3. Markov Inequality. For a non-negative random variable
X ≥ 0 and positive real α, the probability Pr{X ≥ α} ≤ E(X)

α .

Here is a way to work out what this means on your scratch paper: we
dump a unit amount of probability (as dirt) on the real number line, but
don’t let it spill onto the negative side. We want to know how much dirt is
past x = α, which is Pr{X ≥ α}.

The inequality uses the average, E(X); dirt on both sides of this position
must balance, so let’s push this position as close to zero as we can and check
if the inequality remains true. We can push all dirt in [0,α) down to 0, and
all dirt in [α,∞) down to α. This gives an average of αPr{X ≥ α} ≤ E(X).

Proof. Create random variable Y = α(X ≥ α). That is, Y = 0 if X < α and Y = α otherwise.
Since X ≥ Y , E(X)≥ E(Y) = αPr{Y = α}= αPr{X ≥ α}. QED

This is too weak to help us directly, even though the number of wins in N
rolls is a non-negative random variable and we can figure out the expected
number of wins is N · p, since it is a sum of indicator random variables. But
we can apply it to another positive distribution, the variance, which will
help:

Theorem 14.2.4. Chebyshev∗ Inequality. For a non-negative random variable
X ≥ 0 and positive real α, the probability Pr{(X − E(X))2 ≥ α} ≤ E(X)

α .

∗Or Tchebycheff, using the French transliteration of the Russian.

14.3 Examples: balls into bins

Let’s look at some balls and bins questions related to expectation
and using random variables.† Suppose that you have n balls and m
bins. Throw each ball independently into a random bin with uniform
probability—each bin being equally likely.

Q1. What is the expected (average) number of balls per bin?
Q2. What is the expected number of balls already in the bin that each ball hits?
Q3. What is the expectation for the sum of the squares in each bin?
Q4. What is the expected number of empty bins?
Q5. How many bins would we look at before finding the first empty bin?
Q6. What is the expected maximum number of balls in any bin?

For many of these we can give exact values; for others we will
have to be content with upper bounds. Let’s define and give (com-
pletely arbitrary) names to two random variables that will be useful:

Let Zi,k =

¨

1 if ball i goes into bin k,

0 otherwise.
By the assumption of uniformity, the probability Pr{Zi,k = 1}=

1/m . And since every ball goes into some bin,
∑

1≤k≤m Zi,k = 1 .

Let X i, j =

¨

1 if balls i and j go into the same bin,

0 otherwise.
By the assumption of uniformity and independence, the proba-

bility Pr{X i, j = 1}= 1/m . There is another relationship to Z:

†These questions come from algorithms for bucket sort and hashing.

Lemma 14.3.1. For throwing n balls into m bins, X i, j =
∑

1≤k≤m Zi,k Z j,k.

Proof. Zi,k Z j,k = 1 iff both ball i and ball j go into bin k. Summing
over all bins counts i, j at most once, and only if they both land in
the same bin. QED

We need one useful fact from calculus to find upper bounds:

Observation 14.3.2. For all reals x, we have∗ 1+ x ≤ ex .

A1. What is the expected (average) number of balls per bin?

The average is the number of balls over the number of bins: n/m. But as a
warm-up, let’s use random variables Zi,1 to determine the expected number of
balls in bin 1:

E
� ∑

1≤i≤n

Zi,1

�

=
∑

i

E
�

Zi,1

�

=
∑

i

Pr{Zi,1 = 1}=
∑

1≤i≤n

1
m
=

n
m

.

A2. What is the expected number of balls already in the bin that each ball hits?

Here we have
�n

2

�

pairs, each of which has a 1/m chance of landing in the same
bin. But let’s continue to use random variables. We can sum X i, j for pairs with
i < j:

E
� ∑

1≤i< j≤n

X i, j

�

=
∑

i< j

E
�

X i, j

�

=
∑

1≤i< j≤n

1
m
=

n(n− 1)
2m

.

∗These are the first two terms Taylor series of ex , and the error term is positive.

A3. What is the expectation for the sum of the squares in each bin?

This quantity is interesting if, for example, each ball coming into a bin compares
itself to all balls already there. If you have only one bin, then the total number
of comparisons grows as a quadratic function in n, but if the number of bins
equals the number of balls, we shall see that the number of comparisons is only
linear in n. Here is where random variables really start to show their power.
We rearrange expressions and reinterpret.

1. E
�

∑

1≤k≤m

�∑

1≤i≤n Zi,k

�2�

for each bin, count balls
and square

2. = E
�

∑

k

�∑

1≤i≤n Zi,k

��∑

1≤ j≤n Z j,k

�

�

expand square, rename in-
dex

3. = E
�

∑

k

∑

i

∑

j Zi,k Z j,k

�

distribute · over +

4. = E
�

∑

i

∑

j

∑

1≤k≤m Zi,k Z j,k

�

reorder sum

5. = E
�

∑

i

∑

j X i, j

�

by Lemma 14.3.1

6. =
∑

i

∑

j E
�

X i, j

�

linearity of expectation
7. =

∑

1≤i≤n E
�

X i,i

�

+ 2
∑

1≤i< j≤n E
�

X i, j

�

sum i = j, i < j, i > j
separately

8. =
∑

1≤i≤n 1+ 2
∑

1≤i< j≤n 1/m i always with itself, 1/m
with j

9. = n+ n(n−1)
m .

QED

A4. What is the expected number of empty bins?

Define a new random variable to give an upper bound on a bin being empty:

Let Yk =

¨

1 if bin k is empty after n balls,

0 otherwise.

The probability Pr{Yk = 1} =
�

m−1
m

�n
= (1− 1

m)
n ≤ e−n/m, since to keep bin k

empty, each ball must independently choose one of the m− 1 other bins. So,
an upper bound on the expected number of empty bins is

E
� ∑

1≤k≤m

Yk

�

=
∑

1≤k≤m

E (Yk)≤
m

en/m
.

A5. How many bins would we inspect before finding an empty bin?

This will depend on how we do the inspection and how many bins are empty.
The application is to a data structure for hashing by open addressing, which
starts at a random bin, say 1, and scans through 2, 3, . . . , until finding an empty
bin. This is complex, though, so let’s change the problem to consider simpler
variants first.

Suppose that 0≤ α≤ 1 is the fraction of non-empty bins, and that we inspect
bins at random, or that the number of bins is infinite.

If we do inspection by repeatedly picking a random bin, then we

There are several choices for how to interpret this problem. Rather than
considering all the choices before we decide which to try to solve, let’s change
the problem to make it easier to solve and explore variations. Solving simpler
versions first gives us ideas and confidence; knowing that we are exploring the
statement of the problem as well as the solution keeps us from thinking we”ve
solved a problem before we’ve fully understood it.

First variation: Suppose that we know the fraction α ∈ [0,1] of bins that are
non-empty. Suppose that we look for an empty bin by inspecting (and possible

re-inspecting) bins uniformly at random. Then there is a simple formula for
the probability that we have to inspect the kth bin: αk.

Create an indicator random variable for each k for the first k bins inspected all
being non-empty.

Pk =

¨

1 Bins 1. . . k were all empty,

0 otherwise.

so let’s consider some variations. We’ll change the problem to make it easier
to solve Suppose that we have an infinite supply of bins, each non-empty with
probability α. The probability that the first k bins we inspect are all non-empty
is Pr{Pk = 1}= αk.

The expected number of non-empty bins is bounded by

E
� ∑

1≤k≤m

Pk−1

�

<
∑

1≤k

αk =
1

1−α
− 1=

1
1/α− 1

.

A different way to look at this would be to have b non-empty bins out of a
((todo. fix ocr and complete)) Then Choose non-empty bins from the m−k+1
Set of all bins, without replacement The upper bound of = still holds Finally, if
we have n balls in m bins

A6. What is the expected maximum number of balls in any bin?

Here we can bound the expected maximum, rather than compute it. I’ll do only
the special case m= n. How big can

∑

1≤i≤n Zi,k grow? We can have all balls
in one bin, max1≤k≤m

∑

1≤i≤n Zi,k = n, but that is very unlikely, as it happens
in only m/mn = 1/mn−1 ways. The maximum expectation is easy to calculate

maxk E
�

∑

i Zi,k

�

= maxk n/m = n/m, but we want expected max, which is
going to be larger.

The idea is to find a k so that the number of balls in a single bin exceeds k
with probability < 1/n2. This means that with n bins, the probability that any
exceeds k is < 1/n. In the expectation formula, the values ≤ k are rounded up
to k and those > k are rounded up to n, giving an upper bound on the expected
maximum.

So, throwing n balls into m bins, in how many ways can more than k keys land
in bin 1? An over-count would be

�n
k

�

1
mk ; choosing k of the n keys to land in

bin one, and letting the rest fall as they may. (This is an over-count because
instances with j > k keys landing in bin 1 are counted

� j
k

�

times.) Can you
determine a value of k to make this less than 1/n2?

When n = m,
�n

k

�

1
mk <

1
k! , so if we choose k so that 1/k! ≤ 1/n2 then the

chance that bin 1 exceeds k is < 1/n2, so the chance that any bin exceeds k is
< n/n2 = 1/n. k = 3 ln n/ ln ln n works.

Now, with probability p < 1/n the maximum bin size is≤ n, and with probability
(1 − p) it is ≤ k, so the expectation for the maximum is < (1 − p)k + pn <
k+ 1= 3 ln n/ ln ln n.

Look back at the observations that this uses: First, in all cases the maximum is
≤ n. Second, in all but < 1/n of the cases, the maximum is ≤ k, because this is
how we chose k. Thus, the rare cases contribute at most 1 to the expectation,
while the others contribute k.

14.4 Exercises and Explorations

Quiz Prep 14.1. Compute the probabilities that demonstrate these
claims from the text. Define events E = roll an even number of spots
on two dice, F = roll at least one five, C = roll craps, and N = roll
natural.

1. Compute Pr{E}= ? , Pr{C}= ? , Pr{N}= ? , and Pr{F}= ? .
Pr{E ∩ C}= ? , Pr{E ∩ N}= ? , Pr{E ∩ F}= ? , and Pr{F ∩ N}= ?

2. In a sample space defined by n outcomes, how many pairs of mutually exclusive
events are possible?

This is a counting question; you choose a pair of non-overlapping sets, without
regard for order. Thus, for each element you put it in set A, set B, or neither, in
3n ways. This counts every pair twice, except for the pair (;,;), so the total is
(3n + 1)/2.

3. Rolling evens and craps is independent, but rolling evens and natural is not.

Pr{E ∩ C}= Pr{E}Pr{C}= 2/36, but Pr{E ∩ N}< Pr{E}Pr{N}= 4/36.

Exercise 14.2. Pick an integer m at random from [1..n]. What is
the probability you have a perfect square—that there exists k ∈ Z
such that m= k2? É

Exercise 14.3. The student who decided to answer the exam’s
true/false questions by flipping a coin was still the last to finish,
because he went back to check his answers. What is the expected
number of flips to see the same side twice in a row? ? How many
flips is the student expected to need to answer and check n ques-
tions, if each check that doesn’t agree with an answer becomes the
new answer. ? How many if for each check they erase the previous
answer and try again? ?

Exercise 14.4. Your friend holds out 7 cards, face down, and says
2 are hearts and 5 are spades. If you pick k cards, what are your
chance of getting at least one a red card? Complete this table:

k 1 2 3 4 5 6 7
prob ? ? ? ? ? ? ?

É

Exercise 14.5. Chuck-a-luck, or Birdcage, is a carnival gambling
game whose barker∗ rolls three 6-sided dice for six players. Each
player chooses one of the numbers 1–6, and receives $1 for each
die that shows their number, or pays $1 if none of the dice does.
Although the barker may advertise “three losers and three winners,”
giving the impression that the game is break-even, the house rakes
in a significant percentage. How and how much? (You may want
to list the possible outcomes: it helps to assume that the dice have
three different colors.) What should the payouts be for the players
to break even? É

∗A carnival employee, employed by the “house.”

Exercise 14.6. I flip two fair coins (a dime and quarter) and tell you
that one of the coins shows heads. What is the probability that the
second also shows heads? There is actually not enough information
to answer this question: you need to know a bit about my strategy.
What is your answer if:

1. I always tell you what is showing on the dime. ?

2. I pick one of the coins at random and report what is showing. ?

3. Whenever I throw two tails, I throw again; I report results only when there is
at least one head. ?

4. Whenever possible, I report that one coin shows tails. ?

Exercise 14.7. I flip a coin that comes up heads with probability p.
How many runs of heads should I expect on n flips? Two ‘H’ flips are
in the same run if there is no ‘T’ flipped between them.

Exercise 14.8. A fair 6-sided die is rolled until a 6 comes up. What
is the expected number of spots before that event? For example, I
just rolled 1,2, 2,6, which is 5 spots. My next attempt had 33.

Puzzle 14.9. You are given a shuffled deck containing 2n cards, n
red and n De Morgan, which you will turn over one by one. With
each card you may bet any amount up to your credit on which color
will appear. If you are right, you win that amount, and if you are
wrong, you lose that amount. This means that you can guarantee to
double your money by betting zeros until there is one card left, and

then betting all your credit. What is the largest amount that you can
guarantee to win?

Exploration 14.10. Here are three scenarios that each begin with
n red and n blue balls. Each has a protocol for removing a ball
until only one color remains. The question is how balls many of the
remaining color do you expect to find?

To make sure you understand each scenario, determine, with r
red and b blue remaining, the probability that you remove red. Then
click on the ‘?’.

1. There are two bins, one containing the red balls, and one containing the
blue. You flip a fair coin, and for heads you remove a red ball and for tails
you remove a blue. Stop when one bin is empty. ?

2. All balls are in one bin. You have no coin, so you simply pull out a ball at
random and remove it. ?

3. All balls are in one bin, but when you pick a ball at random, you put it back
and instead remove a ball of the opposite color. ?

Simulate each scenario in your favorite programming language,
and see if you can explain the results that you find. (The first is easy
to explain; the others are much harder.)

Bibliography
Do not consider it proof just because it is written in books, for
a liar who will deceive with his tongue will not hesitate to do
the same with his pen.

—Maimonides

[1] Edsger W. Dijkstra. My hopes of computing science. In Proc. 4th Int. Conf.
on Software Engineering, Munich, September 1979.

[2] S.S. Epp. Discrete Mathematics With Applications. Cengage Learning, 2010.

[3] M. Erickson. Aha! Solutions. MAA Problem Book Series. Mathematical
Association of America, 2009.

[4] L. Euler. Solutio problematis ad geometriam situs pertinentis. Commentarii
Academiae Scientiarum Imperialis Petropolitanae, 8:128–140, 1736. Opera
Omnia (1) 7 (1911-56), 1-10

[5] M. Fellows. The heart of puzzling: Mathematics and computer games.
In Proceedings of the 1996 Computer Games Developers Conference, pages
109–120. Miller Freeman, 1996.

[6] M. Gardner. aha! A two volume collection: aha! Gotcha & aha! Insight.
Spectrum Series. Mathematical Association of America, 2006.

[7] Solomon W. Golomb. Combinatorial proof of Fermat’s “little” theorem. Amer.
Math Monthly, (10), December 1956.

456

[8] G.D. Gopen. The sense of structure: writing from the reader’s perspective.
Pearson Longman, 2004.

[9] Ronald L. Graham, Donald E. Knuth, and Oren Patashnik. Concrete Math-
ematics: A Foundation for Computer Science. Addison-Wesley Longman
Publishing Co., Inc., Boston, MA, USA, 2nd edition, 1994.

[10] P.R. Halmos. Naive Set Theory. Undergraduate Texts in Mathematics.
Springer, 1998.

[11] Thomas L. Heath. The Thirteen Books of Euclid’s Elements, volume 2. Dover,
1956.

[12] R. P. Boas Jr. “if this be treason. . . ”. The American Mathematical Monthly,
64(4):pp. 247–249, 1957. Collected in “Lion Hunting & Other Mathematical
Pursuits,” Boas, R.P. and Alexanderson, G.L. and Mugler, D.H., MAA, 1996.

[13] Ken Keeler. The Prisoner of Benda, August 2010. Futurama, season 6,
episode 10.

[14] Stefan Krauss and X. T. Wang. The psychology of the Monty Hall problem:
Discovering psychological mechanisms for solving a tenacious brain teaser.
Journal of Experimental Psychology, 132(1):3–22, 2003.

[15] Imre Lakatos. Proofs and refutations. Cambridge University Press, Cambridge,
1976. The logic of mathematical discovery, Edited by John Worrall and Elie
Zahar

[16] Leslie Lamport. How to write a proof. The American Mathematical Monthly,
102(7):600–608, 1995.

[17] Leslie Lamport. Specifying Systems. Addison-Wesley, July 2002.

[18] Radia Perlman. An algorithm for distributed computation of a spanningtree
in an extended lan. SIGCOMM Comput. Commun. Rev., 15(4):44–53, Septem-
ber 1985.

[19] G. Polya. How to solve it. Princeton Science Library. Princeton University
Press, Princeton, NJ, 2004. A new aspect of mathematical method, Expanded
version of the 1988 edition, with a new foreword by John H. Conway.

[20] Raimond Reichert. Theory of Computation as a Vehicle for Teaching Funda-
mental Concepts of Computer Science. PhD thesis, May 2003.

[21] R. L. Rivest, A. Shamir, and L. Adleman. A method for obtaining digital
signatures and public-key cryptosystems. Commun. ACM, 21(2):120–126,
February 1978.

[22] K. Rosen. Discrete Mathematics and Its Applications. McGraw-Hill Compa-
nies,Incorporated, 2011.

[23] Walter Schnyder. Embedding planar graphs on the grid. In Proc. 1st Annual
ACM-SIAM Symp. On Discr. Alg. (SODA), pages 138–147, 1990.

[24] G.J. Summers. Test Your Logic. Dover Recreational Math Series Dover
Publications, 1972.

[25] John Tierney. Behind Monty Hall’s doors: Puzzle, debate and answer? New
York Times, pages 1, 20, July 21, 1991.

[26] Maralyn vos Savant. The power of logical thinking. St. Martin’s Press, New
York, 1997.

[27] Herbert S. Wilf. Generatingfunctionology. A. K. Peters, Ltd., Natick, MA, USA,
3rd edition, 2006. 2nd ed at http://www.math.upenn.edu/~wilf/DownldGF.html.

http://www.math.upenn.edu/~wilf/DownldGF.html

Selected Solutions
The mathematician likened proving a theorem to seeing the
peak of a mountain and trying to climb to the top. One estab-
lishes a base camp and begins scaling the mountain’s sheer
face, encountering obstacles at every turn, often retracing
one’s steps and struggling every foot of the journey. Finally
when the top is reached, one stands examining the peak, tak-
ing in the view of the surrounding countryside and then noting
the automobile road up the other side!

—Robert J. Kleinhenz

Extension 1.3. Gray code. You want to design a position coder
that can report the angle of a rotating shaft. You could encode 2b

positions by striping the shaft with the b-bit binary count pattern
from Figure 1.2 in b concentric circles and positioning b brushes
or photodiodes to sense the bit pattern. Unfortunately, adding or
subtracting 1 may change many bits of a binary number, and in a
mechanical device they never all change simultaneously. Thus, we
get spurious readings as the shaft rotates from one count to the next.

Figure 1.2: A 5-state ma-
chine can generate a Gray
code on Kara’s 2-d tape in a
column bounded by stumps.
With a 1-d tape, four states is
enough.

Frank Gray observed that the same
2b b-bit binary numbers could be put
into a circular order so that from one
number to the next only a single bit
changes: toggling from 0→1 or 1→0.

460

His reflected binary Gray code can be
constructed as follows. For one bit,
use order 0,1. For two bits, use order
00,01,11,10, which places 0s in front
of the one-bit code, then 1s in front
of the reverse of the 1-bit code. For k
bits do the same: write 0s in front of
the (k−1)-bit code, then 1s in front of
the reverse of the (k− 1)-bit code. On
scratch paper, try writing the orders for
the 3-,4-, and 5-bit codes, then check Figure 1.4 in the text.

The patterns to notice are 1) every other move toggles of the
least significant bit, and 2) in between, scan left to find the rightmost
1 bit, and toggle the bit to the left of it.

Program Kara (or another TM simulator) to list numbers in Gray
code order. Figure 1.2 shows the state diagram for a Kara program
with five states that copies rows on Kara’s 2-d tape. The state names
are FindLSB, Find1, FLIP, COPY, and stop; transitions are shown only
for the FindLSB state. On a 1-d tape, 4 states would be enough, since
you wouldn’t need to copy.

Ê

Exploration 1.4. Busy Beaver Turing machines fill an initially blank
tape with a string of as many clovers as possible, and then halt.
(Halting is the challenge – it is trivial to make Kara run forever filling
the tape with clovers.) Kara is a little different from the standard
Turing machine, but if we use an n× 1 world and limit the number
of move-ahead actions, we can create a Kara version of the Busy

Beaver problem:

Figure 1.3: A Kara “Busy Beaver” with one state plus ‘stop’ can generate
14 clovers.

Ê

Exercise 2.5. Operator precidence: In arithmetic expresions we
have precidence rules that says that in an expression like 1·5−8/4+23

evaluate the exponential, then multiplication and division (left to
right), and finally addition and subtraction (left to right). (Some
learn these as PEMDAS.) In logic, the order is parentheses, negation
(¬), and (∧), or (∨), and if,iff (→,↔), with operations evaluated

https://www.purplemath.com/modules/orderops.htm

from right to left. Insert parentheses in these expressions so they
they will evaluate correctly even if you follow only the parentheses
rule.

1. p ∨ q ∧ r is p ∨ (q ∧ r).

2. p→¬q→ r is p→
�

(¬q)→ r
�

.

3. p↔ q→ r is p↔ (q→ r).

4. p ∨¬q→ r is
�

p ∨ (¬q)→ r
�

.

5. p ∧ q→ p ∨ q is (p ∧ q)→ (p ∨ q).

6. p ∨¬q↔¬(¬p ∧ q) is
�

p ∨ (¬q)
�

↔
�

¬
�

(¬p)∧ q
�

�

.

Ê

Exercise 2.6. Find the mistake(s) in each of the following. ∗

1. The negation of 0< x < 5 is 0≥ x ≥ 5.

0 < x < 5 is an abbreviation mathematicians use for the ‘and’ statement
(0< x)∧ (x < 5), so de Morgan says the correct negation is the ‘or’ statement
(0≥ x)∨ (x ≥ 5). Expand the ‘and’ before negating.

Some strongly-typed programming languages will complain about 0< x < 5.
Others (C++, FORTRAN, BASIC, etc.) will quietly evaluate 0 < x as 1 for
true or 0 or −1 for false, then compare that number to 5 and get ‘true’ every
time—not the intended behavior.

∗Warning: incorrect statements in this problem!

2. p only if q means q→ p.

Actually, it means p can be false without repercussions, but p is true only if q is
also true. We cannot have p true and q false. This is the definition of p→ q.

When we say p iff q, p if and only if q, we are first saying the contrapositive
q→ p (p if q) and second the conditional p→ q (p only if q). Once you get
used to using p↔ q (p iff q) you, like me, will probably forget this and it will
seem backwards if it is ever called to your attention.

Ê

Exploration 2.16. Use your favorite spreadsheet program to create
truth tables for logic operations or to solve logic puzzles. You can
use TRUE/FALSE and logic operations (check your documentation
for AND, NOT, OR, IF), or 0/1 and arithmetic operations (*, –, max,
mod). First you’ll want to set up a way to count through all possible
T/F sequences for the variables, and then put in the logic expressions
using those variables. Spreadsheets let you “fill down”∗ to replicate
the formulas in a row to fill the entire table.

Just a bit more specific detail on ways to make a truth table in a
spreadsheet: It helps to know the commands fill-right and fill down
(control-r and control-d in Excel) that copy formulas. Try this: Put
in row 1 the text of the variable names. Fill the variables in row
2 with FALSE, or zero, whichever you prefer. For row three, the
last variable toggles the value above, using =NOT(C2) or =1-C2. Other
variables toggle whenever the next column goes 1 to 0 or TRUE to

∗The first spreadsheet program, Visicalc in 1979, already had replication com-
mands.

FALSE. That is, in cell A3, put =IF(B2>B3,NOT(A2),A2), and copy that to
all but the last variable’s column. Then fill down to get all possible
assignments to variables.

Next, put the text of the formulas in row 1, and the spreadsheet
math in row 2. Spreadsheets support logic (AND, OR, NOT) on
TRUE/FALSE, or you can use arithmetic operations on numbers
to achieve the same operations (*, MAX, 1–). The ampersand (&)
concatenates strings in Excel, and is not the operator for ‘AND.’ Check
the documentation on IF; in Excel, A→B is written as=IF(A,B,TRUE),
or you can use the equivalent =OR(NOT(A),B). I use =(A=B) for
the biconditional, A↔ B.

Ê

Exercise 3.4. Assume that sets A and B do not contain tuples. Under
what conditions does A× B = B × A? Be complete.

For every a ∈ A and b ∈ B, we must have both (a, b) ∈ B×A and
(b, a) ∈ A× B.

This is vacuously true if A or B is the empty set ;, because then
both products are empty. It is also true if A= B.

If A and B are sets of tuples, we can make many other examples
by from sets that are powers of another set, C . For example, A= Cm

and B = Cn or B = C+.
Ê

Exercise 3.5. Combinatorial Pizza offers small, medium, and large
pizzas with 14 possible toppings from 3 categories:
• Cheese (2): Mozzarella, Feta

• Veggie (7): Mushrooms, Peppers, Onions, Olives, Capers, Artichoke, Pineap-
ple

• Meat (5): Salami, Pepperoni, Ham, Salmon, Anchovies

Combinatorial Pizza has five specials:

• Sampler: three different toppings from any categories.
• Balanced Diet: one topping from each of the three categories.
• Carnivore: You may choose one to four different kinds of meat.
• Vegan: Any size pizza with three Veggie toppings. (You can order more

than one of a topping—my daughter likes triple pineapple.)
• Gut-buster: A large pizza with up to five toppings. (Ever had quintuple

anchovies?)

Let’s assume that you don’t care in what order the pizza chef puts
the toppings on your pizzas. (E.g., They put the cheese first, even if
you ask otherwise.) So, what you are ordering is a set of toppings
(possibly a multi-set for the Vegan and Gut-buster).

In answering a question like this, the formula is more informative
than the number, so be sure you show the formula. Each letter has a
pop-up with the correct number so that you can check yourself.

1. How many different ways can you order a medium or large “Sampler” pizza?
?

Choose size and 3 of 14 toppings: 2
�14

3

�

= 728. (It is better if you don’t
multiply out because I can see where your numbers come from. I just do it
for curiosity.)

2. How many different ways are there to order a large “Balanced Diet” pizza
— one topping from each of the three categories? ?

5 · 7 · 2= 70 by product rule.
3. How many different ways are there to order two small “Balanced Diet”

pizzas? ?

Here we are counting a multiset of 2 pizzas from 70 options, allowing
repetition. We can use the sum rule to add the ways to choose one pizza
twice, 70, to the ways to choose two pizzas,

�70
2

�

. Alternatively, we can add
a new pizza type, “same,” and choose a set of two pizzas from 71 types.
70+

�70
2

�

=
�71

2

�

= 2, 485.
4. How many different “Carnivore” pizzas can be made? ?

Choose size, then a subset of meat items that is not the empty set or set of
all five: 3(25 − 2) = 90.

5. How many different small “Vegan” pizzas are there? ?

We can repeat choices, so we are sampling with repetition in
�7−1+3

3

�

= 84
ways. How do we get that? Think about throwing 3 balls into 7 cups in a
line, which we will represent by just the 6 vertical sides between them. Any
string with 3 balls and 6 bars can be interpreted as a choice: e.g., | ◦ ◦| | ◦ | | |
is double topping 2 and topping 4, and ◦| | | ◦ | | |◦ is toppings 1, 4 and 7. We
thus just have to choose the positions of the balls among 6+ 3 = 9 symbols.

6. How many different “Gut-buster” pizzas are there? ?

If we introduce a 15th topping of ‘air’, then this is exactly like the previous:
�15−1+5

5

�

= 11,628. If you want to choose only 3 of the 5 toppings, then
you choose double ‘air.’

Ê

Exercise 3.6. On a common single dial padlock, with numbers 1-40,
a combination∗ is a 3-tuple.
How many combinations does such a lock have?

403

∗Should be called a “3-tuple” lock, because order is important and repeats are
allowed.

Since you can test all third digits with a single slow turn, how many pairs of the
first two digits are there?
402

On some locks, it is enough to dial the first and second digit to within ±2. In
that case, how many “slow turns” suffice to try all combinations?
82

Ê

Exercise 3.7. In activity games, board games, and card games, play-
ers are often arranged in a circle. Sometimes the capability or person-
alities of the players to your left or right (or both) make a difference
in your chances to win the game. See if you can get the same answer
as the pop-up before looking at the reasons.

1. How many different orders are there for n players? Two orders are considered
the same if and only if every player has the same player to their right. ?

—(n− 1)! Seat someone to break the circle, then permute the rest.

2. What if n = 2m players come as m pairs that want to sit next to each other?
Now how many orders?

(m− 1)! · 2m

—Order the pairs in (m− 1)! ways, then choose the order within each pair in
2m ways.

3. You need to choose a set of k of the n people to help you; in how many ways
can you do so if order does not matter?
�n

k

�

4. You want to pick the k of n = 2m people that came in pairs so you take at most
one of any pair; now how many ways?
�n

k

�

2k

—Choose the pairs you’ll break up, then choose one from each pair.

Ê

Exercise 3.8. In how many ways can I choose k numbers from [1..n],
disregarding order, so that no two chosen numbers are consecutive
(differ by 1)?

�n−k+1
k

�

. Here is a bijection between the ways to choose numbers
and arrangements of cards of two colors: In a row of n− k+1 blank
cards, choose k to color red. Insert a new blank card after each red
card but the last, which is k − 1 insertions. Then number all the
cards, reporting the numbers of the red cards.

Ê

Puzzle 3.11. How many positive integers have the property that
their digits are strictly increasing as you read them from left to right?
(Examples: 1, 128, 123,456,789.) How many positive integers have
digits that are strictly decreasing from left to right? (Examples: 1,
42, 9630.)

The number of non-empty substrings of ‘123456789’ is 29 − 1 = 511,
and of ‘9876543210’ is 210 − 1= 1023.

Ê

Puzzle 3.12. A good exercise is to count the number of 5-card poker
hands of different values. Let’s assume a standard 52-card deck, with

13 cards (A, 2–9, 10, J, Q, K, A) in each of 4 suits (♥, ♦, ♣, ♠) and
no jokers or wild cards. Ace is listed twice as it can be either low or
high in straights, but not both in the same hand. See if you get the
same counts as I do. As a warm-up, the number of possible hands is
�52

5

�

= 2,598, 960.

royal straight flush 10, J, Q, K, A of the same suit: 4 ways —The only choice is
the suit.

straight flush 5 consecutive cards of the same suit, minus the royal straight flush:
36 ways. —9 choices for starting card, A–9, times 4 choices for suit.

four of a kind 624 ways. —Choose all four cards of one number, then any other
card: 13 · 48.

full house Three of one card, two of another: 3,744 ways. —Choose the card
number for the triple, then 3 suits, then the number for the pair, and two
suits: 13

�4
3

�

· 12
�4

2

�

.
flush All five cards of the same suit, minus all straights: 5,108 ways. —Choose

one suit, then 5 of the 13 cards for 4 ·
�13

5

�

, minus all 40 straight flushes.
straight 5 consecutive numbered cards of any suit, minus all flushes: 10,200

ways. —10 choices for starting card, A–10, times 45 choices for suit, minus
all 40 straight flushes.

triple 54,912 ways. —Choose the number for 3 suits, then the suits, then two
of the remaining 12 numbers and their suits: 13 ·

�4
3

�

·
�12

2

�

· 42.
two pair 123,552 ways. —Choose the lone number, its suit, then the two

numbers for pairs, and their two suits: 13 · 4 ·
�12

2

��4
2

�2

single pair 1,098,240 ways. —Choose the number for the pair, then its suits,
then the three remaining numbers and suits: 13

�4
2

��12
3

�

· 43.
none of the above 1,302,540 ways. —Choose any five distinct card numbers,

�13
5

�

, except the 10 straights, and independently choose any sequence of

five suits, 45, except the 4 flushes, so (
�13

5

�

− 10)(45 − 4).

Ê

Exercise 4.4. Find the mistake(s) in each of the following.∗

1. Given sets A and B with elements from the universe U , to show that A⊆ B, we
must show that ∃x∈U (x ∈ A)∧ (x ∈ B).

There are two mistakes here. The quantifier from the definition of subset is
∀, not ∃, and the operation should be→, not ∧. This answer claims that for
A to be a subset of B, it is enough for there to be a single element that is in
both sets. But this is false for A = {1,2} and B = {2,3}; the element 2 is in
both A and B, but A is not a subset of B. The correct definition for A⊆ B says
∀x∈U (x ∈ A)→ (x ∈ B).

2. Given sets A and B, to show that A⊆ B, we must show that for all x , both x ∈ A
and x ∈ B.

This statement says that A and B both contain every element in the universe,
which is probably not what was intended (although the universe does satisfy
the definition for being a subset of itself). What is needed is the conditional: if
x ∈ A then x ∈ B. For elements of the universe that are not in A the statement
is trivially true, so we don’t care if they are in B or not. Elements in A, must be
in B, as desired.

3. Since a · 1 = a for all integers a, if we know b · m = b, where b and m are
integers, then m= 1.

A counterexample proves this wrong: We can have b = 0 and m= 2.

∗Warning: incorrect statements in this problem!

The problem arises because in a statement like, “if we know b ·m = b, where b
and m are integers,” then b and m are specific integers that someone else has
chosen for us. The statement “a · 1 = a, for all integers a” applies only if either
b or m equals one, but we have no control over that.

If we were told that, “For all integers b, b ∗m= b,” then we could use this as
follows: Since this works for all integers, choose b = 1, giving 1 ·m= 1. But
we also know that 1 ·m= m · 1= m, by substituting m for a, so m= 1.

Ê

Puzzle 4.6. Jack Palmer’s 1924 jazz lyric says, “Everybody loves my
baby, but my baby don’t love nobody but me.”

1. If we think the double negative is for emphasis, we might say, “Everybody loves
my baby, but my baby doesn’t love anybody but me.” Translate this into an
expression quantified over a set P of people with my baby b ∈ P and me m ∈ P.
Denote a loves b by the predicate `(a, b).
�

∀x∈P `(x , b)
�

∧
�>y∈P (y 6= m)∧ `(b, y)

�

2. Show that this leads to the narcissistic conclusion, “I am my baby.”

By simplification, we can split the statement into the left,∀x∈P `(x , b), and as
an equivalent of the right, ∀y∈P (y = m)∨ `(b, y).

Substitute b for x in the left by universal instantiation. We learn `(b, b).

Substitute b for y in the right to obtain (b = m)∨ `(b, b). In the conjunction,
�

(b = m) ∨ `(b, b)
�

∧ `(b, b), distribute, then recognize and eliminate the
contradiction to get (b = m)∧ `(b, b), which means that I am my baby and I
love myself.

3. What genre of music best fits the original lyric?

The original lyric might fit a country music song: the right side translates as>y∈P+ (y 6= m)∧`(b, y)≡ ∀y (y = m)∨`(b, y), which says that my baby loves
everyone who isn’t me, and I’m not sure if s/he loves me.

4. How might you write the lyric to convey the intended meaning?

Perhaps the lyric should have said, “my baby loves nobody else but me,” which
could translate to ∀y∈P

�

(y = m)∨ (y = b)∨ `(b, y)
�

.

Ê

Exercise 5.4. Here are two statements that are true for a family of
setsA that partitions a set S. They are very close to the definition,
but are different, because they are also true of some families that are
not partitions. For each, give an example of a set S of integers and a
family that is not a partition of S for which the statement remains
true.

1. Every element x ∈ S is in exactly one set of the familyA . In notation,

∀x∈S

�

∃B∈A
�

∀C∈A (x ∈ B)∧ (x ∈ C→ B = C)
�

�

.

Simple example: S = {1} andA = {{1,2}}. This statement allows elements
not in S into sets of the familyA .

2. Element x is in S if and only if it is in exactly one set of the familyA :

∀x∈U

�

x∈S↔
�

∃B∈A ∀C∈A (x∈B)∧ (x∈C→ B=C)
�

�

.

Simple example: S = {1} and A = {{1,2}, {2}}. This statement says that
elements not in S can’t appear in only one set of the familyA ; we want them
not to appear in any.

Ê

Puzzle 5.5. Updating a Charles Dodgson (Lewis Carroll) puzzle: in
a particularly aggressive paintball game with 20 combatants, 85%
got hit in a leg, 80% in an arm, 75% upside the head, and 70% in the
facemask. What is the minimum number of combatants that were
hit in all four places?

2, or 10%
Maximum?
14, or 70%
This is related to inclusion/exclusion counting, and can be solved

by sprinkling people into a Venn diagram to satisfy the hit counts:
17 Leg + 16 Arm + 15 Head + 14 Mask = 62 total.

The maximum is easy: it can’t exceed the number hit in any part,
so 14 LAHM. You have six left and need 3 L, 2 A, 1 H. Some could
double or triple up on hits to leave others unscathed.

On the other hand, if 20 people get three hits each, you’d be
two short, so at least two were hit LAHM. And you can achieve this
minimum: 2 LAHM + 6 LAH + 5 LAM + 4 LHM + 3 AHM = 20
people.

Ê

Exercise 6.6. Build bijections to demonstrate the sum and product
rules, as stated in Subsection 3.2.1:

sum rule For disjoint, finite sets A and B, |A] B|= |A|+ |B|.

Assume that we are given bijections fA : [1..|A|] → A and fB : [1..|B|] → B.
Define g : [1..|A|+ |B|]→ A] B as a bijection.

g(i) =

¨

fA(i) 1≤ i ≤ |A|,
|A|+ fB(i − |A|) |A|+ 1≤ i ≤ |A|+ |B|.

We know this is a bijection because it has an inverse that is also a function:

g−1(y) =

¨

f −1
A (y) y ∈ A,

|A|+ f −1
B (y) y ∈ B.

How does this use “disjoint?” Since an element is in A or B, but not both, the
inverse assigns a unique value to each y ∈ A] B.
How does this use “finite?” To add |A|, set A at least must be finite.

product rule For sets A and B, |A× B|= |A| · |B|.

Again, assume that bijections fA : [1..|A|]→ A and fB : [1..|B|]→ B are given.
Let’s build the inverse, g−1 : A× B→ [1..|A| · |B|], because to build the function
itself takes floor and mod functions, which are introduced in the next chapter.

Actually, I will include the function as well, but ignore it until you are familiar
with floor and mod.

g−1(a, b) = f −1
A (a) + |A| · (f

−1
B (b)− 1),

g(n) = (fA((n− 1) mod |A|+ 1), fB(bn/|A|c+ 1).

Ê

Exercise 6.7. Let (a1, a2, . . . , an) be a sequence from [1..n] with no
repeated number. Show that if n is odd, then the product

∏

(ai − i)
is even.

By the pigeonhole principle, not all odd ai can go to even posi-
tions i, so some term (ai − i) must be even.

Ê

Extension 6.10. A logic function with n variables has domain
{T, F}n and range {T, F}. In other words, for each possible way
to input an n-tuple of T and F , it must choose a T or an F .

1. How many different logic functions are possible on two input variables? (and,
or, xor, if, iff are five familiar ones.)

16

2. How many different logic functions are possible on n input variables?

22n

3. How many of the logic functions with two input variables actually use both?
For example, f (p, q) = (p ∧ q)∨ (p ∧ q) does not really depend upon q.

10

4. What is a good definition for a logic function on n variables using the ith
variable?

Function f : {T, F}n → {T, F} uses variable vi iff there is some
assignment to the variables v1, v2, . . . , vn so that f (v1, v2, . . . , vn) 6=
f (v1, v2, . . . , vi−1, vi , vi+1, . . . vn).

5. How many of the logic functions with three input variables actually use all
three?

218

6. Determine a formula for counting the number of logic functions with n input
variables that use all n.

Here is an inclusion/exclusion formula that starts with all functions, then, for
each variable, removes all functions that do not use that variable. Functions
not using a pair of variables have been removed twice and need to be added
back, then. . . , until we finally reach the 220

= 2 functions that do not use any
of the n variables, but are all T or all F . The final count is

∑

0≤i≤n(−1)i
�n

i

�

22n−i
.

Ê

Exercise 7.2. Find the mistake(s) in each of the following. ∗

1. In reasoning about a number d that is a multiple of 9, a student writes, “9|d =
bd/9c. . . ”.

There is a type conflict, and probably a misuse of ‘=’: 9|d is a true/false
statement and bd/9c is an integer so they cannot be equal. It would make sense
to say 9|d iff d/9= bd/9c. Here the ‘=’ is testing numerical equality and the
‘iff’ is for the equivalence of two logical statements.

2. The negation of “n is not divisible by any prime number between 1 and
p

n” is
“n is divisible by any prime number between 1 and

p
n.”

The correct negation is, “There exists a prime between 1 and
p

n that divides
n.” Putting quantifiers first helps us determine the right negations.

Ê
∗Warning: incorrect statements in this problem!

Exercise 7.4. Partition a set of cardinality n (i.e., n elements) as
evenly as possible into k subsets. Use floor, ceiling, and mod to say
how many sets you get of what cardinalities.

n mod k of dn/ke and the rest of bn/kc. Note that you can get 0 of the
larger and k of the smaller, but cannot get the reverse. Where does this
asymmetry come from?

Ê

Exercise 7.5. x−bxc is the fractional value of x and x−sgn(x)b|x |c
is the fractional part of x . Explain what each of these is in words.
Use parallel language to make the similarities and differences stand
out clearly.

The fractional value is the non-negative number for how much greater
x is than its floor, the greatest integer less than x . The fractional part is the
non-negative number that represents all digits behind the decimal point for
x . For x ≥ 0 the fractional value and fractional part are the same, but for
x < 0 they are the same if x is a multiple of one half, otherwise they are
different and sum to 1.

Ê

Exercise 7.8.

1. Give a combinatorial proof of the subcommittee identity
�n

k

��k
j

�

=
�n

j

��n− j
k− j

�

.

The left side counts the number of ways to choose a committee of k from n
people, with a subcommittee of size j chosen from the k. The right side counts
the same quantity by first chosing the j for the subcommittee from n people,
and then choosing the remaining k− j for the committee from the remaining
n− j people.

2. Show that, except for the ones, any two numbers from a row of Pascal’s tri-
angle have a common factor. That is, show for integers 0 < r, s < n, that
gcd(

�n
r

�

,
�n

s

�

)> 1.

Suppose that 0 < j < k < n, and use the subcommittee identity
�n

k

��k
j

�

=
�n

j

��n− j
k− j

�

. Since
�n

j

�

divides the right, it also divides the left side. But since k < n,
�k

j

�

<
�n

j

�

, so there must be a common factor of
�n

k

�

and
�n

j

�

.

Ê

Hint:
Recall that a degree n
polynomial has at most n
roots – values at which it
evaluates to zero.

Exercise 7.9. Let p(x) =
∑

0≤i≤n ai x
i

be a polynomial with integer coefficients
(a1, a2, . . . , an) and degree greater than one.
That is, n≥ 1 and an 6= 0. Show that there
exists a non-negative integer k so that p(k)
is not prime.

Notice that for integers m> 0, p(ma0) has every term divisible
by a0. If any p(ma0) is not prime, then we are done. So we need
only worry about the case that p(0) = a0 is prime, and show that for
some m, p(ma0) 6= a0. But this is true, because polynomial p(x)−a0

has at most n roots.
Ê

Extension 7.16. For these questions, let [x] denote the fractional
part of x: that is, [x] = x − bxc. We are going to look at the set of
all fractional parts, Fα = {[na] | n ∈ N}. Show the following:

1. For any irrational number α, the elements we put into set Fα are distinct. That
is, for all positive integers m, n ∈ N, we have [mα] = [nα] iff m= n.

[mα]− [nα] = (m− n)α− bmαc+ bnαc = 0 iff (m− n) = 0, because otherwise α would
be rational, namely α= (bmαc − bnαc)/(m− n).

2. For any irrational number α, the set inf Fα = 0. That
is, for any ε > 0, there is an n ∈ N with [nα] < ε.

Given any ε > 0, choose M ∈ N, so 1/M < ε. Divide the interval [0,1] into M
subintervals of length 1/M . By the pigeonhole principle, there must be two distinct
integers m, n ∈ [1..M + 1] so that the fractional parts [mα] and [nα] are in the same
subinterval; that is, 0 < [mα]− [nα] ≤ 1/M . Expanding, we see that bmαc − bnαc <
(m− n)α≤ bmαc − bnαc+ 1/M , so [(m− n)α]≤ 1/M < ε.

3. For any irrational number α, the set Fα is dense in the interval [0,1]. That is,
for any reals x ∈ [0,1] and ε > 0, there is an n ∈ N such that |x − [nα]|< ε.
For a given ε > 0, the previous solution finds M , k ∈ N satisfying 0< [kα]≤ 1/M < ε.
If we again divide [0, 1] into subintervals of length 1/M , we find that each subinterval
contains at least one number from {i[kα] | i ∈ N}.

The given x lies in some subinterval, and is at most 1/M < ε away from any of the
numbers of {i[kα] | i ∈ N} that lie in the same subinterval.

Ê

Hint:
Use pigeonhole principle
to show that two frac-
tional parts must be close,
then subtract them.

Exploration 7.19. How many simple sub-
stitution cyphers on [a..z]? A simple substi-
tution cypher replaces each letter a–z with
some other letter in an invertible manner –
it is a bijection from a–z to a–z. You may
have seen Cryptoquote in the newspaper, for
which the standard example is AXYDLBAAXR = LONGFELLOW (i.e.,
A→L and X→O.)

http://entertainment.howstuffworks.com/puzzles/cryptoquote-puzzles.htm

1. How many different simple substitution cyphers are there?

26!

—You have 26 choices for the first letter, 25 for the next, . . . , since you may not
choose a letter twice if you want to be able to decode the message. In other
words, counting the bijections is just counting the possible permutations of
the letters. Of course, this includes undesirable cyphers that leave some or all
letters unchanged.

2. Suppose that we want to avoid sending a letter to itself, so we replace letters
from the first half (a–m) with letters from the second half (n–z) and vice versa.
With this restriction, how many different simple substitution cyphers are there?

13! * 13!

—This is like independently permuting the first and second halves of the alpha-
bet, so the numbers multiply. Note that this much smaller than 26!.

3. Counting the number of substitution cyphers in which no letter maps to itself is
not easy, but you can take a swing at that, too.

The number of cyphers that map no letter to itself is less than the number of
permutations, 26!, but more than 25!. It is the number of derangements, which
I will denote D(26).

It is not hard to come up with a general recurrence for derangements of [1..n],
if we keep numbers and positions separate. Let ai be the number in position i,
which in a derangement cannot be i. Find the position j with a j = n.

If an 6= j, then throw out n at position j, move all numbers at positions greater
than j down one, and subtract one from each number greater than j. Numbers
at positions less than j are either left alone or decrease by one if they were

greater than j, so they remain out of place. Numbers ending at positions j or
greater are either less than j or both moved one position and decremented, so
they are also out of place. We thus have a derangement of [1..n− 1].

On the other hand, if an = j, then discard numbers and positions j and n, sub-
tract one from all numbers greater than j, and you are left with a derangement
of [1..n− 2].

These manipulations are reversible, and each smaller derangement gives a
different derangement of [1..n]. Thus, D(n) = (n− 1)

�

D(n− 1) + D(n− 2)
�

,
with base cases D(0) = 1 and D(1) = 2.

Here are two simpler expressions for this count: D(n) = n!
∑

0≤i≤n
(−1)i

i! and,
for n> 0, D(n) =

�

n!
e +

1
2

�

.

Ê

Exercise 8.3. Find the mistake(s) in each of the following.∗

1. Let S(n) =
∑n

n=1 n. . .

The sum uses n as both the summation variable and the upper limit, making
this highly ambiguous. We can’t even tell if S(n) =

∑n
i=1 n or S(n) =

∑n
i=1 i

was intended without context.

2. Recursively define the double factorial for non-negative integers:

Base: 0!!= 1.
Rec. Rule: for integers n≥ 1, n!!= (n− 2)!! · n.

∗Warning: incorrect statements in this problem!

http://en.wikipedia.org/wiki/Derangement

Positive odd integers never reach the base case. To complete the definition, we
need to add a base case for −1!! = 1 or else add 1!! = 1 and have the recursive
rule apply for n≥ 2.

3. We can recursively define the language S of all strings that have the same
number of as and bs:

Base: Λ ∈ S.
Rec. Rule: if string σ ∈ S, then the strings abσ, baσ aσb, and bσa are in S.

There are two problems, here. First, this is missing a closure rule, so the set
of all strings {a, b}∗ satisfies the Base and the Rec. Rule, but also contains
strings with more as than bs. Second, and more subtle, if we added the Closure
rule, that the only strings in S are those derived from the base case by a finite
number of applications of the recursive rule, then there are strings with the
same number of as and bs that are not in S: aabbbbaa is one example.

It is possible to recursively define the set S of strings with the same number of
as as bs if you change strings in the middle, and not only at the ends.

Base: Λ ∈ S.
Rec. Rule: ∀α ∈ S, if we write α = βγ with β ,γ ∈ {a, b}∗, then βabγ ∈ S and

β baγ ∈ S.
Closure: The only strings in S are those derived from the base case by a finite

number of applications of the recursive rule

Ê

Exercise 9.6. In Section 4.2, Item A6 suggested that you could
show that “there are no lock or unlock operations in the trace” is

equivalent to, “every operation in the trace is an access,” if you
added the condition that “each trace entry records exactly one of the
operations {a, l, u} applied by one process to one file.” Here are the
two statements, using the notation from that section:

∀i ∀p ∀ f

�

(t i 6= l(p, f))∧ (t i 6= u(p, f))
�

,

∀i ∃p ∃ f (t i = a(p, f)).

1. Write an expression for the added condition

∀i ∃o ∈ {a, l, u} ∃p ∃ f

�

t i = o(p, f)
�

∧
�

∀o′,p′, f ′
�

t i = o′(p′, f ′)
�

→
�

o=o′ ∧ p=p′ ∧ f= f ′
�

�

2. Assuming the added condition is true, prove that the two statements are equiv-
alent.

Assume that an adversary has chosen the time i, and consider t i . ((todo.
finish))

Ê

Puzzle 9.7. Show that no set of 9 consecutive integers can be parti-
tioned into two subsets such that the product of the elements in the
first set is equal to the product of the elements in the second set.

You can’t use zero, because then only one product would be zero.
You can’t use negatives, because one set will have even cardinality
and the other odd. You need an even number of each prime factor,

but intervals that start before 20 contain single factors of either 19,
13, or 7. Finally, five or more numbers of at least 20 multiply to
greater than 32× 105, and four or fewer at most 30 multiply to less
than 81× 104, so they cannot be equal.

Ê

Puzzle 9.8. I give you a rectangle of size n×m, where both n, m> 1
and their product mn is even, and enough dominoes (1× 2 tiles) to
cover it. I remove the squares at (x1, y1) and (x2, y2). Prove that
you can cover the other squares with dominoes iff x1 + y1 + x2 + y2

is odd. (What type of proof do you use?)
The proof of this is beautiful if you do

two things: First, color the grid with a
checkerboard pattern; even x + y get one
color, and odd the other. Observe that
x1+ y1+ x2+ y2 is odd iff the two removed
squares have opposite colors. Second, find a path that goes square
to square, visiting each square once and returning to its start. Now,
if you remove squares of opposite colors, you can cover the rest of
the board by placing dominoes along the two fragments of the path.
And if you remove squares of the same color, no-one can cover the
rest of the board, since you are left with more of one color than the
other and any domino covers one square of each color.

Ê

Exercise 10.1. Can you show that the first n odd integers sum up
to n2?

We want to show that 1+ 3+ 5+ · · ·+ 2n− 1= n2, except this
formula is not quite right at n= 0.

Stating it correctly with a recursive definition instead of ellipses:
Let S0 = 0, and for integers n> 0 define Sn = Sn−1 + 2n− 1. Prove
by induction that for all n ≥ 0, Sn = n2. Summation notation also
works: show for all n≥ 0 that

∑

1≤i≤n

2i − 1= n2.

I urge you to follow the template; there are many example proofs
on the web that are not always careful about where they start, or
about use of n and k, or that they are proving a ‘for all’ statement.

We have to prove that Sn = 1+ · · ·+ (2n− 1) = n2. We prove this by
induction on n.

Base case: n= 0, the sum of zero numbers = 0, and 02 = 0.)
Induction step: For a given n> 0,
Induction hypothesis: ∀0≤ k < n, Sk = k2

We have to prove Sn = n2:

Sn = Sn−1 + (2n− 1) Defn of Sn

= (n− 1)2 + 2n− 1 Using IH with k = n− 1,

= n2 − 2n+ 1+ 2n− 1 By algebra

= n2.

So, by induction, ∀n≥ 0, 1+ · · ·+ (2n− 1) = n2.
QED

Ê

Exercise 10.2. What is the sum of the first n squares? For all inte-
gers n≥ 0, prove that 12 + 22 + 32 + · · ·+ n2 = n(n+ 1)(2n+ 1)/6.
In summation notation, show that

∑

0≤i≤n

i2 =
n(n+ 1)(2n+ 1)

6
.

Try to use the induction template to make sure you handle the
ns and ks in a correct manner. There is nothing magical about
those variable names, but good habits help us to be correct without
thinking hard.

Let Sn =
∑

0≤i≤n i2. I want to prove, for all n≥ 0, that Sn = n(n+1)(2n+
1)/6 by induction on n.

Base: n= 0: S0 = 0= 0 · 1 · 1/6 Ø
IS: for a given n> 0, I assume:
IH: for 0≤ k < n, Sk = k(k+ 1)(2k+ 1)/6.
Now, we can expand the definition of Sn, apply the IH with k = n− 1

and simplify.

Sn = Sn−1 + n2

= (n− 1)n(2(n− 1) + 1)/6+ n2

= (n(n− 1)(2n− 1) + 6n2)/6

= (n/6)((n− 1)(2n− 1) + 6n)

= (n/6)(2n2 − 3n+ 1+ 6n)

= (n/6)(2n2 + 3n+ 1)

= (n/6)(n+ 1)(2n+ 1)

QED.

Ê

Exercise 10.6. What is the value of the binary number that is a
string of n ones? Define S0 = 0 and for n> 0, define Sn = 2Sn−1 + 1.
Show that Sn = 2n − 1.

Do an induction to determine a closed form expression for the
value for this sequence that is defined recursively. An expression in
closed form uses a fixed number of standard operations, like arith-
metic, factorial, binomial coefficients, but no summation or recursion
in which the number of operations grows as n grows.

I will use induction on n.
1. Base n= 1, and S1 = 2S0 + 1= 2 · 0+ 1= 1= 21 − 1.
2. Induction hypothesis: for a given n> 1, Sn−1 = 2n − 1− 1. To prove

this statement, I have only to prove, Sn = 2n − 1.
3. By definition, Sn = 2Sn−1+1 = 2 · (2n−1−1)+1 = 2 ·2n−1−2+1 =

2(n− 1+ 1)− 1= 2n − 1.
4. QED

Ê

Exercise 10.10. Can euro 2 and 5 cent coins make any value greater
than 3? For all n≥ 4, show that there exist non-negative integers h
and k such that 2h+ 5k = n.

Warning: Be careful not to re-use k in the induction proof; you’ll
want to rename either this variable or the one in the induction
template.

We prove by induction on n that, for all n≥ 4, there exist non-negative
integers h and k such that 2h+ 5k = n.

Base n= 4: choose h= 2, k = 0 to get 2h+ 5k = n.
Base n= 5: choose h= 0, k = 1 to get 2h+ 5k = n.
Ind Step: consider some n> 5, and assume IH: for all 4≤ j < n, there

exist non-negative integers h′ and k′ such that 2h′ + 5k′ = j. We want to

show that there exist non-negative integers h and k such that 2h+ 5k = n.

But for n > 5, we know that n− 2 ≥ 4, so we can apply the induction
hypothesis with j = n− 2 to show that there exist non-negative integers h′

and k′ such that 2h′ + 5k′ = n− 2. Let h= h′ + 1 and k = k′, and observe
that 2h+ 5k = 2h′ + 2+ 5k′ = (n− 2) + 2 = n. This proves the induction
step.

By induction, we know the result for all n≥ 4.

Ê

Exercise 10.12. Prove Lemma 7.3.1 by induction on the number
of mediants created.

We prove these by induction on the number of mediants gener-
ated. We add that for all fractions a/b, we have a, b ≤ 0 with not
both equal to zero.

Base n= 0: the pairs −1/0,0/1 and 0/1, 1/0 satisfy the invari-
ant.

Ind Step for n> 0: We want to prove that the invariant holds for
all sequence containing n mediants, using as the induction hypothesis
that they hold for all sequences containing 0≤ k < n mediants.

Suppose that someone has given us a sequence with n mediants.
Intervals without mediants were checked in the base case, so consider
a mediant (a + c)/(b + d) that was generated between a/b and
c/d because they were adjacent in some sequence with 0 ≤ k < n
mediants. By the IH, we may assume that bc − ad = 1 and the
denominators of a/b and c/d are positive except for possibly one
zero. The reader can then check that b(c+a)−a(b+d) = bc−ad = 1
and (b+ d)c− (a+ c)d = 1, and that the denominator is positive for

the mediant.
Ê

Exercise 10.13. What is wrong with Polya’s classic proof that all
horses are the same color? I’d suggest rewriting this to follow my
template and see if that clarifies what goes wrong.

CLAIM: In any set of h horses, all horses are the same color.

Faulty proof. by Induction on h.
Base: For h= 1. In any set containing just one horse, all horses

clearly are the same color.
Induction Step: For k ≥ 1 assume that the claim is true for h = k

and prove that it is true for h= k+ 1.
Take any set H of k+ 1 horses. We show that all the horses in

this set are the same color. Remove one horse from this set to obtain
the set H1 with just k horses. By the induction hypothesis, all the
horses in H1 are the same color. Now replace the removed horse and
remove a different one to obtain the set H2. By the same argument,
all the horses in H2 are the same color. Therefore, all the horses in
H must be the same color, and the proof is complete. QED

I copied from someone’s online description rather than from the original
source, here, so one of the things that is not good is the way it switches from
h to k going from the base to inductive step. It would be better to stay with
h, and simply say: “For h≥ 1 assume that the claim is true and prove that it
is true for h+ 1. Take any set H of h+ 1”

The problem arises in assuming that, because the first subset of horses
were all of the same color, that the second must be as well. It is easier to
conclude this with groups of k ≥ 3, where it is clear that ∃h (H1 ∩H2 = h).

If we go backwards from the inductive step, to k = 2, we have only two
horses. We examine both horses individually H1 = {h1} and H2 = {h2}, but
since we don’t have a third horse to compare each to, these two need not be
the same color.

Stated another way, the induction step proof works only for sets of at
least h= 3 three horses, and the base case covers h= 1, so h= 2 is never
properly covered. If we lived in a world where we could treat h = 2 as
another base case (i.e., all sets of two horses are the same color) then we
could indeed prove that all horses are the same color.

Ê

Exercise 10.14. What is wrong with this induction proof that an = 1
always?

Claim: Let a be any positive number. For all positive integers
n ∈ Z+, we have a an−1 = 1.

Faulty proof. by induction on n
Basis: If n= 1, we have an−1 = a0 = 1. Ø
Inductive Step: We want to prove this for an integer n> 1.
Inductive Hypothesis: Assume, for all natural numbers k < n,

that ak−1 = 1.
We now want to show that it is true for n by writing

an−1 =
an−2 · an−2

an−3
,

since n− 1 = (n− 2) + (n− 2)− (n− 3). But if we use the inductive
hypothesis twice, for k = n−1 and k = n−2, we can replace an−2 = 1
and an−3 = 1, so an−1 = 1 · 1/1= 1. QED

The first inductive step for n = 2 does not match with the base cases,
because it needs base cases for k = n− 1 and k = n− 2, which are 1 and
0, and we gave the base case only for n= 1. We could fix this if we had a
base cases for n = 1 and n = 2, and the induction started with n = 3 and
the proof would work.

Ê

Puzzle 10.18. Can you show that the number guessing game has a
worst case of exactly dlog2 ne guesses?

I’m thinking of a natural number x between 1 and n. You can
ask questions of the form, “Is x larger than a?” and I will tell you
(truthfully) yes or no. Show that, in the worst case, dlog2 ne questions
are necessary and sufficient to exactly determine my number.

For sufficiency, you may want to argue that you can round n up to
the next power of 2 to make your proof easier: e.g., new n = 2dlog2 ne.

To show that this many are necessary is the harder direction.
You’ll want to imagine that you delay picking a number until forced to
by the guesser’s questions. Pick your answers to keep the maximum
number of options open to you.

Let me rephrase this: I have a list of n consecutive numbers, and by
asking a question I can split the list and determine which sublist contains x .
I want to prove that dlog2 ne splittings are both necessary and sufficient to
reduce to a single number.

Spelling out the quantifiers, I want to show two things: Sufficient: There
exists a strategy that for all choices of a number x from a list of n will find
x in at most dlog2 ne guesses, and Necessary: For any strategy, there exists
some list of n numbers and choice of x that requires at least dlog2 ne guesses.

I’ll prove each of these separately, by induction on n. For Sufficient,
let’s pick the strategy of dividing the list in half by our guess. Let Gn be

the number of guesses by this strategy. I want to prove that for all n > 0,
Gn ≤ dlog2 ne

Base n= 1: No guesses are needed; we know x . And G1 = 0= dlog2 1e.
Ind Step: For any n > 1, I get to assume the following IH: for all

0< k < n, we know Gk ≤ dlog2 ke. I want to prove that Gn ≤ dlog2 ne.
If n is even, then we can write n = 2m and splitting in half gives two

lists of size m. If n is odd, then n = 2m− 1 and splitting gives lists of size m
and m−1. Note that dlog2 2m−1e = dlog2 2me, because the function dlog2e
increases after powers of two, which is an even to odd transition.

Gn ≤ 1+ Gm our guess + guess on larger half

≤ 1+ dlog2 me IH for k = m

= 1+ d(log2 2m)− 1e property of log

= dlog2 2me property of ceil

= dlog2 ne in both even and odd cases.

This completes the induction step. By induction, we now know that for all
n> 1, Gn ≤ dlog2 ne.

For Necessary, we need to accept any strategy, but can pick x to make
the strategy work hard. In fact, we delay picking, but keep a list of possible
values and simply answer each question consistent with x being in the larger
sublist. Let Hn be the maximum number of questions any strategy uses to
pick one out of a list of n possible values. We show that Hn ≥ dlog2 ne, by
induction on n.

Base n= 1: No guesses are needed; x is known. Fortunately H1 = 0=
dlog2 1e.

Ind Step: For any n > 1, I get to assume the following IH: for all
0< k < n, we know Hk ≥ dlog2 ke. I want to prove that Hn ≥ dlog2 ne.

If a question is asked that is outside the list of remaining possible values,
answer, but don’t count it. A question inside the list will split the list into

two pieces, one of size m> 0 and one of size n−m> 0; let’s assume that
m≥ n/2, so that is the larger piece. We can then apply the IH to bound Hm.
The proof is almost the same as before, except for the inequalities being
reversed.

Hn ≥ 1+Hm 1+guess on remaining possibles

≥ 1+ dlog2 me IH for k = m

= 1+ d(log2 2m)− 1e property of log

= dlog2 2me property of ceil

= dlog2 ne in both even and odd cases.

This completes the induction step. By induction, we now know that for all
n> 1, Hn ≥ dlog2 ne.

Ê

Puzzle 10.19. Suppose there are n identical cars stopped on a cir-
cular track, and that the total gas in all tanks is enough for one
car to make it around the track (even if it had to stop and start n
times.) Show that there is at least one car that can make it around
if it siphons all the gas from each of the stopped cars it passes.

In any configuration with n cars and enough gas for one to make it
around, there exists a car that can complete the circle I want to prove this
by induction on n.

Base: n = 1: by assumption, the one car has enough gas to complete
the circle.

Ind Step: For a given n> 1,
IH: I get to assume that for all 1 ≤ k < n, some car out of k cars can

complete the circle. I want to show, for n cars, that one can complete the
circle.

First, observe that some car, call it car 1, can drive to reach the next car,
car 2. If not, then if we put the distances each car can drive together, we
would not reach around the circle; there would be gaps just before each
car. This would contradict our assumption that the total amount of gas is
enough to go around at least once.

But now, we can create a smaller, (n− 1)-car instance of the problem:
put all cars in their initial positions except car 2, which we remove, giving its
gas to car 1 in car 1’s initial position. By induction, this smaller instance has
a solution. But then the larger, n-car instance does too, because whichever
car picks up car 1’s gas will, on that gas alone, have enough to reach car 2
and pick up its gas, too. This completes the induction step. Induction shows
that no matter how many cars n we start with, some car can complete the
circle.

Ê

Extension 10.24. Using properties from Subsections 7.2.1 and
7.2.2, prove the “Fundamental Theorem of Arithmetic” that every
integer n> 1 can be written as the product of one or more primes
in an increasing sequence in exactly one way (up to order).

1. Initially drop the “in exactly one way,” and just show that every integer n> 1
can be written as a product of primes.

2. Then prove the full theorem, perhaps by minimal counterexample.

For all n> 1, we can write n as the product of one or more primes
We prove this induction on n.
Base: n=2: 2 is a prime.
Induction Step: for a given n> 2, I want to prove that n is the product

of one or more primes.

Induction Hypothesis: for all 2 ≤ k < n, I may assume that k is the
product of one or more primes.

I want to show that n is a product of one or more primes
If n is prime, then n works
If n is composite, then ∃a, b 6= 1 so that ab = n.
Since 2≤ a < n and 2≤ b < n, by the IH, a and b are products of one

or more primes, so we know that n is a product of at least two primes.
Therefore, I have proved for all n > 1 that n is the product of one or

more primes.

Ê

Extension 10.26. Prove the Pigeonhole Principle by induction:That
is, show that for all integers n≥ 1, for all sets A of n+1 elements, all
sets B of n elements, and all functions f : A→ B, there exist elements
a1, a2 ∈ A, with a1 6= a2, such that f (a1) = f (a2).

We can prove this by induction on n.
For n = 1, set A has 2 elements (a1 and a2) and set B has 1 element.

Thus, there exits only one function from A to B. This function maps both
elements in A to the single element in B. Thus, f (a1) = f (a2).

Induction step: For a given n> 1, we want to prove that for all sets A of
n+ 1 elements, all sets B of n elements, and all functions f : A→ B, there
exist elements a1, a2 ∈ A, with a1 6= a2, such that f (a1) = f (a2).

Induction hypothesis: We can assume, for all k < n, that for all sets A of
k+ 1 elements, all sets B of k elements, and all functions f : A→ B, there
exist elements a1, a2 ∈ A, with a1 6= a2, such that f (a1) = f (a2).

Assuming the induction hypothesis, we will prove that for a given n> 1,
for all sets A of n+ 1 elements, all sets B of n elements, and all functions
f : A→ B, there exist elements a1, a2 ∈ A, with a1 6= a2, such that f (a1) =
f (a2).

If there is another x2 ∈ A such that f (x1) = f (x2) then we have found
our two pigeons and are done. So suppose that x1 gives f (x1) uniquely.
But then we remove x1 from A leaving n elements, f (x1) from B leaving
n− 1, and both from f to make a new function g : A− {x1} → B − { f (x1)}.
By the induction hypothesis with k = n− 1, this new function g sends two
elements a1, a2 ∈ A− {x1} to the same value g(a1) = g(a2) ∈ B − { f (x1)}.
Since f does the same as g on a1, a2, this establishes the induction step.

Therefore, we have proved that for all n ≥ 1, for all sets A of n + 1
elements, for all sets B of n elements, and for any function f : A→ B, there
exist elements a1 and a2 in A with a1 6= a2 such that f (a1) = f (a2).

Ê

Extension 10.27. Prove Fermat’s little theorem, Theorem 7.2.2, by
induction on m: For all primes p and positive integers m ∈ Z+, the
exponential mp mod p = m mod p.

Proof. We prove this picking any prime p, then doing induction on m.
Base m= 1: For all primes p, we see 1p = 1≡ 1 (mod p).
Ind step: For m> 1,
IH: assume, for all 1≤ k < m, that kp ≡ k (mod p).
We want to show that mp −m ≡ 0 (mod p), that is, that mp −m is a

multiple of p. Choose k = m− 1.

mp = (k+ 1)p

= kp +
�

p
1

�

kp−1 +
�

p
2

�

kp−2 + · · ·+
�

p
p− 1

�

k+ 1.

Putting all the binomial coefficients involving p on the right,

mp − kp − 1=
�

p
1

�

kp−1 +
�

p
2

�

kp−2 + · · ·+
�

p
p− 1

�

k,

we get that both sides of the equation are divisible by p, so mp − kp − 1≡ 0
(mod p). But by the IH, kp ≡ k (mod p), so mp − k − 1 ≡ 0 (mod p), and
mp ≡ m (mod p), as desired. QED

Ê

Exercise 12.3. Prove that subset (⊆) is the universal reflexive par-
tial order. That is, if you are given a poset (S,�) with � being
reflexive, then you can make a family of sets FS and a bijection
f : S→FS so that for all a, b ∈ S, a ≺ b iff f (a) ⊆ f (b).

According to the hint, for each b ∈ S, define f (b) = {a ∈ S | a ≺
b}. The family FS = f (S), the set of all these sets.

We have two directions to prove: First, suppose a ≺ b. Consider
any c ∈ f (a). By definition, c ≺ a, so by transitivity c ≺ b and
c ∈ f (b). Thus f (a) ⊆ f (b).

Second, suppose f (a) ⊆ f (b). Since ≺ is reflexive, a ∈ f (a). But
then a ∈ f (b), meaning a ≺ b. QED

Ê

Exercise 12.5. You are a xenobiologist studying Zorches. When two
Zorches get together, one or both may “freeb” (glow blue). Write
aF b if a freebs when close to b. Some Zorches freeb near your
spaceship, and you eventually realize that this is because they are
seeing their own reflection, aFa.

A particular group of four Zorches, Z = {Aye, Bee, Cea, Dii},
change their freeb pattern every day, but it is always reflexive (each
freebs with its reflection), symmetric (for any pair, either both or
neither freeb), and transitive (if aF b and bFc then aFc). How many

days can they go before repeating a freeb pattern? Let’s break this
into smaller questions.

1. How many elements are there in the Cartesian product Z × Z?

4*4=16

2. How many different relations from Z to Z are possible?

216 = 65, 536, since each pair in Z × Z is independently either in or out of the
relation.

3. How many different reflexive relations from Z to Z are possible?

24·3 = 212 = 4096, since for x , y ∈ Z , we know that (x , x) is in, but if x 6= y
then (x , y) may be in or out of the relation.

4. How many different reflexive and symmetric relations from Z to Z are possible?

2(
4
2) = 26 = 64, since for x < y ∈ Z , once we decide if (x , y) is in, then we

know whether (y, x) is in the relation, too.

5. How many different equivalence relations from Z to Z are possible?

There are 15. Because equivalence relations partition the underlying set into
equivalence classes that freeb together, we can count partitions of the four
Zorches:

• 1 way to partition into 4 sets of one,
•
�4

2

�

= 6 ways to partition into 3 sets by choosing which two freeb,

•
�3

1

�

= 3 ways to partition into 2 sets of two by choosing who freebs with
“Aye,”
•
�4

1

�

= 4 ways to partition into sets of one and three by choosing who
doesn’t freeb,

• 1 way to have one set in which every Zorch freebs.

Ê

Exercise 13.2. In an undirected graph G = (V, E), define the rela-
tion “is reachable from” on vertices: ∀a, b ∈ V we say that a R b iff
there exists a path starting at b that ends at a. Prove that R is an
equivalence relation: that is, it is reflexive, symmetric, and transitive.
What are the equivalence classes of R in graph terminology?

Recall that a path is a sequence of one or more vertices, in which adjacent
vertices are joined by edges. We can see that the “reachable” relation is

Reflexive: For all a ∈ V , vertex a is reachable from a by the 0-edge path (a), so R is
reflexive.

Symmetric: For all a, b ∈ V , if a R b, then there is a path (b, v1, v2, . . . , vk, a). We can
simply reverse the path, (a, vk, . . . , v2, v1, b), to show that b R a, so R is symmetric.

Transitive: For all a, b, c ∈ V , if a R b and b R c then there are paths
(b, v1, v2, . . . , vk, a) and (c, w1, w2, . . . , w`, b). We join these to form a path
(c, w1, w2, . . . , w`, b, v1, v2, . . . , vk, a) that shows a R c, so R is transitive.

The equivalence classes are the connected components.

Ê

Exercise 13.4. In the Max in a list algorithm of Section 11.2, show
that an algorithm that performs fewer than n− 1 comparisons will
return the wrong maximum on some list. Consider the graph whose

vertices are list entries with an edge between two vertices iff their
list entries are directly compared.

Form a graph G with n vertices representing the n array entries and an
edge joining two entries whose values are compared. If G has fewer than
n− 1 edges, then G is not connected.

Now, if we choose mi as the array entry with maximum value mx, the
adversary can find a component that does not contain the vertex for mi, and
increase all values in that component by the same amount so at least one
value is greater than mx. All comparisons performed by our algorithm on
these new values produce the same results as before—all comparisons are
between unchanged values or values that have the same amount added—so
our algorithm must again report mi, even though A[mi] is no longer the
maximum value in the array.

Ê

Puzzle 13.7. Prove the Futurama theorem [13], which writer Ken
Keeler created for the Season 6 episode, “The Prisoner of Benda:”
Professor Farnsworth and Amy have created a mind-swapping ma-
chine. After using it on several characters, they discover that no pair
of minds can survive a second swap, although two minds can swap
back with the help of some fresh bodies.

If n people are in the wrong bodies because of some unknown
set of swaps. how many helpers are needed to sort everyone out?
(Convince yourself that one extra body is not enough.) Keeler’s
Futurama theorem says that you never need more than two. Describe
how, and prove that your method works.

You’ll want to begin by assigning names to bodies and minds –
defining notation can help clarify questions. Since bodies are put

into the machine, I suggest numbering bodies so that body i wants
mind i, but initially contains mind mi .

Start by arranging bodies so that body mi is just ahead of body
i. Note that this puts bodies into one or more cycles so that each
mind wants to move into the body just ahead; we can fix each cycle
with the same two helper minds, A and B, as long as they have not
swapped with each other or with any minds in the cycles.

Break a cycle between the lowest numbered body and its mind,
so that the body, which we’ll call 1, is facing the front and mind, m1,
is at the back, facing the whole line. Have body A swap with the
front body, whose mind wants to be last. Have body B swap with the
body at the back, then continue swapping forward to body 2, whose
mind wants to be first. This puts minds 2-k into the right bodies.
Now, swap body A with body 2 and body B with body 1, which fixes
the cycle, leaving the minds that were in A and B in opposite bodies
without directly swapping them yet. Fix all cycles, and if there was
an odd number, conclude with a final swap of A and B to return
everyone to their original bodies.

Ê

Exploration 13.9. In one classic peg puzzle, you have a line of ten
holes that start with 4 blue pegs on the left, two empty holes, then 4
blue pegs on the right. A peg may move into an empty hole that is
adjacent, or by jumping over a single peg of the opposite color, but
blue pegs must move right and red pegs must move left. The goal is
to get the pegs to swap: all 4 red at left and all 4 blue at right.

First, if we were to build a graph to capture all possible arrange-
ments and the movements between them, what would we find?

• How many different arrangements of colored pegs in holes are possible?
C(10, 2)*C(8, 4)=3150
• How many of these arrangements have a pair of reds blocking a pair of

blues?
7*C(6,2)*C(4,2)=630
There are 7 places to place the blocking four, then choose positions for the
remaining two of each color. There are other ways to block, such as having
two blocking one at either end, in 2

�7
3

��4
2

�

= 420.
• In any given arrangement, what is the maximum number of possible moves?

4
2 per hole (where each may be a jump or step).
• How many jumps will have to take place to go from the initial arrangement

to the solution, and how many single step moves?
Each peg needs to move 6 in total, but for each pair of a red and a blue, one
of them will get the bonus of jumping the other, so the 6 ·8−42 = 8 ·4 = 32
moves will have 16 jumps and 16 steps.

So the graph here would be too big to build by hand, but easily
managed by computer. With the graph you could answer many ques-
tions: How many arrangements allow no moves? How many of those
can you reach from the start position? How many arrangements
allow the maximum number of moves? And, of course, is there a
solution? Ê

Exercise 14.2. Pick an integer m at random from [1..n]. What is
the probability you have a perfect square—that there exists k ∈ Z
such that m= k2?

b
p

nc/n, since there are exactly b
p

nc perfect squares in [1..n].
Ê

Exercise 14.4. Your friend holds out 7 cards, face down, and says
2 are hearts and 5 are spades. If you pick k cards, what are your
chance of getting at least one a red card? Complete this table:

k 1 2 3 4 5 6 7
prob 2/7 11/21 5/7 6/7 20/21 1 1

There are several ways to do this, but the best it to recognize that the
chance of getting no red is

�5
k

�

/
�7

k

�

, so the number we want is 1−
�5

k

�

/
�7

k

�

.
This lets us complete the table as:

k 1 2 3 4 5 6 7
prob 2/7 11/21 5/7 6/7 20/21 1 1

Ê

Exercise 14.5. Chuck-a-luck, or Birdcage, is a carnival gambling
game whose barker∗ rolls three 6-sided dice for six players. Each
player chooses one of the numbers 1–6, and receives $1 for each
die that shows their number, or pays $1 if none of the dice does.
Although the barker may advertise “three losers and three winners,”
giving the impression that the game is break-even, the house rakes
in a significant percentage. How and how much? (You may want
to list the possible outcomes: it helps to assume that the dice have
three different colors.) What should the payouts be for the players
to break even?

The best way to think of this is to have all six players pay $1 up front.
The payouts to players are then $2 for one die showing the number, $3 for

∗A carnival employee, employed by the “house.”

two, and $4 for three. Of the 63 = 216 outcomes, in 6 · 5 · 4= 120 all three
dice are different and the house pays $6, in 6 · 5 · 3 = 90 there is a pair and
the house pays $5, and in 6 there is a triple and the house pays $4. Thus,
the house expects to make 90/216+2 ·6/216> 0.47 cents on each game—a
take of almost 7.9%. A possible break-even game could pay $2 for one, $4
for two, and $6 for three.

Ê

	Glossary of Notation
	Introduction
	Defining Kara's world
	On problem solving
	The purpose of puzzles
	Summary
	Exercises and Explorations

	Propositional Logic
	Logic operations
	Conditionals
	Logic puzzles
	Properties of operations and inference
	Inference with properties

	Boolean circuits
	Solving a puzzle with logic notation
	Defining and using notation
	Solution via truth table
	Solution by inference from properties
	Solution by cases and decision tree

	Summary
	Exercises and Explorations

	Sets, Tuples, & Counting
	Defining sets and tuples
	Sets
	Tuples
	Sequences, strings, and series

	Counting elements in sets
	The sum and product rules
	Permutations and factorial
	Combinations and choose

	A mixed example: distributing donuts
	Counting multisets
	Summary
	Exercises and Explorations

	First Order Logic: Quantifiers
	Quantified statements
	Writing a quantified statement
	Negation and inference for quantifiers
	Scope and nested quantifiers
	Idioms and abbreviations

	Event-time logic using quantifiers
	Summary
	Exercises and Explorations

	Set Operations and Properties
	Set operations
	Definitions for set operations
	Properties for set operations
	Proofs for set operations

	Inclusion/exclusion counting
	Families of sets
	Partitions
	Further questions

	Summary
	Exercises and Explorations

	Relations and Functions
	Relations
	Binary relations

	Functions
	Some numerical functions
	Types of functions

	Bijections and counting
	Resource bounds and asymptotic notation

	Summary
	Exercises and Explorations

	Math Review
	Messages and bases
	Strings to numbers
	Floor and ceiling
	Length of a given message
	Mod for decoding

	Encoding by exponentiation mod hidden primes
	Divisibility
	Hiding two primes in a composite number
	Messages of given length
	The unexpected power of counting

	Finding the encoding and decoding exponents
	Fun with fractions
	A vector view
	Common divisors
	Encryption

	Summary
	Exercises and Explorations

	Recursive definition
	Recursive definition…
	… of sets
	… of functions and relations
	… of tuples, lists, and sequences
	… of notation for operations
	… of strings and languages
	… of other structures

	Recurrences, series, and counting
	Combinatorial proof of a numerical identity
	Counting partitions
	Mathematical series
	Estimating factorial
	Generating functions

	Summary
	Exercises and Explorations

	Proof
	What is a proof
	The roles of definitions and properties
	Proof types

	Modified two-column proof form
	Example two column proofs

	Communication
	What may I use?
	Primitives
	Basic definitions and properties that follow from them
	Definitions with variations: Functions, relations, graphs

	Summary
	Exercises and Explorations

	Mathematical Induction
	Strong induction
	Examples
	8-step template for strong induction

	Variants
	Weak vs. strong induction
	With nested quantifiers
	Strengthen what is to be proved
	Minimal counterexample

	Summary
	Exercises and Explorations

	Algorithms and invariants
	Preliminaries
	Max in a list(A)
	Iterative binary search
	Sorting by insertion
	Greatest common divisor

	Binary Relations & Applications
	Binary relations extended
	Closure operations for relations

	Aboveness: A partial order
	Equivalence relations and finite state automata
	Regular languages and simplified Kara
	Recognizing a regular language with superKara
	Simple Kara simulates superKara
	An equivalence relation =L
	Proof in detail:
	The smallest machine for L
	Reducing K' to K sub L

	Summary
	Exercises and Explorations

	Graphs and Trees
	A draw-it-yourself chapter outline
	Foundational definitions
	Modify, count, draw, and color graphs
	Modifying graphs
	Counting graphs
	Drawing partial order graphs
	Coloring

	Paths and cycles
	Trees
	Equivalent definitions for rooted trees
	Counting Trees

	Planar Graphs and Triangulations
	Drawing and encoding planar graphs

	Exercises and Explorations

	Discrete Probability
	Definitions
	Monty Hall and sample spaces

	Random variables and expectation
	Non-transitive dice

	Examples: balls into bins
	Exercises and Explorations

	Bibliography
	Selected Solutions

