COMP 144

Programming Language Concepts

Lecture 12: Semantic Analysis

The University of North Carolina at Chapel Hill

COMP 144 Programming Language Concepts
Spring 2002

Lecture 12:
Semantic Analysis

Felix Hernandez-Campos
Feb 6

COMP 144 Programming Language Concepts
Felix Hernandez-Campos

Semantic Analysis
From Code Form To Program Meaning

Source Code

Compiler orinterpreter Interpre-

. tation
Execution

Translation

Target Code

COMP 144 Programming Language Concepts
Felix Hernandez-Campos

Felix Hernandez-Campos

February 6, 2002

COMP 144 February 6, 2002
Programming Language Concepts
Lecture 12: Semantic Analysis

| “;‘ Phases of Compilation

Character stream

> (| Scanner (lexical analysis) |)

Taoken stream -__*
— (| Parser (syntax analysis) D
Parse tree
\“"-1 (Semantic analysis and]

intermediate code generation
Abstract syntax tree or "f"_—-‘

ather intermediate form *\ Machine-independent
*____..--' code improvement (optional)

-* Target code generation)
Assernbly or machine language, *__..a-"'(

or other target language ‘\-__* Machine-specific
code improvement (optional)

(| Symbol table |)

Modified intermediate form

Modified target language

V\‘j" Specification of Programming Languages

* PLs require precise definitions (i.e. no ambiguity)
— Language form (Syntax)
— Language meaning (Semantics)

» Consequently, PLs are specified using formal
notation:

— Formal syntax
» Tokens
» Grammar

— Formal semantics
» Attribute Grammars
» Dynamic Semantics

COMP 144 Programming Language Concepts
Felix Hernandez-Campos

Felix Hernandez-Campos 2

COMP 144 February 6, 2002
Programming Language Concepts
Lecture 12: Semantic Analysis

| “;‘ Attribute Grammars

* Context-Free Grammars (CFGs) are used to specify
the syntax of programming languages
— E.g. arithmetic expressions

— E+ T

* How do we tie these rules to — E-T

— Annotations are also known as
decorations

E
E
mathematical concepts? E _. T
* Attribute grammars are annotated T — TxF
CFGs in which annotations are r — T/F
used to establish meaning T — F
relationships among symbols F — -F
F — (E)
F

— const

COMP 144 Programming Language Concepts
Felix Hernandez-Campos

» Attribute Grammars
-W; Example

B —E+T

e EaCh grammar SymbOIS > Eywval :=sum (Eawval T.val)
has a set of attributes 2B - EB-T
. Ey.val = diff Eq.wal, T.val
— E.g. the value of E, is the > Frval = diference (yval, Tval)
. 3 FE—T
attribute E1.val > E.val:= T.val
4: T[— T-‘; * F
¢ EaCh grammar rule haS > Tiwval := product (Ta.val, Foval)
a set of rules over the 5: Ty —Ty / F
Symbol attrlbutes - > TFl.vaI i= quotient (Tawal, F.val)
G: —
— COpy rules = T.val ;= F.val
— Semantic Function rules | |7 Fi — - F
B> Fival := additive_inverse (Fg.val)

» E.g. sum, quotient
& q & F—(E)

> F.val := E.val

9: F — const

COMP 144 Programmi| > F.val := const.val
Felix Hernar

Felix Hernandez-Campos 3

COMP 144
Programming Language Concepts
Lecture 12: Semantic Analysis

| “;‘ Attribute Flow

 Context-free grammars are not tied to an specific
parsing order

— E.g. Recursive descent, LR parsing

* Attribute grammars are not tied to an specific
evaluation order

— This evaluation is known as the annotation or decoration
of the parse tree

COMP 144 Programming Language Concepts
Felix Hernandez-Campos

Wy, Example

» Attribute Flow

* The figure shows the result
of annotating the parse tree T
for (1+3)*2

* Each symbols has at most
one attribute shown in the
corresponding box

— Numerical value in this

example E |I|‘\ T
— Operator symbols have no |) |)
value T EL F
» Arrows represent attribute |) I
ﬂOW F m‘ const

COMP 144 Programming Languad Consi
Felix Hernandez-Camp

Felix Hernandez-Campos

February 6, 2002

COMP 144 February 6, 2002
Programming Language Concepts
Lecture 12: Semantic Analysis

Attribute Flow

’ E[8]
1]
Wy, Example |
: ;,.__L__ L
LEBE —E+T /l»\\qj\
> Ejpval :=sum (Eaval, T.val) T,)
2B —B-T rla] < F[2]
> Ej.val := difference (Eg.val, T.val) /I

i)
3 E—T F -:-:mst

[= E.wval = Twal / \(I\
4Ty —Tax F :
E

> Tiwval := product (Ta.wval, Foval) !

Ty — Ty / F /l ~J "“a\l
> Ty.wval := quotient (Ta.val, F.val) —T /
+

o

T —F E III‘\ T
[> T.val ;= F.val |) |)
i, r[i], #[3]
> Fy.val := additivedinverse (Fa.val) | !
& F—(E) / }
[> F.wval :=E.val F m‘ const
9: F — const | \J
[= F.wa .= const.val g Langud const

ndez-Camp

3 Attribute Flow
WY, Synthetic and Inherited Attributes

* In the previous example, semantic information is
pass up the parse tree

— We call this type of attributes are called synthetic
attributes

— Attribute grammar with synthetic attributes only are said to
be S-attributed

* Semantic information can also be passed down the
parse tree
— Using inherited attributes

— Attribute grammar with inherited attributes only are said to
be non-S-attributed

COMP 144 Programming Language Concepts
Felix Hernandez-Campos

Felix Hernandez-Campos 5

COMP 144
Programming Language Concepts
Lecture 12: Semantic Analysis

» Attribute Flow
GY, Inherited Attributes

parse tree
— Using inherited attributes

be non-S-attributed

attributed flows

LR(1)

COMP 144 Programming Language Concepts
Felix Hernandez-Campos

* Semantic information can also be passed down the

— Attribute grammar with inherited attributes only are said to

* Top-down grammars generally require non-S-

— The previous annotated grammar was an S-attributed

Wy, Example

> Non-S-Attributed Grammars

2: TT), —+ T TTy
= TTast:=TTi.st+ T.val

= TTy.val ;= TTg.val

COMP 144 Programming Language Concepts
Felix Hernandez-Campos

Felix Hernandez-Campos

February 6, 2002

COMP 144 February 6, 2002
Programming Language Concepts
Lecture 12: Semantic Analysis

o Action Routines

+ Automatic tools can construct a parser for a given
context-free grammar
— E.g. yacc

» Automatic tools can construct a semantic analyzer
for an attribute grammar

— An ad hoc techniques is to annotate the grammar with
executable rules

— These rules are known as action routines

COMP 144 Programming Language Concepts
Felix Hernandez-Campos

3 Action Routines
W%, Example

E — T{TT.st:=Tptr } TT{ E.ptr:= TT.ptr }

TT, — + T{ TTast:=makebinop ("+", TTy.st, T.ptr) } TTa { TTy.ptr:=TTaptr }
TT, — - T{ TTast:=makebinop ("=", TTyst, T.ptr) } TTa { TTy.ptr:= TTaptr}
TT — e{TT.ptr:=TTl.st}

T — F{FTst:=Foptr} FT {T.ptr:=FT.ptr }

FTy — # F{ FTast:=makebinop("x", FTy.st, F.ptr) } FTa { FT|.ptr:=FTa.ptr}
FTy — [/ F{ FTast := makebinop ("+", FTy.st, F.ptr) } FTa2 { FTy.ptr:=FTa.ptr }
FT' — e{FT.ptr:=FT.st}

Fy — - Fy{ Fi.ptr:= makeunoop ("tL_", Fa.ptr) }

F — (E) {Fptr:=Eptr}

F — const { F.ptr := makeleaf (const.ptr) }

COMP 144 Programming Language Concepts
Felix Hernandez-Campos

Felix Hernandez-Campos 7

COMP 144 February 6, 2002
Programming Language Concepts
Lecture 12: Semantic Analysis

My Static and Dynamic Semantics

* Attribute grammars add basic semantic rules to the
specification of a language
— They specify static semantics

 But they are limited to the semantic form that can be
checked at compile time

* Other semantic properties cannot be checked at
compile time
— They are described using dynamic semantics

COMP 144 Programming Language Concepts
Felix Hernandez-Campos

L Dynamic Semantics

 Use to formally specify the behavior of a
programming language
— Semantic-based error detection
— Correctness proofs

* There is not a universally accepted notation

— Operational semantics

» Executing statements that represent changes in the state of a real
or simulated machine

— Axiomatic semantics

» Using predicate calculus (pre and post-conditions)
— Denotational semantics

» Using recursive function theory

COMP 144 Programming Language Concepts
Felix Hernandez-Campos

Felix Hernandez-Campos 8

COMP 144 February 6, 2002
Programming Language Concepts

Lecture 12: Semantic Analysis

| “;‘ Semantic Specification

» The most common way of specifying the semantics
of a language is plain english
— http://www.python.org/doc/current/ref/binary.html
— http://www.python.org/doc/current/ref/while.html

— http://java.sun.com/docs/books/jls/first _edition/html/14.do
c.html#24588

* There is a lack of formal rigor in the semantic
specification of programming languages
— Guess why

COMP 144 Programming Language Concepts
Felix Hernandez-Campos

@ Reading Assignment

 Scott’s chapter 4
— Section 4.1
— Section 4.2
— Section 4.3
— Section 4.4

COMP 144 Programming Language Concepts
Felix Hernandez-Campos

Felix Hernandez-Campos 9

