COMP 144 April 26, 2002
Programming Language Concepts
Lecture 38: Implementing Concurrency

The University of North Carolina at Chapel Hill

COMP 144 Programming Language Concepts
Spring 2002

Lecture 38:
Implementing Concurrency

Felix Hernandez-Campos
April 26

COMP 144 Programming Language Concepts
Felix Hernandez-Campos

Concurrent Programming

¥
I?I A
Thread
A Program ;
—
Sequential Program Concurrent Program
Two
Threads
AProgram

COMP 144 Programming Language Concepts
Felix Hernandez-Campos

Felix Hernandez-Campos 1

COMP 144 April 26, 2002
Programming Language Concepts
Lecture 38: Implementing Concurrency

@ Multiprocessors

COMP 144 Programming Language Concepts
Felix Hernandez-Campos

@ 0, Shared-Memory Multiprocessor

Processor A Processor B Processor Z

Local cache t | |

has much
lower latency | Cache Cache Xy (Cache
X 4 X3

Memory
X3

COMP 144 Programming Language Concepts
Felix Hernandez-Campos

Felix Hernandez-Campos 2

COMP 144

Programming Language Concepts
Lecture 38: Implementing Concurrency

Threads and Processes
OS Space versus User Space

2

Thread scheduler
'f """""""""" &\ SoTTTTE T EET T \‘
i : [= | T= h
g =l e =N i =N
IR I R E I E LR
ol Vel s Bldovem |8 il
L) £ 1 ! i E i
X V| E o VBB i
; : : |
T 1 1 [
[[[b
P H H H AY
P : e = |
A = |2 N
[o § 1 : w w [
| % 2 I N I g1
[§ & i [2 5 [
1 I 1 1 =1 ™~ 1
| & A i [= & [
[1 1 [
[] i oy
1 \" .&J '\\ ’3 i
| Memccmccccmcmmemee=® 0 M ——— H
! 1
! 1
i Processor | Processor 2 PR Processor N E
! L
' i

-
A

Process scheduler

N

Threads and Processes
Tradeoffs

» One-process-per-thread is acceptable in personal
computer with a single address space

% This is too expensive in most OSes, since each operation
on them requires a system call

% Processes are general-purpose, so threads may pay the
price of features they do not use
» Processes are heavy-weight

* All-threads-on-one-process are acceptable in simple
languages for uniprocessors

% This precludes parallel execution in a multiprocessor
machine

% System call will block the entire set of threads

COMP 144 Programming Language Concepts
Felix Hernandez-Campos

Felix Hernandez-Campos

April 26, 2002

COMP 144 April 26, 2002
Programming Language Concepts
Lecture 38: Implementing Concurrency

“» Threads and Processes
\¥Y, Multiprocessors

« A multiprocessor OS may allocate processes to
processors following one the following main
strategies

» Coscheduling (a.k.a. gang scheduling): attempts to
run each process in a different processor
— Maximize parallelism

» Space sharing (a.k.a. processor partitioning): give
an application exclusive use of some subset of the
processors

— Minimizing context switching cost and/or communication
cost

COMP 144 Programming Language Concepts
Felix Hernandez-Campos

0 Coroutines

 User-level threads are usually
built on top of coroutines
- S.imulate parallel execution in a oD o
single processor
» p(a,b,c)
» d:=q(e,f) ; r(d,g,h)
» s(i,))

» Coroutines are execution contexts that exist concurrently and
execute one at a time

 Coroutines transfer control to each other explicitly (by name)

COMP 144 Programming Language Concepts
Felix Hernandez-Campos

Felix Hernandez-Campos 4

COMP 144

Programming Language Concepts
Lecture 38: Implementing Concurrency

*» Coroutines
Wy, Example

* Screen-saver program

loop
-- update picture on screen
-- perform next sanity check

— Successive updates and sanity checks usually depend on

each other

» Save and restore state of the computation
— Coroutines are more attractive for this problem

COMP 144 Programming Language Concepts
Felix Hernandez-Campos

Coroutines
Example

* A coroutine can detach itself

from the main program

- detach created the coroutine
object

e Control can be transferred

from one coroutine to another

- transfer saves the program
counter and resumes the
coroutines specifies as a
parameter

— Transfers can occur anywhere
in the code of the coroutine

COMP 144 Programming Language Concepts
Felix Hernandez-Campos

us, cfs : coroutine

coroutine update_screen
—— initialize
detach
loop

transfer (cfs)
coroutine checkfile_system
—— initialize
detach
for all files
transfer (us)
transfer (us)
transfer (us)
begin ——main
us = new updatescreen

cfs := new checkfile_system
resume (us)

Felix Hernandez-Campos

April 26, 2002

COMP 144

Programming Language Concepts
Lecture 38: Implementing Concurrency

Turning Coroutines Into Threads

* The programming language environment provides a
scheduler in charge of transferring control
automatically

 The scheduler chooses which threads to run first after
the the current thread yields the processors

* The scheduler may implement preemption
mechanism that suspend the current thread on a
regular basis

— Make processor allocation more fair

* If the scheduler data structures are shared, threads
can run in multiple processors

COMP 144 Programming Language Concepts
Felix Hernandez-Campos

Uniprocessor Scheduler

current_thread ready_list
| -‘\
— — =
Waiting for condition foo Waiting for condition bar
— -aw —
- = =

COMP 144 Programming Language Concepts
Felix Hernandez-Campos

Felix Hernandez-Campos

April 26, 2002

COMP 144 April 26, 2002
Programming Language Concepts
Lecture 38: Implementing Concurrency

procedure reschedule

‘,\‘I Scheduling t: thread := dequeue (readydist)

transfer (t)

procedure yield

e reschedule iS used to enqueue (readydist, current_thread)
give up the processor reschedule
R : 3 1 procedure sleepon (ref Q : queue of thread)
Yleld 18 used to glve enqueue (Q, current_thread)
up the processor reschedule
temporarily
procedure yield
« Threads can wait on disablesignals
. .. enqueue (readylist, current_thread)
specific conditions reschedule
- sleep on reenable signals
— Intended for
synchronization disable_signals

if not desired_condition
sleep_on (condition_queue)

COMP 144 Programmi reenable—SIgnals
Felix Herna

procedure reschedule

’ SChedUIing t: thread := dequeue (readydist)

transfer (t)

procedure yield

* In preemptIVe enqueue (readyJist, current_thread)
multithreading, reschedule

multiplexing does not
require to explicitly

procedure sleepon (ref Q : queue of thread)
enqueue (Q, current_thread)

invoke yield reschedule
» Switching is driven by orocedure yield
Signals disable_signals
_ Force the current thread enqueue (readydist, current-thread)

reschedule

to yleld reenable signals
* Race conditions may Preemptive Multithreading
occur inside yield if disable_signals
Signals are not disabled if not desired_condition

sleep_on (condition_queue)
COMP 144 Programmi reenable_signals

Felix Hernar

Felix Hernandez-Campos 7

COMP 144 April 26, 2002
Programming Language Concepts
Lecture 38: Implementing Concurrency

by, Multiprocessor Scheduling

» The goal of most languages that support parallel
threads is to that there should be no difference from
the programmer point of view

* This is an increasingly more important issue, since a
very significant number of machines will be
multiprocessors in the near future

— At least, Intel is trying hard to do this...

* Multiprocessor thread scheduling requires additional
synchronization mechanism that prevent race
conditions

COMP 144 Programming Language Concepts
Felix Hernandez-Campos

pby. Concurrent Programming

* The two most crucial i1ssues are
— Communication
— Synchronization

» Communication refers to any mechanism that allows
one thread to obtain information from another

— It is usually based on using shared memory or message
passing

 Synchronization refers to any mechanism that allows
the programmer to control the relative order in which
operations occur in different threads

COMP 144 Programming Language Concepts
Felix Hernandez-Campos

Felix Hernandez-Campos 8

COMP 144
Programming Language Concepts
Lecture 38: Implementing Concurrency

Shared Memory

e g

shared buf : array [1..51ZE] of bdata

shared next_full, next_empty : integer :=1, 1

shared mutex : semaphore :=1

shared emptyslots, fullslots : semaphore 1= SIZE, 0

» Example of
synchronization:
the semaphore ,

procedure insert (d : bdata)

— P decrements a P (empty_slots)
counter, and [P (mutex)

ety e, buf{next _empty] := d
waits till IF 1S next_empty := next_empty mod SIZE + 1
non-negative

I:mutexj
— V increments a v (fullslots)

counter, waking function remove : bdata

" P (fullslets)

up Waltlng P (mutex)

threads d: bdata :— buf[next full]
next full := nextfull mod SIZE + 1
V (mutex)
V [emptyslots)
return d

COMP 144
Fq

Message Passing

N, Models

* (a) processes name each other explicitly
* (b) senders name input ports

* (c) a channel abstraction

OTO I |

E / AN
O A OO

(b) (c)

Felix Hernandez-Campos

April 26, 2002

COMP 144

Programming Language Concepts
Lecture 38: Implementing Concurrency

o

task buffer is
entry insert (d
entry remove (d
end buffer;

: out bd:

Ada Example

task body buffer is
SIZE : constant integer
subtype index is integer

: in bdata);

ata);

= 10;
range 1..8IZE;

buf : array (index) of bdata;

next_empty, next_full :
full _slots :
begin
loop
select
when full _slots <

accept insert (d :
buf (next_empty)

end ;

index :=1;

integer range 0..3IZE := 0;

SIZE =
in bdata) do
= d;

next_empty := next_empty mod 3IZE + 1;

full_slots := fu
or

when full slots >

accept remove (d :

11 _slots + 1;

0 ==
out bdata) deo

d := buf(next_full);

end;
next_full
full_slots
end select;
end loop;
end buffer;

== producer:

COMP 144 Programmir
buffer.insert (3);

Felix Hernan

:= next_full med SIZE + 1;
:= full slets - 1;

-=— Consumer:
butfer.remove (x);

Reading Assignment

» Read Scott

—Sect. 12.1.3
—Sect. 12.2.4

— Sect. 8.6

— Sect 12.3 intro
— Sect. 12.4 intro

COMP 144 Programming Language Concepts
Felix Hernandez-Campos

20

Felix Hernandez-Campos

April 26, 2002

10

