COMP 144

Programming Language Concepts
Lecture 24: Dynamic Binding

q\‘; The University of North Carolina at Chapel Hill

COMP 144 Programming Language Concepts

Spring 2002

Lecture 24: Dynamic Binding

Felix Hernandez-Campos
March 20

COMP 144 Programming Language Concepts
Felix Hernandez-Campos

My Fundamental Concepts in OOP

* Encapsulation
— Data Abstraction
— Information hiding
— The notion of class and object

* Inheritance
— Code reusability
— Is-a vs. has-a relationships

* Polymorphism
— Dynamic method binding

COMP 144 Programming Language Concepts
Felix Hernandez-Campos

Felix Hernandez-Campos

March 20, 2002

COMP 144

Programming Language Concepts
Lecture 24: Dynamic Binding

o Fundamental Concepts in OOP

* Encapsulation
— Data Abstraction
— Information hiding
— The notion of class and object

 Inheritance
— Code reusability
— Is-a vs. has-a relationships

* Polymorphism
— Dynamic method binding

COMP 144 Programming Language Concepts
Felix Hernandez-Campos

. Inheritance

* Encapsulation improves code reusability
— Abstract Data Types
— Modules
— Classes

» However, it is generally the case that the code a
programmer wants to reuse is close but not exactly
what the programmer needs

* Inheritance provides a mechanism to extend or
refine units of encapsulation
— By adding or overriding methods
— By adding attributes

COMP 144 Programming Language Concepts
Felix Hernandez-Campos

Felix Hernandez-Campos

March 20, 2002

COMP 144

Programming Language Concepts
Lecture 24: Dynamic Binding

Inheritance
Notation

Base Class
Java.awt:Dialog (or Parent Class
or Superclass)

ﬂ Is-a relationship
Derived Class
Java.awt.FileDialog (or Child Class
or Subclass)

COMP 144 Programming Language Concepts
Felix Hernandez-Campos

) Inheritance
, Subtype

Y7
Java.awt:Dialog Base Class

ﬂ Is-a relationship

L\Elaagilsntlge Derived Class

 The derived class has all the members (i.e. attributes
and methods) of the base class

— Any object of the derived class can be used in any context
that expect an object of the base class

— fp = new FileDialog() is both an object of class Dialog and
an object of class File Dialog

COMP 144 Programming Language Concepts
Felix Hernandez-Campos

Felix Hernandez-Campos

March 20, 2002

COMP 144

Programming Language Concepts
Lecture 24: Dynamic Binding

L Method Binding

class person { ...

class student : public person { ... J
class professor : public person { ... CIagses S:Udentland PPr gessor
erive rrom class rFerson

student s;
professor p;

Person *x = &s;
person *y = 8p;

void person::print_mailing label () { ... Method print_mailing_list
is polymorphic
e.print_mailing label (); // student::print_mailing label (s)

p.print_mailing label (); // professor::print_mailing label (p)

x->print_mailing_label (); [/ 77 Results depend on the
y->print_mailing label (); // ?7 blndlng static or dynamic

Print_mailing_label redefined for student and professor classes

COMP 144 Programming Language Concepts
Felix Hernandez-Campos

Method Binding

Ay, Static and Dynamic

* In static method binding, method selection depends
on the type of the variable x and y

— Method print_mailing_label() of class person is executed
in both cases

— Resolved at compile time

* In dynamic method binding, method selection
depends on the class of the objects s and p

— Method print_mailing_label() of class student is executed
in the first case, while the corresponding methods for class
professor is executed in the second case

— Resolved at run time

COMP 144 Programming Language Concepts
Felix Hernandez-Campos

Felix Hernandez-Campos

March 20, 2002

COMP 144 March 20, 2002
Programming Language Concepts
Lecture 24: Dynamic Binding

| T\‘j" Polymorphism and Dynamic Binding

* The is-a relationship supports the development of
generic operations that can be applied to objects of a
class and all its subclasses

— This feature is known as polymorphism
—E.g. paint () method is polymorphic (accepts multiple
types)

* The binding of messages to method definitions is
instance-dependent, and it is known as dynamic
binding

— It has to be resolved at run-time
— Dynamic binding requires the virtual keyword in C++
— Static binding requires the final keyword in Java

COMP 144 Programming Language Concepts
Felix Hernandez-Campos

WL Dynamic Binding Implementation

* A common implementation is based on a virtual
method table (vtable)

— Each object keeps a pointer to the vtable that corresponds
to its class

clags foo |

int a; 3 foo's viable
deuble bj; - I3
char cj; a 1
public: n ——» Codeforn
virtual void k [... b .
virtwal int 1 { ...
wirtwal woid m (}; <

virtual deoubkle nf ...

1 Fi

COMP 144 Programming Language Concepts
Felix Hernandez-Campos

Felix Hernandez-Campos 5

COMP 144
Programming Language Concepts
Lecture 24: Dynamic Binding

March 20, 2002

| W Dynamic Binding Implementation

* Given an object of class foo, and pointer f to this
object, the code that is used to invoked the
appropriate method would be

to call f-=>m():

this (self)
r2 :=*rl ——vtable address
r2:=*(r2 4 (3—1) x 4) ——assuming 4 = sizeof (address)

(polymorphic) method invocation

COMP 144 Programming Language Concepts
Felix Hernandez-Campos

®» Dynamic Binding Implementation
¥¥, Simple Inheritance

» Derived classes extend the vtable of their base class

— Entries of overridden methods contain the address of the
new methods

class bar : public foo { E bar ~5 viable
int w; T~ k
public: a 1
woid m (); Jffoverride B
) ' m —t»Code for bar s m
virtual deuble = { ... b B
. n —rCoda for foo's n
wirtual char *t (...]
c 5 —r®=Code for bar's =
} B; w t

COMP 144 Programming Language Concepts
Felix Hernandez-Campos

Felix Hernandez-Campos

COMP 144 March 20, 2002
Programming Language Concepts
Lecture 24: Dynamic Binding

®» Dynamic Binding Implementation
Sy, Multiple Inheritance

* A class may derive from more that one base class
— This is known as multiple inheritance

« Multiple inheritance is also implemented using
vtables
— Two cases

» Non-repeated multiple inheritance
» Repeated multiple inheritance

COMP 144 Programming Language Concepts
Felix Hernandez-Campos

» Dynamic Method Binding
\¥%, Non-Repeated Multiple Inheritance

student viahle

student object. (student/parson part)
KN, . 1
student v I.L“ L - parson :
person View methods !
student (orly)}
= . |
person gp_list_nods parson methods !
L a fields
student
student viahle
igp_list_node parl)
gp-list_nods view — = — I
Ep_list_node:
gp-list_node methods !
felds I

student (only)
fields

COMP 144 Programming Language Concepts
Felix Hernandez-Campos

Felix Hernandez-Campos 7

COMP 144 March 20, 2002
Programming Language Concepts

Lecture 24: Dynamic Binding

®» Dynamic Method Binding
WY, Non-Repeated Multiple Inheritance

 The view of this must be corrected, so it points to the
correct part of the objects

— An offset d is use to locate the appropriate vtable pointer
» d is known at compile time

to call my_student.debugprint:

this _ _
rl ;= my_student | — student view of object
(self) _ . .
rl:=rl +IEI — gplist_node view of object
r? = *rl —— address of appropriate vtable
r3 = *(r2 + (3-1) = 8) —— method address
r2:=*(r2 + (3-1) x 8 + 4) ——this correctien
rl:=rl + r2 ——thils
call *r3

LUMIE 144 FTOZHAIIING LaNguage Loncepts
Felix Hernandez-Campos

Dynamic Method Binding
Repeated Multiple Inheritance

« Multiple inheritance introduces a semantic problem:
method name collisions

— Ambiguous method names

— Some languages support inherited method renaming (e.g.
Eiffel)

— Other languages, like C++, require a reimplementation that
solves the ambiguity

— Java solves the problem by not supporting multiple
inheritance

» A class may inherit multiple interfaces, but, in the absence of
implementations, the collision is irrelevant

COMP 144 Programming Language Concepts
Felix Hernandez-Campos

Felix Hernandez-Campos 8

COMP 144 March 20, 2002
Programming Language Concepts
Lecture 24: Dynamic Binding

L Reading Assignment

* Scott
— Read Sect. 10.4
— Read Sect. 10.5 intro and 10.5.1

COMP 144 Programming Language Concepts
Felix Hernandez-Campos

Felix Hernandez-Campos 9

