COMP 144

Programming Language Concepts
Lecture 31: Building a Runnable Program

q\‘; The University of North Carolina at Chapel Hill

COMP 144 Programming Language Concepts
Spring 2002

Lecture 31:
Building a Runnable Program

Felix Hernandez-Campos
April 10

COMP 144 Programming Language Concepts
Felix Hernandez-Campos

V\‘j" From Source Code to Executable Code

ﬁrogram gcd (input, output); \
var i, j: integer;
begin
read(i, j);
while i <> j do
if i > j then i :=1i - 3; . .
else j i= 3 - i; Compilation

writeln (i)

- Y

27bdffd0 afbf0014 0ci00Za8 00000000 OclO0Za8 afal00lc 8fadl0lc
00401825 10820008 0064082a 10200003 00000000 10000002 00832023
00841823 1483fffa 0064082a 0c1002b2 00000000 8fbf0014 27bd0020
03200008 00001025

COMP 144 Programming Language Concepts
Felix Hernandez-Campos

Felix Hernandez-Campos

April 10, 2002

COMP 144
Programming Language Concepts
Lecture 31: Building a Runnable Program

| “;‘ Phases of Compilation

Character stream

\\" Scanner (lexical analysis)
— (

‘N\"' Parser (syntax analysis))
4—""' (

\“"-1 (Semantic analysis and)
-r""—-‘

Token stream

Parse tree

intermediate code generation
Abstract syntax tree or

ather intermediate form *\ Machine-independent
*____..--' code improvement (optional)

Modified intermediate form

-* Target code generation
— (

Assernbly or machine language,

or other target language ‘\-__* Machine-specific
code improvement (optional)

Modified target language

N NN N

(Symbol table

\L Compiler Structure

* Lexical, syntax and semantic analyses are the firont-
end of a compiler

— These phases serve to figure out the meaning of the
program

* The rest of the phases are considered part of the
back-end of a compiler

— They are responsible for the generation of the target
program

COMP 144 Programming Language Concepts
Felix Hernandez-Campos

Felix Hernandez-Campos

April 10, 2002

COMP 144
Programming Language Concepts
Lecture 31: Building a Runnable Program

| “;‘ Phases of Compilation

Character stream

\(Scamner (lexical analysis))
Parse tree \
Semantic analysis)
Abstract syntax tree / Front end

with annotations \ Back end
(Intermediate)

code generation

Token streamn

Parser (syntax analysis))

Flow graph with pseudcr _____________

instructions in basic blocks \
Machine-independent
// code improvernent
\ (Target code generation)
Machine-

(Almost) assembly language
*\, (Machine-specific) dependent

Modified flow graph

code improvernent

Real assembly Ianguage

* The first three
phases are
language-
dependent

e The last two
are machine-
dependent

* The middle
two
dependent on
neither the
language nor
the machine

Example

Ay,

//;;ogram gcd (input, output) ;
var i, j: integer;
begin
read(i, j):
while i <> j do

if i > j then i i-3;
else j :=3j - i;

writeln (i)

\\iid.

COMP 144 Programming Language Concepts
Felix Hernandez-Campos

Felix Hernandez-Campos

April 10, 2002

COMP 144
Programming Language Concepts
Lecture 31: Building a Runnable Program

» Example

W%y, Syntax Tree and Symbol Table

prograrm

5 read

Index Symbol Type

1 INTEGER type

2 TEXTFILE type

3 INPUT 2

4 OUTPUT 2

5 GCD program
6 I 1

7 1 1

/v read
/v while

[=]

(3) write .
writeln
[null
(4 (B (4
< if
/\ /W -,
=] (7 =
A /v null /V null
(=] 7 (8
(7

Ay,

Phases of Compilation

Character stream

—(

o Intermediate

Scamner (lexical analysis)

Token stream

=

code generation
transforms the

Parser (syntax analysis)

Parse tree \

abstract syntax
tree into a less

Semantic analysis

N

Abstract syntax tree /

Front end

hierarchical

Back end

with annotations \

representation: a

Intermediate
code generation Control ﬂOW

Flow g1apl1 with pseudcr

graph

instruetions in basic blocks \

Machine-independent)

code Improvement

Maodified flow graph <

Target code generation)
Machine-

(Almost) assembly language _\ (

Machine-specific
code improvernent

) dependent

Real assembly Ianguage

Felix Hernandez-Campos

April 10, 2002

COMP 144
Programming Language Concepts
Lecture 31: Building a Runnable Program

® Example
: q‘\‘// Control Flow Graph

* Basic blocks are

maximal-length set
of sequential
operations
— Operations on a set
of virtual registers

» Unlimited

» A new one for each
computed value

al:= &input
call readint

=

al = &input
cal readint

Joi-

al = &output
w13 =i

a2 = w13
call waiteint
al = &output
call writeln

* Arcs represent
interblock control
flow

COMP 1441
Fe

Phases of Compilation

Ay,

Character stream

\ (

\\ (

Parse tree \

Abstract syntax tree /

with annotations \
Intermediate
code generation

Flow g1apl1 with pseudcr _____________

instructions in basic blocks
\ Machine-independent
/ code Improvement

(Almost) assembly language _\ (

Real assembly Ianguage

Scamner (lexical analysis)

Token stream

Parser (syntax analysis)

Semantic analysis

N

Front end

Back end

Modified flow graph

Target code generation)
Machine-

) dependent

Machine-specific
code improvernent

Machine-
independent
code
improvement
performs a
number of
transformations:

— Eliminate
redundant loads
stores and
arithmetic
computations

— Eliminate
redundancies
across blocks

Felix Hernandez-Campos

April 10, 2002

COMP 144
Programming Language Concepts
Lecture 31: Building a Runnable Program

Phases of Compilation

Character stream

Real assembly Ianguage

\ (Scanner (lexical analysis)) ° Ta"get COde
Token streamn Generation
\ (Parser (syntax analysis)) tranSlateS blOCk
Parse tree \ into the
Semantic analysis instruction set of
Abstract syntax tree / Front end the target
with annotations \ Back end machine
Intermediate ’
(code generation) including
Flow g1apl1 with pseudcr
instructions in basic blocks \ _____________ branches fOI' the
Machine-independent arc
(code improvernent)
Modified flow graph * It still relies in
\ the set of virtual
Target code generation) 3
(Almost) assembly language (Machine- rengterS
*\, (Machine-specific) dependent
code improvernent
Real assembly Ianguage "
0 Phases of Compilation
W
2 4
Character stream
\ (Scamner (lexical analysis)) MaChine'
Token streamn \ specific code
(Parser (syntax analysis)) improvement
Parse iree \ consists of:
Semantic analysis) — Register
Absiract syntax tree / Front end allocation
with annotations \ Back end (mapping of
Intermediate : :
(code goneration) virtual register
Flow graph with pseudcr to physwal
instructions inbasicblocks ~_ T TTTTTTEETTS registers and
\ (Machine-independent) multiplexing)
code improvernent .
— Instruction
Modified flow graph \ scheduling (fill
the pipeline
(Target code generation) pip)
Machine-
(Almost) assembly language
\\ (Machine-specific) dependent
code improvernent

Felix Hernandez-Campos

April 10, 2002

COMP 144 April 10, 2002
Programming Language Concepts
Lecture 31: Building a Runnable Program

My Compilation Passes

A pass of compilation is a phase or sequence of
phases that is serialized with respect to the rest of the
compilation
— It may be written as separate program that relies on files
for input and output

» Two-pass compilers are very common

— Front-end and back-end passes, or intermediate code
generation and global code improvement

Most compilers generate assembly, so the assembler
behaves as an extra pass

Assembly requires linking that may take place at
compilation, load or run-time

COMP 144 Programming Language Concepts
Felix Hernandez-Campos

L Compilation Passes

Why are compilers divided in passes?

Sharing the front-end among the compilers of more
than one machine

Sharing the back-end among the compilers of more
than one language

Historically, passes help reducing memory usage

COMP 144 Programming Language Concepts
Felix Hernandez-Campos

Felix Hernandez-Campos 7

COMP 144 April 10, 2002
Programming Language Concepts
Lecture 31: Building a Runnable Program

My Intermediate Forms

 Front-end and back-end are linked using an abstract
representation known as the Intermediate Format (IF)
— The IF is propagated through the back-end phases

» They classified according to their level of machine
dependence

» High-level IFs are usually trees or directed acyclic
graphs that capture the hierarchy of the program

— They are useful for machine-independent code
improvement, interpretation and other operations

COMP 144 Programming Language Concepts
Felix Hernandez-Campos

® Intermediate Forms
WYy, Stack-based Language
Stack-based language are another type of IFs
— E.g. JVM, Pascal’s P-code

They are simple and compact
— They resemble post-order tree enumeration

Operations
— Take their operands from an implicit stack
— Return their result to an implicit stack

These languages tend to make language easy to port
and the result code is very compact
— Ideal for network transfer of applets

COMP 144 Programming Language Concepts
Felix Hernandez-Campos

Felix Hernandez-Campos 8

COMP 144 April 10, 2002
Programming Language Concepts
Lecture 31: Building a Runnable Program

My Java Virtual Machine

* JVM spec

— http://java.sun.com/docs/books/vmspec/2nd-
edition/html/VMSpecTOC.doc.html

e Tutorial

— http://www-106.ibm.com/developerworks/library/it-
haggar bytecode/index.html

COMP 144 Programming Language Concepts
Felix Hernandez-Campos

. Reading Assignment

» Read Scott
— Sect. 9 Intro
— Sect. 9.1
— Sect. 9.2 intro, and glance at IDL and RTL

COMP 144 Programming Language Concepts
Felix Hernandez-Campos

Felix Hernandez-Campos 9

