
COMP 144
Programming Language Concepts
Lecture 38: Implementing Concurrency

April 26, 2002

Felix Hernandez-Campos 1

COMP 144 Programming Language Concepts
Felix Hernandez-Campos

11

Lecture 38: Lecture 38:
Implementing ConcurrencyImplementing Concurrency

COMP 144 Programming Language ConceptsCOMP 144 Programming Language Concepts
Spring 2002Spring 2002

Felix HernandezFelix Hernandez--CamposCampos

April 26April 26

The University of North Carolina at Chapel HillThe University of North Carolina at Chapel Hill

COMP 144 Programming Language Concepts
Felix Hernandez-Campos

22

Concurrent ProgrammingConcurrent Programming

Concurrent ProgramConcurrent ProgramSequential ProgramSequential Program

COMP 144
Programming Language Concepts
Lecture 38: Implementing Concurrency

April 26, 2002

Felix Hernandez-Campos 2

COMP 144 Programming Language Concepts
Felix Hernandez-Campos

33

MultiprocessorsMultiprocessors

COMP 144 Programming Language Concepts
Felix Hernandez-Campos

44

SharedShared--Memory MultiprocessorMemory Multiprocessor

Local cache Local cache
has much has much

lower latencylower latency

COMP 144
Programming Language Concepts
Lecture 38: Implementing Concurrency

April 26, 2002

Felix Hernandez-Campos 3

COMP 144 Programming Language Concepts
Felix Hernandez-Campos

55

Threads and ProcessesThreads and Processes
OS Space versus User SpaceOS Space versus User Space

COMP 144 Programming Language Concepts
Felix Hernandez-Campos

66

Threads and ProcessesThreads and Processes
TradeoffsTradeoffs

•• OneOne--processprocess--perper--threadthread is acceptable in personal is acceptable in personal
computer with a single address spacecomputer with a single address space

This is too expensive in most This is too expensive in most OSesOSes, since each operation , since each operation
on them requires a system callon them requires a system call
Processes are generalProcesses are general--purpose, so threads may pay the purpose, so threads may pay the
price of features they do not useprice of features they do not use

»» Processes are Processes are heavyheavy--weightweight

•• AllAll--threadsthreads--onon--oneone--processprocess are acceptable in simple are acceptable in simple
languages for languages for uniprocessorsuniprocessors

This precludes parallel execution in a multiprocessor This precludes parallel execution in a multiprocessor
machinemachine
System call will block the entire set of threadsSystem call will block the entire set of threads

COMP 144
Programming Language Concepts
Lecture 38: Implementing Concurrency

April 26, 2002

Felix Hernandez-Campos 4

COMP 144 Programming Language Concepts
Felix Hernandez-Campos

77

Threads and ProcessesThreads and Processes
MultiprocessorsMultiprocessors

•• A multiprocessor OS may allocate processes to A multiprocessor OS may allocate processes to
processors following one the following main processors following one the following main
strategiesstrategies

•• CoschedulingCoscheduling (a.k.a. (a.k.a. gang schedulinggang scheduling): attempts to): attempts to
run each process in a different processorrun each process in a different processor

–– Maximize parallelismMaximize parallelism

•• Space sharingSpace sharing (a.k.a. (a.k.a. processor partitioningprocessor partitioning): give): give
an application exclusive use of some subset of the an application exclusive use of some subset of the
processorsprocessors

–– Minimizing context switching cost and/or communication Minimizing context switching cost and/or communication
costcost

COMP 144 Programming Language Concepts
Felix Hernandez-Campos

88

CoroutinesCoroutines

•• UserUser--level threads are usually level threads are usually
built on top of coroutinesbuilt on top of coroutines

–– Simulate parallel execution in a Simulate parallel execution in a
single processorsingle processor

»» p(a,b,c)p(a,b,c)
»» d:=q(e,f) ; r(d,g,h) d:=q(e,f) ; r(d,g,h)
»» s(i,j)s(i,j)

p(a, b, c)p(a, b, c) s(i, j)s(i, j)d:=q(e, f)d:=q(e, f)
r(d, g, h)r(d, g, h)

•• Coroutines Coroutines are execution contexts that exist concurrently and are execution contexts that exist concurrently and
execute one at a timeexecute one at a time

•• Coroutines transfer control to each other explicitly (by name)Coroutines transfer control to each other explicitly (by name)

COMP 144
Programming Language Concepts
Lecture 38: Implementing Concurrency

April 26, 2002

Felix Hernandez-Campos 5

COMP 144 Programming Language Concepts
Felix Hernandez-Campos

99

CoroutinesCoroutines
ExampleExample

•• ScreenScreen--saver programsaver program

looploop
---- update picture on screenupdate picture on screen
---- perform next sanity checkperform next sanity check

–– Successive updates and sanity checks usually depend on Successive updates and sanity checks usually depend on
each othereach other

»» Save and restore state of the computationSave and restore state of the computation
–– Coroutines are more attractive for this problemCoroutines are more attractive for this problem

COMP 144 Programming Language Concepts
Felix Hernandez-Campos

1010

CoroutinesCoroutines
ExampleExample

•• A coroutine can detach itself A coroutine can detach itself
from the main programfrom the main program
–– detachdetach created the coroutine created the coroutine

objectobject

•• Control can be transferred Control can be transferred
from one coroutine to anotherfrom one coroutine to another
–– transfertransfer saves the program saves the program

counter and resumes the counter and resumes the
coroutines specifies as a coroutines specifies as a
parameterparameter

–– Transfers can occur anywhere Transfers can occur anywhere
in the code of the coroutinein the code of the coroutine

COMP 144
Programming Language Concepts
Lecture 38: Implementing Concurrency

April 26, 2002

Felix Hernandez-Campos 6

COMP 144 Programming Language Concepts
Felix Hernandez-Campos

1111

Turning Coroutines Into ThreadsTurning Coroutines Into Threads

•• The programming language environment provides a The programming language environment provides a
schedulerscheduler in charge of transferring control in charge of transferring control
automaticallyautomatically

•• The scheduler chooses which threads to run first after The scheduler chooses which threads to run first after
the the current thread yields the processorsthe the current thread yields the processors

•• The scheduler may implement preemption The scheduler may implement preemption
mechanism that suspend the current thread on a mechanism that suspend the current thread on a
regular basisregular basis

–– Make processor allocation more fairMake processor allocation more fair

•• If the scheduler data structures are shared, threads If the scheduler data structures are shared, threads
can run in multiple processorscan run in multiple processors

COMP 144 Programming Language Concepts
Felix Hernandez-Campos

1212

Uniprocessor Uniprocessor SchedulerScheduler

COMP 144
Programming Language Concepts
Lecture 38: Implementing Concurrency

April 26, 2002

Felix Hernandez-Campos 7

COMP 144 Programming Language Concepts
Felix Hernandez-Campos

1313

SchedulingScheduling

•• reschedulereschedule is used to is used to
give up the processorgive up the processor

•• yieldyield is used to give is used to give
up the processor up the processor
temporarilytemporarily

•• Threads can wait on Threads can wait on
specific conditionsspecific conditions
–– sleep_onsleep_on
–– Intended for Intended for

synchronizationsynchronization

COMP 144 Programming Language Concepts
Felix Hernandez-Campos

1414

SchedulingScheduling

•• In preemptive In preemptive
multithreading, multithreading,
multiplexing does not multiplexing does not
require to explicitly require to explicitly
invoke invoke yieldyield

•• Switching is driven by Switching is driven by
signalssignals

–– Force the current thread Force the current thread
to yieldto yield

•• Race conditionsRace conditions may may
occur inside yield if occur inside yield if
signals are not disabledsignals are not disabled

Preemptive MultithreadingPreemptive Multithreading

COMP 144
Programming Language Concepts
Lecture 38: Implementing Concurrency

April 26, 2002

Felix Hernandez-Campos 8

COMP 144 Programming Language Concepts
Felix Hernandez-Campos

1515

Multiprocessor SchedulingMultiprocessor Scheduling

•• The goal of most languages that support parallel The goal of most languages that support parallel
threads is to that threads is to that there should be no difference from there should be no difference from
the programmer point of viewthe programmer point of view

•• This is an increasingly more important issue, since a This is an increasingly more important issue, since a
very significant number of machines will be very significant number of machines will be
multiprocessors in the near futuremultiprocessors in the near future

–– At least, Intel is trying hard to do this…At least, Intel is trying hard to do this…

•• Multiprocessor thread scheduling requires additional Multiprocessor thread scheduling requires additional
synchronization mechanism that prevent race synchronization mechanism that prevent race
conditionsconditions

COMP 144 Programming Language Concepts
Felix Hernandez-Campos

1616

Concurrent ProgrammingConcurrent Programming

•• The two most crucial issues areThe two most crucial issues are
–– CommunicationCommunication
–– SynchronizationSynchronization

•• CommunicationCommunication refers to any mechanism that allows refers to any mechanism that allows
one thread to obtain information from anotherone thread to obtain information from another

–– It is usually based on using It is usually based on using shared memoryshared memory or or message message
passingpassing

•• SynchronizationSynchronization refers to any mechanism that allows refers to any mechanism that allows
the programmer to control the relative order in which the programmer to control the relative order in which
operations occur in different threadsoperations occur in different threads

COMP 144
Programming Language Concepts
Lecture 38: Implementing Concurrency

April 26, 2002

Felix Hernandez-Campos 9

COMP 144 Programming Language Concepts
Felix Hernandez-Campos

1717

Shared MemoryShared Memory

•• Example of Example of
synchronization: synchronization:
the the semaphoresemaphore

–– P decrements a P decrements a
counter, and counter, and
waits till it is waits till it is
nonnon--negativenegative

–– V increments a V increments a
counter, waking counter, waking
up waiting up waiting
threadsthreads

COMP 144 Programming Language Concepts
Felix Hernandez-Campos

1818

Message PassingMessage Passing
ModelsModels

•• (a) processes name each other explicitly(a) processes name each other explicitly

•• (b) senders name input (b) senders name input portsports
•• (c) a (c) a channelchannel abstractionabstraction

COMP 144
Programming Language Concepts
Lecture 38: Implementing Concurrency

April 26, 2002

Felix Hernandez-Campos 10

COMP 144 Programming Language Concepts
Felix Hernandez-Campos

1919

Ada Ada ExampleExample

COMP 144 Programming Language Concepts
Felix Hernandez-Campos

2020

Reading AssignmentReading Assignment

•• Read ScottRead Scott
–– Sect. 12.1.3Sect. 12.1.3
–– Sect. 12.2.4Sect. 12.2.4
–– Sect. 8.6Sect. 8.6
–– Sect 12.3 introSect 12.3 intro
–– Sect. 12.4 introSect. 12.4 intro

