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@ Multiprocessors

COMP 144 Programming Language Concepts
Felix Hernandez-Campos

@ 0, Shared-Memory Multiprocessor

Processor A Processor B Processor Z

Local cache t | |

has much
lower latency | Cache Cache Xy (Cache
X 4 X3

Memory
X3

COMP 144 Programming Language Concepts
Felix Hernandez-Campos

Felix Hernandez-Campos 2



COMP 144

Programming Language Concepts
Lecture 38: Implementing Concurrency

Threads and Processes
OS Space versus User Space
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Thread scheduler
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Process scheduler

N

Threads and Processes
Tradeoffs

» One-process-per-thread is acceptable in personal
computer with a single address space

% This is too expensive in most OSes, since each operation
on them requires a system call

% Processes are general-purpose, so threads may pay the
price of features they do not use
» Processes are heavy-weight

* All-threads-on-one-process are acceptable in simple
languages for uniprocessors

% This precludes parallel execution in a multiprocessor
machine

% System call will block the entire set of threads
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“» Threads and Processes
\¥Y, Multiprocessors

« A multiprocessor OS may allocate processes to
processors following one the following main
strategies

» Coscheduling (a.k.a. gang scheduling): attempts to
run each process in a different processor
— Maximize parallelism

» Space sharing (a.k.a. processor partitioning): give
an application exclusive use of some subset of the
processors

— Minimizing context switching cost and/or communication
cost
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0 Coroutines

 User-level threads are usually
built on top of coroutines
- S.imulate parallel execution in a oD o
single processor
» p(a,b,c)
» d:=q(e,f) ; r(d,g,h)
» s(i,))

» Coroutines are execution contexts that exist concurrently and
execute one at a time

 Coroutines transfer control to each other explicitly (by name)
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*» Coroutines
Wy, Example

* Screen-saver program

loop
-- update picture on screen
-- perform next sanity check

— Successive updates and sanity checks usually depend on

each other

» Save and restore state of the computation
— Coroutines are more attractive for this problem
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Coroutines
Example

* A coroutine can detach itself

from the main program

- detach created the coroutine
object

e Control can be transferred

from one coroutine to another

- transfer saves the program
counter and resumes the
coroutines specifies as a
parameter

— Transfers can occur anywhere
in the code of the coroutine
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us, cfs : coroutine

coroutine update_screen
—— initialize
detach
loop

transfer (cfs)
coroutine checkfile_system
—— initialize
detach
for all files
transfer (us)
transfer (us)
transfer (us)
begin ——main
us = new updatescreen

cfs := new checkfile_system
resume (us)
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Turning Coroutines Into Threads

* The programming language environment provides a
scheduler in charge of transferring control
automatically

 The scheduler chooses which threads to run first after
the the current thread yields the processors

* The scheduler may implement preemption
mechanism that suspend the current thread on a
regular basis

— Make processor allocation more fair

* If the scheduler data structures are shared, threads
can run in multiple processors
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Uniprocessor Scheduler

current_thread ready_list
| -‘\
— — =
Waiting for condition foo Waiting for condition bar
— -aw —
- = =
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procedure reschedule

‘,\‘I Scheduling t: thread := dequeue (readydist)

transfer (t)

procedure yield

e reschedule iS used to enqueue (readydist, current_thread)
give up the processor reschedule
R : 3 1 procedure sleepon (ref Q : queue of thread)
Yleld 18 used to glve enqueue (Q, current_thread)
up the processor reschedule
temporarily
procedure yield
« Threads can wait on disablesignals
. .. enqueue (readylist, current_thread)
specific conditions reschedule
- sleep on reenable signals
— Intended for
synchronization disable_signals

if not desired_condition
sleep_on (condition_queue)

COMP 144 Programmi reenable—SIgnals
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procedure reschedule

’ SChedUIing t: thread := dequeue (readydist)

transfer (t)

procedure yield

* In preemptIVe enqueue (readyJist, current_thread)
multithreading, reschedule

multiplexing does not
require to explicitly

procedure sleepon (ref Q : queue of thread)
enqueue (Q, current_thread)

invoke yield reschedule
» Switching is driven by orocedure yield
Signals disable_signals
_ Force the current thread enqueue (readydist, current-thread)

reschedule

to yleld reenable signals
* Race conditions may Preemptive Multithreading
occur inside yield if disable_signals
Signals are not disabled if not desired_condition

sleep_on (condition_queue)
COMP 144 Programmi reenable_signals
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by, Multiprocessor Scheduling

» The goal of most languages that support parallel
threads is to that there should be no difference from
the programmer point of view

* This is an increasingly more important issue, since a
very significant number of machines will be
multiprocessors in the near future

— At least, Intel is trying hard to do this...

* Multiprocessor thread scheduling requires additional
synchronization mechanism that prevent race
conditions
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pby. Concurrent Programming

* The two most crucial i1ssues are
— Communication
— Synchronization

» Communication refers to any mechanism that allows
one thread to obtain information from another

— It is usually based on using shared memory or message
passing

 Synchronization refers to any mechanism that allows
the programmer to control the relative order in which
operations occur in different threads
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Shared Memory

e g

shared buf : array [1..51ZE] of bdata

shared next_full, next_empty : integer :=1, 1

shared mutex : semaphore :=1

shared emptyslots, fullslots : semaphore 1= SIZE, 0

» Example of
synchronization:
the semaphore ,

procedure insert (d : bdata)

— P decrements a P (empty_slots)
counter, and [P (mutex)

ety e, buf{next _empty] := d
waits till IF 1S next_empty := next_empty mod SIZE + 1
non-negative

I:mutexj
— V increments a v (fullslots)

counter, waking function remove : bdata

" P (fullslets)

up Waltlng P (mutex)

threads d: bdata :— buf[next full]
next full := nextfull mod SIZE + 1
V (mutex)
V [emptyslots)
return d

COMP 144
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Message Passing

N, Models

* (a) processes name each other explicitly
* (b) senders name input ports

* (c) a channel abstraction

OTO I |

E / AN
O A OO

(b) (c)
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task buffer is
entry insert (d
entry remove (d
end buffer;

: out bd:

Ada Example

task body buffer is
SIZE : constant integer
subtype index is integer

: in bdata);

ata);

= 10;
range 1..8IZE;

buf : array (index) of bdata;

next_empty, next_full :
full _slots :
begin
loop
select
when full _slots <

accept insert (d :
buf (next_empty)

end ;

index :=1;

integer range 0..3IZE := 0;

SIZE =
in bdata) do
= d;

next_empty := next_empty mod 3IZE + 1;

full_slots := fu
or

when full slots >

accept remove (d :

11 _slots + 1;

0 ==
out bdata) deo

d := buf(next_full);

end;
next_full
full_slots
end select;
end loop;
end buffer;

== producer:

COMP 144 Programmir
buffer.insert (3);

Felix Hernan

:= next_full med SIZE + 1;
:= full slets - 1;

-=— Consumer:
butfer.remove (x);

Reading Assignment

» Read Scott

—Sect. 12.1.3
—Sect. 12.2.4

— Sect. 8.6

— Sect 12.3 intro
— Sect. 12.4 intro
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