COMP 144 March 27, 2002
Programming Language Concepts
Lecture 27: Prolog’s Resolution and Programming Techniques

q\‘; The University of North Carolina at Chapel Hill
&k ‘5

COMP 144 Programming Language Concepts
Spring 2002

Lecture 27: Prolog’s Resolution
and Programming Techniques

Felix Hernandez-Campos
March 27

COMP 144 Programming Language Concepts
Felix Hernandez-Campos

4

W,

* We will use SWI-Prolog for the Prolog programming
assignments
— http://www.swi-prolog.org/

SWI-Prolog

« After the installation, try the example program

?- [likes]. Load example likes.pl
% likes compiled 0.00 sec, 2,148 bytes
Yes

This goal cannot be proved, so it assumed

?- likes(sam, curry). 4 pefalse (This is the so called Close

No World Assumption)

?- likes(sam, X).

% = dahl D . Asks the interpreter to
‘ " find more solutions

X = tandoori ;
X = kurma ;

COMP 144 Programming Language Concepts
Felix Hernandez-Campos

Felix Hernandez-Campos 1

COMP 144 March 27, 2002
Programming Language Concepts
Lecture 27: Prolog’s Resolution and Programming Techniques

L SWIi-Prolog

* The editor shipped as part of SWI-Prolog supports
coloring and context-sensitive indentation
— Try “Edit” under “File”

COMP 144 Programming Language Concepts
Felix Hernandez-Campos

\L Prolog Programming Model

» A program is a database of (Horn) clauses

* Each clauses is composed of terms:

— Constants (atoms, that are identifier starting with a
lowercase letter, or numbers)
» E.g. curry, 4.5
— Variables (identifiers starting with an uppercase letter)
» E.g. Food
— Structures (predicates or data structures)
» E.g. indian (Food), date (Year,Month, Day)

COMP 144 Programming Language Concepts
Felix Hernandez-Campos

Felix Hernandez-Campos 2

COMP 144

Programming Language Concepts
Lecture 27: Prolog’s Resolution and Programming Techniques

o Data Structures

« Data structures consist of an atom called the functor
and a list of arguments

— E.g.[date](Year, Month, Day)

- E.g
£ Functors
T =(3, tree(2,nil,nil), tree(5,nil,nil))

COMP 144 Programming Language Concepts
Felix Hernandez-Campos

\L Principle of Resolution

* Prolog execution is based on the principle of
resolution

—If C, and C, are Horn clauses and the head of C; matches
one of the terms in the body of C,, then we can replace the
term in C, with the body of C,

* For example,
Cl: likes (sam, Food) :- indian (Food), mild (Food) .
C,:indian (dahl) .
C;imild(dahl) .
— We can replace the first and the second terms in C, by C,
and C; using the principle of resolution (after instantiating
variable Food to dahl)

— Therefore, 1ikes (sam, dahl) can be proved

COMP 144 Programming Language Concepts
Felix Hernandez-Campos

Felix Hernandez-Campos

March 27, 2002

COMP 144 March 27, 2002
Programming Language Concepts
Lecture 27: Prolog’s Resolution and Programming Techniques

| w Unification

* Prolog associates variables and values using a
process known as unification
— Variable that receive a value are said to be instantiated

* Unification rules
— A constant unifies only with itself

— Two structures unify if and only if they have the same
functor and the same number of arguments, and the
corresponding arguments unify recursively

— A variable unifies to with anything

COMP 144 Programming Language Concepts
Felix Hernandez-Campos

. Equality

» Equality is defined as unifiability

— An equality goal is using an infix predicate =

» For instance,
?- dahl = dahl.

Yes

?- dahl = curry.

No

?- likes(Person, dahl) = likes(sam, Food).
Person = sam

Food = dahl ;

No

?- likes(Person, curry) = likes(sam, Food).
Person = sam

Food = curry ;

No

COMP 144 Programming Language Concepts
Felix Hernandez-Campos

Felix Hernandez-Campos 4

COMP 144

Programming Language Concepts
Lecture 27: Prolog’s Resolution and Programming Techniques

L Equality

* What is the results of

?- likes (Person, Food) = likes(sam, Food).

Person = sam

Food = ;

No
Internal Representation for an
uninstantiated variable
Any instantiation proves the equality

COMP 144 Programming Language Concepts
Felix Hernandez-Campos

L Execution Order

* Prolog searches for a resolution sequence that
satisfies the goal

* In order to satisfy the logical predicate, we can
imagine two search strategies:
— Forward chaining, derived the goal from the axioms

— Backward chaining, start with the goal and attempt to
resolve them working backwards

» Backward chaining is usually more efficient, so it is
the mechanism underlying the execution of Prolog
programs

— Forward chaining is more efficient when the number of
facts is small and the number of rules is very large

COMP 144 Programming Language Concepts
Felix Hernandez-Campos

Felix Hernandez-Campos

March 27, 2002

COMP 144
Programming Language Concepts
Lecture 27: Prolog’s Resolution and Programming Techniques

o Backward Chaining in Prolog

rainy{seattle] .

° Backward rainy (rochester) .

cold{rocchester).

Chaining snowy (X] - rainy (¥}, cold(¥)
follows a K
ClaSSIC Original goal snowy (C)

depth-first
backtracking o
algorithm Candidate clauses

* Example // ;
X—SPatth

— Goal: /

Snowy (C) /.

. \ |
S .

Candidate clanses rainy(lum:ll)

!
|

i
¥ = rochester

Subgoals rainy(X) p

/ rainy (n-:;hutlr) cold(rochestar)|

WL Depth-first backtracking

» The search for a resolution is ordered and depth-first
— The behavior of the interpreter is predictable

* Ordering is fundamental in recursion

— Recursion is again the basic computational technique, as it
was in functional languages

— Inappropriate ordering of the terms may result in non-
terminating resolutions (infinite regression)

— For example: Graph
edge (a,b). edge(b, c¢). edge(c, d).

edge(d,e). edge(b, e). edge(d, f). Correct
path (X, X).
path(X, Y) :- edge(Z, Y), path(X, 2).

COMP 144 Programming Language Concepts
Felix Hernandez-Campos

Felix Hernandez-Campos

March 27, 2002

COMP 144
Programming Language Concepts
Lecture 27: Prolog’s Resolution and Programming Techniques

| “;‘ Depth-first backtracking

* The search for a resolution is ordered and depth-first
— The behavior of the interpreter is predictable

* Ordering is fundamental in recursion

— Recursion is again the basic computational technique, as it
was in functional languages

— Inappropriate ordering of the terms may result in non-
terminating resolutions (infinite regression)

— For example: Graph

/N

p&th:x: Y} pnth;l; x}l
L=X. Y =1 /AND\
path(X, Z) edge (T, ¥)
By = B ¥y = ¥5 - i/f/f Ok \\\\\
path(X; ¥) path (X, X)
g = Mg ¥y =¥ Z3 = F - ////AND\\\\
path(X, Z) edge (E, ¥)

edge (a,b) . edge(b, c). edge(c, d).

edge (d,e) . edge (b, e). edge(d, f). Incorrect

path(X, Y) :- path(X, 2), edge(Z, Y).

path (X, X).

COMP 144 Programming Language Concepts
Felix Hernandez-Campos
13
Infinite Regression

edgeia.b). edgel(b. c). edgelc.d).
edgaid.e). edge(b. e). edge(d £). Goal
path (X, ¥) :- path(X, Z). =dge(Z ¥).
path (X, X). ¥, =a ¥, =a-

Felix Hernandez-Campos

March 27, 2002

COMP 144 March 27, 2002
Programming Language Concepts
Lecture 27: Prolog’s Resolution and Programming Techniques

My Examples

* Genealogy
— http://ktiml.mff.cuni.cz/~bartak/prolog/genealogy.html

e Data structures and arithmetic

— Prolog has an arithmetic functor i s that unifies arithmetic
values
» Eg. is (X, 1+2), X is 142
— Dates example
» http://ktiml.mff.cuni.cz/~bartak/prolog/genealogy.html

COMP 144 Programming Language Concepts
Felix Hernandez-Campos

. Reading Assignment

» Read
— Scott Sect. 11.3.1

» Guide to Prolog Example, Roman Bartak
— Go through the first two examples
— http://ktiml.mff.cuni.cz/~bartak/prolog/learning.html

COMP 144 Programming Language Concepts
Felix Hernandez-Campos

Felix Hernandez-Campos 8

