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Abstract

The Terrain Resources Inventory Mapping (TRIM) data standard in BC, Canada, includes
speci�cations for river data and elevation data that are typically met by interpretation of stereo
orthophotos. It does not specify that breaklines for watersheds be interpreted from the photos,
thus we must extract them from the data. We seek a system of watersheds that, while not exact
due to errors in the data, is at least self-consistent { having no overlapping watersheds and no
unclassi�ed points.

We build a TIN terrain model using a Delaunay triangulation that combines both river and
elevation data. Based on the standard de�nition of water ow along steepest-descent paths,
we create an algorithm that identi�es ridges and channels in the TIN, and extracts watersheds.
Several unexpected geometric con�gurations, which we have not seen in the literature, follow
from the standard de�nitions. These must be correctly computed to obtain a consistent system
of watersheds.

1 INTRODUCTION

The old data processing phrase \garbage in, garbage out" has never implied that the input of

good data will necessarily produce good information. In analysis of data in a Geographic Infor-

mation System, one also needs good models for the underlying reality that the data represents

and algorithms that faithfully implement computation on the model. With consistent models and

algorithms, even less-than-ideal data can produce useful information. In this paper, we illustrate

this with the computation of systems of watersheds that, while not exact due to errors in the data,

is at least self-consistent { having no overlapping watersheds and no unclassi�ed points.

In particular, we use data that is collected according to the Terrain Resources Inventory Map-

ping (TRIM) speci�cations (Ministry of Environment, Lands, and Parks, Province of British

Columbia 1992). Two types of data in the TRIM speci�cation are relevant for watershed com-

putations: point elevation data collected at 50 to 75 meter spacing, and digitized river segments,

collected at greater detail. Both are speci�ed in UTM coordinates with accuracy of 10 meters in

x and y and 5 meters in elevation; typically the data comes from stereo digitizing of orthophotos.

Ridges and other hydrographic breaklines are, unfortunately, not uniformly collected.

While the lack of hydrographic breaklines limits the accuracy when we compute a system of

watersheds, we can still aim for a systems that is consistent with the two types of data, is consistent

with standard assumptions of steepest-descent ow, and is self-consistent in assigning each point

to exactly one watershed. We achieve this by building a terrain surface model that combines the
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two types of data, and computing watershed boundaries by careful analysis of the geometry of

steepest-descent ow on this surface, including the handling of degenerate cases.

We are all familiar with data inconsistencies within one data set, when the quality of the data

fails to meet its encoding or digitizing standard. Nevertheless, the standard or expectation on the

data set gives us a target to which we can correct the data: polygons can be closed, edges can be

reversed, features can be relabeled, points can be added or moved. While sometimes a tedious task,

individual data sets can be made self-consistent.

In watersheds, inconsistencies also occur between di�erent types of data

Figure 1:

Inconsistent river &

watershed

sets that represent the same geographic area. Figure 1 illustrates a river that

is not completely contained in its watershed. (In this case, the watershed

was digitized from a 1:50 000 scale map while the river was digitized from

a 1:20 000 scale map.) Section 4 describes a method for deriving watershed

boundaries from elevation and river data that tries to avoid the inconsisten-

cies of �gure 1.

A major source of inconsistency in watersheds, however, is model incon-

sistency. Frank et al. (Frank, Palmer, and Robinson 1986) point out that

formal de�nitions should be used to de�ne terrain-speci�c features so that

properties of the structure can be established mathematically and incon-

sistent de�nitions can be avoided. We believe that the best way to obtain

consistency is to adopt standard models for terrain representation and water

ow, but then look carefully at the mathematics of the interaction of these models and be prepared

to handle outputs that are initially unintuitive. For a speci�c example, we may expect that the

watershed of a point is a single polygon, is connected, and either encloses an area or is a single linear

path along a slope. As we describe in Section 3, a consistent implementation of the earlier modeling

assumptions allows a watershed to have a disconnected interior or to have no area yet not be a

single line on the TIN. These degeneracies can be classi�ed as inconsistencies in our expectations

of the model or of the actual terrain.

In the next section, we survey prior work on the computation of watersheds. In Section 3, we

de�ne notation and briey discuss how we combine river and elevation data into a TIN terrain

model. In Section 4, we describe our algorithm for computing watershed boundaries, paying par-

ticular attention to data structure elements that support the degenerate cases that are inherent

in combining the standard models for TIN terrains and steepest-descent ow. In Section 5, we

give some sample results from our implementation inside the Cause & E�ect decision management

system.

2 ALGORITHMS FOR WATERSHEDS

Several algorithms have been proposed for �nding watersheds or watershed boundaries under the

standard assumptions of steepest-descent ow.

Many algorithms begin with raster elevation data and use �lter techniques that are common

in raster image processing to identify terrain features (Peucker and Douglas 1975; Douglas 1986;

Peucker and Chrisman 1975; Seemuller 1989; Takahashi, Ikeda, Shinagawa, Kunii, and Ueda 1995)

or to �nd watersheds themselves (Jensen 1985; Collins 1975; Jenson and Domingue 1988). Because

it can be di�cult to join the fragments of watershed boundary detected by local �lters into a

consistent whole, Mark's global approach of discretizing ow on a raster also has adherents (Mark

1978; Mark 1984; O'Callaghan and Mark 1984).



Some algorithms work with contour data (Hutchinson 1988; Kweon and Kanade 1994; Morris

and Flavin 1990; Tang 1992), although this is not mathematically correct (Koenderink and van

Doorn 1993).

One algorithm approximates watersheds using river data only|(Skea et al. 1998) computes

the Voronoi cells of each river in the river network and treat the cells as the watershed of the river.

Although self-consistent, this approach ignores the landscape around the river. Subsequently,

Skea et al. used a hybrid approach that accounted for steep terrain.

Because our data is not gridded and combines lower density elevation data with river data, we

prefer terrain models structured as TINs (triangulated irregular networks).

Among algorithms that compute ow on TINs, some consider the triangles (Palacios-Velez and

Cuevas-Renaud 1986) or the edges (Frank, Palmer, and Robinson 1986; Silfer, Kinn, and Hassett

1987; Theobald and Goodchild 1990) as the basic units for discretizing ow and forming watershed

boundaries. To obtain consistency properties, however, it is necessary to subdivide triangles.

Nelson and others (Jones, Wright, and Maidment 1990; Environmental Modeling Research

Laboratory, Bringham Young University 1998; Nelson, Jones, and Miller 1994) create a triangulated

irregular network (TIN) of the landscape, subdivide each triangle of the TIN into regions whose

points drain to the same pit in the terrain, and group the regions that drain to the same pit p as

the watershed of p. The TIN can embed river data as breaklines to improve the accuracy of the

TIN. Nelson et al.'s watershed for a point p is consistent with the terrain, but we show in Section 3

that it may not be a single polygon.

Figure 2: Combining river and elevation information to compute watershed boundaries

In our approach, we apply the same constraints as Nelson et al. to �nd watersheds. As illustrated

in �gure 2, we create a TIN that is a suitable �t to the terrain elevation data, embed that river data

to correct the TIN, and assume that water ows along the path of steepest descent on the TIN.

Rather than subdivide TIN triangles, we create an embedded planar graph from the structure of

the TIN in which each face of the graph corresponds to the watershed of one pit in the TIN. From



this graph, any face-tracing algorithm extracts the watershed boundaries. Our graph for identifying

watershed boundaries is consistent with the TIN and the water-ow assumption. Moreover, every

watershed appears as a single polygon, with the possibility of having a degenerate boundary.

3 BASIC MODELS AND WATERSHED STRUCTURE

The steepest-descent ow model is commonly used for surface water. Let trickle(p) be the path of

steepest descent out of a point p. Then the watershed of a point q on the terrain is watershed(q) =

fp j q 2 trickle(p)g. The advantage of the steepest-descent ow model is that paths of steepest

ascent out of p delimit the areas that drain into p in a neighborhood of p.

We �nd the TIN to be the natural terrain model for our work, not only because we have been

using BC TRIM data (Ministry of Environment, Lands, and Parks, Province of British Columbia

1992), which has irregularly sampled elevation points, but also because it can more easily capture

the non-uniform distribution of channels that we are trying to model.

We create the TIN with an algorithm from Garland and Heckbert (Garland and Heckbert

1995). We begin with a (mostly) regular grid of elevation data. In our case, the elevation data

comes from BC TRIM data, which is manually digitized from stereo orthophotos. Other forms of

remotely-sensed data, such as radar plots, are also suitable as input. The user supplies a desired

error tolerance for the TIN along with the data. The TIN is then constructed incrementally. We

begin with a two triangle decomposition of the 2D bounding box for the terrain points. Points are

successively added to the triangulation by �nding the raster point whose vertical distance to the

TIN is greatest, adding the point as a vertex of the TIN, and retriangulating the TIN vertices with

a 2D Delaunay triangulation algorithm. We continue to add points to the TIN until the vertical

distance between every raster point and the TIN is bounded by the error tolerance.

The TIN construction ignores the terrain features when it triangulates its vertices. As a con-

sequence, a TIN edge can inadvertently force a blockage across a narrow valley. Known rivers,

valleys, and ridges are often embedded in the TIN as breaklines to remedy these types of errors.

We add the points of these features as TIN vertices and force the edges that trace these features to

be TIN edges. In general, breaklines help the TIN to have similar drainage characteristics to the

terrain. However, the combination of data still leaves us open to inconsistencies between data sets:

river breaklines may not match the elevation data perfectly, whether in elevation or in xy position.

To combine the steepest-descent ow model with a TIN, we de�ne features of the TIN that

a�ect the watersheds. An edge e of the TIN is a ridge if neither of the two triangles bounded by e

send ow across e. In this case, the triangles bounded by e drain away from one another at e and e

acts as a watershed boundary. A vertex v of the TIN is a pit if all the land in a small neighborhood

of v drains into v; all the land around v has a higher elevation than v. A vertex v is a peak if all the

land in a small neighborhood of v drains away from v; all the land around v has a lower elevation

than v. Finally, a vertex v is a saddle if the land in a small neighborhood around v that have a

lower elevation than v do not form a half-open ball around v. Saddles form passes in the terrain.

More mathematical de�nitions for these terms are provided by Yu, van Kreveld, and Snoeyink (Yu,

van Kreveld, and Snoeyink 1996).

We expect that watersheds of pits have certain characteristics: connected boundaries that have

no self-intersections, connected interiors, and interiors that are disjoint from all other watersheds.

Only the last characteristic, disjoint watersheds for di�erent pits, is completely consistent with the

combination of TIN and steepest-descent ow models.



Since the direction from which water ows out of a point is independent
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Figure 3: Flow to

di�erent pits

of how the water enters the point, the TIN and steepest-descent ow models

can have unexpected interactions at saddles. For example, suppose that TIN

vertex v is incident on a TIN triangle t and that a path of steepest descent

� on t leads directly into v. Then water on t to either side of � drains to

either side of v while water along � drains into v. If v is a saddle point, it

is consistent with the models to have the water at vertex v drain to a pit p1

while the water to each side of � on t drain to two di�erent pits p2 and p3 as

in �gure 3. Consequently, path � belongs to the watershed of p1 but there is

no area along �; the boundary of the watershed for p1 is self- intersecting. In

a more extreme case, water from some area of land can be funneled by a pair of ridges to drain

along the path �. This extreme case creates a watershed whose interior is not connected, as we will

illustrate in �gure 5.

4 BOUNDARY-BASED ALGORITHM

Previous algorithms match areas of land, whether grid cells or TIN triangles, with the pit to which

the land drains. When a watershed has a disjoint interior as in Section 3, these algorithms either

report the watershed of a point as more than one polygon or require additional post-processing to

connect the disjoint boundaries of the watershed. We focus on �nding the connected boundary of

the watershed instead of the area.

Our algorithm creates a planar graph, which we call the watershed graph, whose edges are

potential watershed boundary edges and whose faces are exactly the watersheds of the pits in the

TIN. The TIN model de�nes the edges of the watershed graph while the steepest-descent ow

model dictates how these edges are connected to one another so that the graph faces correspond

to watersheds. Once we have the watershed graph, any algorithm that follows the faces of a graph

will extract the watershed boundaries as single polygons. The di�culty lies in creating the correct

watershed graph.

Watershed Graph Edges Three features of the TIN de�ne watershed graph edges: ridges,

ridge endpoints, and saddles. The ridges of the TIN are already line segments so they are added,

as edges, to the watershed graph. The remaining two features, ridge endpoints and saddles, are

TIN vertices around which water may ow in di�erent directions.

For a TIN vertex v, whether a ridge endpoint or a saddle, we add edges to the watershed graph

that are paths of steepest ascent out of v. The circle of radius � centered at v and placed on the

surface of the TIN has a set of local maxima in the elevation of the points along the circle. Let

these local maxima be at angles f�1; �2; : : : ; �ng around v. For each angle �i, let �i be the path of

steepest ascent out of v that starts o� in the direction �
i
and that stops as soon as it reaches either

a peak, a saddle, a ridge endpoint, or a ridge edge. Add to the watershed graph two copies of each

path �
i
, designating the paths as left and right copies of �

i
. The paths �

i
account for degenerate

boundaries in the watershed. The two copies allow two disjoint open sets to be connected as a

single face through the space between the left and right copies.

The ridges and the paths of steepest ascent are the only edges that can be boundary edges of

watersheds.



Watershed Graph Topology Although the watershed graph edges can have common endpoints,

their adjacency in the watershed graph is based on the drainage characteristics of the TIN according

to the steepest-descent ow model. Let e1 and e2 be two watershed graph edges that have a common

point. There are two possibilities for the common point:

� edge e1 is a ridge of the TIN and edge e2 meets e1 in its interior, or

� edges e1 and e2 share a common geometric endpoint that is also a TIN vertex.

In the �rst case, where e1 is a ridge and e2 meets e1 in its interior, edges e1 and e2 are

topologically adjacent in the watershed graph at the common point, essentially dividing edge e1

into two graph edges. The order of the graph edges around the common point matches the geometric

order of the edges on the TIN. When two edges e2 and e3 meet ridge e1 at the same point, e2 and

e3 are copies of the same path of steepest ascent; assume that e2 is the \left" copy and e3 is the

\right" copy. The order of the edges around the common point has e2 immediately clockwise of e3.

In the second case, where e1 and e2 share a common geometric endpoint v, we rely on the

steepest-descent ow model to dictate the topological adjacencies of the edges. Edges e1 and e2 are

topologically connected at v if and only if

� there is a sector bounded by e1 and e2 that has no other watershed graph edges in it,

� the land in the sector between e1 and e2 drains away from v, and

� point v does not drain into the sector.

These adjacency rules de�ne the face closures in a small neigh-

drain direction of vertex v

a

b

c

d

e

f

v

Figure 4: watershed graph

at saddle v

borhood around v (sectors a and d in �gure 4). Every sector around

v that has a point lower than v is closed at v except for the sector

that contains the direction in which v drains. Every other sector,

namely sectors b, c, and f that are higher than v, are open at v and

are in a common face of the watershed graph with the drain of v.

When edges e1 and e2 are the left and right copies respectively

of a path of steepest ascent �, the adjacency de�nition needs some

clari�cation. First, the \land" between the two edges is the path of

steepest ascent � that de�nes e1 and e2. We imagine that e1 and

e2 are separated by an �-width corridor. Second, if v is the lower

endpoint of e1 and e2 then e1 is counterclockwise of e2, otherwise

v is the upper endpoint and e1 is clockwise of e2. Third, if the

path � has v as its upper endpoint and, according to the steepest-

descent ow model, v drains along � then v drains between e1 and

e2. Sectors b and f of �gure 4 are bounded by steepest ascent paths with v at the lower end while

sectors e and d contain dotted steepest ascent paths with v at the upper end.

The adjacency conditions for copies of a path of steepest ascent capture watersheds with un-

connected interiors. When a path of steepest ascent � out of TIN vertex u is stopped by a TIN

saddle v and the path approaches v along its drain direction then the water that accumulates at

point v drains out of u, regardless of where the water to either side of � drains. Figure 5 shows a

TIN where the �-width corridor joins two unconnected watershed interiors as one face of the graph.

Although only local information on the TIN de�nes the topology of the watershed graph, the

graph expresses some global properties:



Figure 5: A terrain with an \unconnected" watershed. Two catchment basins in the

mountains drain into a pit at the lower right; one through an " corridor

� The watershed graph has a planar embedding.

� Every face of the watershed graph contains exactly one pit of the TIN.

� A point on the TIN and the pit to which it drains are in the same face of the watershed

graph.

� With a boundary of ridges around the TIN, the watershed graph is connected.

� The faces of the watershed graph are consistent with both the TIN representation of the

terrain and the steepest-descent ow model.

r

p

Figure 6: r's watershed

in p's

Watersheds of Arbitrary Points While the previous paragraphs

focus on the watersheds of pits in the terrain, we also want to identify

the watersheds of rivers. If we want the watershed of a river r and r

drains to a pit p then the watershed of r is contained in the watershed

of p. Consequently, to obtain the watershed of r, we subdivide the

face of the watershed graph that corresponds to p starting at the

most-downstream point of r (�gure 6).

5 SAMPLE WATERSHEDS

We have implemented our watershed algorithm inside the Cause & E�ect decision management

system by Facet Decision Systems of Vancouver. Figure 7 shows the watersheds that our algorithm

detects in the mountains north of Vancouver. These outlines can be compared to the colored

watersheds from the Watershed Atlas of British Columbia shown in the same �gure.

The TIN for Vancouver covers a 60 km by 35 km area and uses 30 500 points of the original

677 000 data points. The original data has 1 meter accuracy in the xy-plane and 5 meter accuracy

in the elevation and was converted into a TIN as described in Section 3. In this �gure, the TIN

has a 20 meter error tolerance relative to the original data. The watershed graph for this terrain

has 46 500 edges and a total of 88 000 points; the longest edge has only 18 points. The small size



of the graph edges in practice is encouraging since de Berg et al. indicate that the edge complexity

can, in the worst case, be quadratic in the number of TIN vertices (de Berg et al. 1996)

Each face of the graph has an internal structure that is partially shown in �gure 7. The internal

structure encodes a description of how water reaches the pit of a each face from any point in the

face. With the internal structure, we can answer queries about the watershed of a single point in

the terrain without recomputing the entire watershed graph. If we want only the watersheds of

pits then the internal structure can be eliminated by post-processing the watershed graph.

Figure 7: Computed watershed boundaries (lines) and watersheds from the

Watershed Atlas of British Columbia for the mountains north of Vancouver.

Although our goal is to eliminate inconsistencies in the watershed boundaries, the edges of

�gure 7 have some obvious di�erences with the watershed boundaries as reported by the Watershed

Atlas of British Columbia. First, there are many more watersheds in the interior of the mountains

than reported by the Watershed Atlas. Remember that our algorithm �nds the watersheds of the

pits in the TIN. In some cases, the TIN has pits in the interior of the mountains caused by the

error in the TIN relative to the terrain; our algorithm �nds watersheds for these pits. Smoothing

the terrain, reducing the error tolerance of the TIN, and grouping the watersheds of pits that

lie along a common river would improve the correspondence between the watersheds. In other

cases, edges of the watershed graph converge to a point and seem to close o� a face, but the edges



are not topologically connected so two faces in �gure 7 may be one face in the graph. These

conditions represent places where part of the watershed is funneled into a narrow pass. Second, the

computed watersheds contain lines that extend from the watershed boundaries into the watershed

interiors. These lines capture the ow patterns inside the watersheds and are necessary for �nding

the watersheds of arbitrary points; many of these ow pattern lines have been omitted from the

�gure. Third, the computed watershed boundaries of �gure 7 do not always extend to the coast.

In the TIN, all the water along the coast drains to the ocean so our algorithm classi�es that land

as one watershed. This can be improved by adding the watershed boundaries of all points where

a river meets a coast. Finally, some edges from the Watershed Atlas are missing, most notably to

the left of the center of the �gure. These edges do not appear in the watershed graph because the

error in the TIN relative to the actual terrain has created an arti�cial pass between two mountains

that, in accordance with the steepest-descent ow model, lets part of the watershed drain through

the arti�cial pass.

As a �nal example, �gure 8 shows the contour lines for a Big Beef Creek in Washington State,

USA. The terrain has the Hood canal in the upper left corner of the picture, Big Beef Creek owing

from the center of the �gure to the the upper right corner, and two mountains in the lower right

corner. The river starts in relatively at marsh and drains towards the Hood canal; the terrain

near the mouth of the river is steeper than near the marsh. The TIN from which the contours were

derived has a 12 meter error tolerance relative to the original data. Since the canyon is narrow, the

river was embedded in the TIN as a breakline to better de�ne the canyon. The TIN has 5 400 of

the original 16 900 elevation points. As with the Vancouver data, the TIN was not preprocessed to

eliminate or orient at triangles or horizontal edges.

The �gure also shows the faces of the watershed graph that are generated for the terrain. Since

the river has relatively at sections and was embedded in the terrain, the TIN has many pits along

the river. Still, the watershed polygons track the course and the branches of the river.

The watershed graph has 8 816 edges with a total of 17 900 points. Since this TIN has a lower

error tolerance than the Vancouver TIN, we expect it to have more points per path of steepest

ascent: the longest graph edge has 32 vertices.

6 CONCLUSION

We combine two basic models to identify the watersheds of pits on a terrain: a TIN representation

of the terrain, and a steepest-descent ow model for surface water. While these models have been

combined before to identify watersheds, they admit degenerate polygons as watersheds, such as

watersheds whose interiors are unconnected.

We described an algorithm for identifying watersheds that is provably consistent with both

models. The algorithm identi�es the watersheds of pits on the terrain, but can also identify the

watersheds of arbitrary points on the terrain. We implemented our algorithm inside the Cause &

E�ect decision support system with the straight-forward approach used to describe the watershed

graph: identify the graph edges, sort the edges around the common points, and then construct the

graph topology around each common point.

As part of this work, we characterized watersheds under the two models (TINs and steepest-

descent ow). The watersheds that are consistent with the models are not necessarily the watersheds

that we want. Further work could use a more sophisticated model for steepest-descent ow that

overows minor pits in the terrain or modi�es the TIN so that the valleys in the TIN more closely

match the river network of the terrain. The watershed extraction algorithm can also be changed



Figure 8: Contours and derived watersheds of Big Beef Creek.

to take better advantage of the hierarchical structure of river networks when tracing watershed

boundaries.
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