COMP 144

Programming Language Concepts
Lecture 19: Functions, Types and Data Structures in Haskell

q\‘; The University of North Carolina at Chapel Hill

COMP 144 Programming Language Concepts
Spring 2002

Lecture 19: Functions, Types and
Data Structures in Haskell

Felix Hernandez-Campos
Feb 25

COMP 144 Programming Language Concepts
Felix Hernandez-Campos

L Functions

* Functions are the most important kind of value in
functional programming
— Functions are values!

» Mathematically, a function f associates an element of
a set X to a unique element of second set Y
— We write £: :X->Y

three :: Integer -> Integer

infinity :: Integer

square :: Integer -> Integer

smaller :: (Integer, Integer) -> Integer

COMP 144 Programming Language Concepts
Felix Hernandez-Campos

Felix Hernandez-Campos

February 25, 2002

COMP 144
Programming Language Concepts
Lecture 19: Functions, Types and Data Structures in Haskell

Ny Currying Functions

* Functional can be applied to a partially resulting in
new functions with fewer arguments

smaller :: (Integer, Integer) -> Integer
smaller = if x <= y then x else y
smaller2 ::lInteger -> Integer -> Integerl
smaller2|x y| = if x <= y then x else y

* The value of the application smaller2 x is a function
with type Integer -> Integer
— This is known as currying a function

COMP 144 Programming Language Concepts
Felix Hernandez-Campos

L Curried Functions

* Curried functions help reduce the number of
parentheses
— Parentheses make the syntax of some functional languages
(e.g. Lisp, Scheme) ugly

« Curried functions are useful _Function as argument

twice ::|(Integer -> Integer)|—>|(Integer -> Integer”
twice £ x = £ (f x)

square :: Integer -> Integer Function as result
square x = x * x

quad :: Integer -> Integer

quad = |twice square

COMP 144 Programming Language Concepts
Felix Hernandez-Campos

Felix Hernandez-Campos

February 25, 2002

COMP 144
Programming Language Concepts
Lecture 19: Functions, Types and Data Structures in Haskell

| W\ Operators

Operators are functions in infix notation rather than
prefix notation
—E.g. 3 + 4rather than plus 3 4

Functions can be used in infix notation using the ‘f ¢
notation
—Eg 3 “plus’ 4

Operators can be used in prefix notation using the
(op) notation
—Eg (+) 3 4

As any other function, operators can be applied
partially using the sections notation
— E.g. The type of (+3) is Integer -> Integer

COMP 144 Programming Language Concepts
Felix Hernandez-Campos

\L Operator Associativity

 Operators associate from left to right (/efi-
associative) or from right to left (right-associative)
—E.g. - is left-associative 3 - 4 - 5 means (3 - 4) - 5

* Operator -> is right-associative
-X ->Y -> 2 means X -> (Y => 2)

 Exercise: deduce the type of h in

hxy=f£f (g xy)

f :: Integer -> Integer
g :: Integer -> Integer -> Integer

COMP 144 Programming Language Concepts
Felix Hernandez-Campos

Felix Hernandez-Campos

February 25, 2002

COMP 144

Programming Language Concepts
Lecture 19: Functions, Types and Data Structures in Haskell

| T\‘j; Function Definition

* Functions with no parameters are constants
—E.g.pi = 3.14 hastypepi :: Float

» The definition of a function can depend on the value
of the parameters
— Definitions with conditional expressions
— Definitions with guarded equation

smaller :: Integer -> Integer -> Integer
smaller x y = if x <= y then x else y
smaller2 x y

| x <=y

Il
E]

|y > x

COMP 144 Programming Language Concepts
Felix Hernandez-Campos

L Recursive definitions

* Functional languages make extensive use of
recursion

fact :: Integer -> Integer

fact n = if n == 0 then 1 else n * fact (n - 1)

* What is the result of fact -1?

* The following definition is more a

fact n

| n<O0 error “negative argument for fact”
| n == =1

| otherwise = n * fact (n-1)

COMP 144 Programming Language Concepts
Felix Hernandez-Campos

Felix Hernandez-Campos

February 25, 2002

COMP 144

Programming Language Concepts
Lecture 19: Functions, Types and Data Structures in Haskell

| T\‘j; Local Definitions

* Another useful notation in function definition is a
local definition

 Local declarations are introduced using the keyword
where

 For instance,

£ :: Integer -> Integer -> Integer
fxy
| x <= 10 = x + a
| x >10 =x - a
where a = square b
b=y +1

COMP 144 Programming Language Concepts
Felix Hernandez-Campos

My Types

» The following primitive time are available in Haskell

- Bool

- Integer
- Float

— Double
— Char

» Any expression in Haskell has a type
— Primitive types
— Derived types
— Polymorphic types

COMP 144 Programming Language Concepts
Felix Hernandez-Campos

February 25, 2002

Felix Hernandez-Campos

COMP 144 February 25, 2002

Programming Language Concepts
Lecture 19: Functions, Types and Data Structures in Haskell

o Polymorphic Types

» Some functions and operations work with many
types
» Polymorphic types are specified using type variables

* For instance, the curry function has a polymorphic
type

curry :: ((a, b) =>¢) -=> (a -=> b -> ¢)

curry £f xy = £ (x,y)

» Type variables can be qualified using type classes

|(*) :: Num a => a -> a -> a

COMP 144 Programming Language Concepts
Felix Hernandez-Campos

Lists

* Lists are the workhorse of functional programming

* Lists are denoted as sequences of elements separated
by commas and enclosed within square brackets

-Eg [1,2,3]

* The previous notation is a shorthand for the List
data type
—Eg 1:2:3:[)]

COMP 144 Programming Language Concepts
Felix Hernandez-Campos

Felix Hernandez-Campos 6

COMP 144 February 25, 2002

Programming Language Concepts
Lecture 19: Functions, Types and Data Structures in Haskell

® Lists
8y, Functions

 Functions that operate on lists often have
polymorphic types
length :: QaD_:;—integer
=0

length |[]
length |(x:xs)| = 1 + length xs

> Pattern Matching

* In the previous example, the appropriate definition of
the function for the specific arguments was chosen
using pattern matching

Polymorphic List

COMP 144 Programming Language Concepts
Felix Hernandez-Campos

®» Lists
{ . -
\¥¥, Example Derivation
length :: [a] -> Integer
length [] =0 (1)
length (x:xs) = 1 + length xs 2)

|length [1,2,3] |
= { definition (2) }

{ definition of + }

1 + length [2,3] 3 + length []

= { definition (2) } = { definition (1) }
1 + 1 + length [3] 3+ 0

= { definition of + } = { definition of + }

2 + length [3]
= { definition (2) }
2 + 1 + length []

COMP 144 Programming Language Concepts
Felix Hernandez-Campos

Felix Hernandez-Campos

COMP 144
Programming Language Concepts
Lecture 19: Functions, Types and Data Structures

in Haskell

Lists

W} \, Other Functions

head
head

[a]

(x:xs)

tail
tail

[a]

(x:x8)

-> a

X

-> [a]

XS

COMP 144 Programming Language Concepts
Felix Hernandez-Campos

. Data Types

» New data types can be created using the keyword

data
» Examples
Type Constructor
- yp
data Bool =|False | True
data Color = Red | Green | Blue | Violet

_____—» Polymorphic Type

data |Point a

=|Pt|a a
Type Constructor

COMP 144 Programming Language Concepts
Felix Hernandez-Campos

Felix Hernandez-Campos

February 25, 2002

COMP 144
Programming Language Concepts
Lecture 19: Functions, Types and Data Structures in Haskell

o Polymorphic Types

 Type constructors have types

Pt :: a -> a -> Point

data Point a = Pt a a

» Examples

Pt 2.0 3.0 :: Point Float
Pt 'a' 'b' :: Point Char

Pt True False :: Point Bool

COMP 144 Programming Language Concepts
Felix Hernandez-Campos

» Recursive Types
¥y, Binary Trees

Branch :: Tree a -> Tree a -> Tree a

Leaf :: a -> Tree a

« Example function that operates on trees
fringe :: Tree a -> [a]
fringe (Leaf x) = [x]

fringe (Branch left right) = fringe left

COMP 144 Programming Language Concepts
Felix Hernandez-Campos

data Tree a = Leaf a | Branch (Tree a) (Tree a)

++ fringe right

Felix Hernandez-Campos

February 25, 2002

COMP 144

Programming Language Concepts
Lecture 19: Functions, Types and Data Structures in Haskell

. List Comprehensions

* Lists can be defined by enumeration using /ist
comprehensions

— Syntax: Generator
[£x |[x <~ xs|]
[(x,y) | x <- xs, y <- ys]
« Example
quicksort [] = []
quicksort (x:xs) = quicksort [y | y <- xs, y<x]
++ [x]
++ quicksort [y | y <- xs, y>=x]

COMP 144 Programming Language Concepts
Felix Hernandez-Campos

. Reading Assignment

* A Gentle Introduction to Haskell by Paul Hudak,
John Peterson, and Joseph H. Fasel.
— http://www.haskell.org/tutorial/
— Read sections 1 and 2

COMP 144 Programming Language Concepts
Felix Hernandez-Campos

Felix Hernandez-Campos

20

February 25, 2002

10

