
Name (print): ___

PID: _____________________________

COMP 410 Fall 2018

Midterm Exam

This exam is closed book, notes, calculators, cell phones, classmates, smart watches, everything but your

own brain. You have 75 minutes to complete the exam. Do all your work on these exam pages. Please

sign here (and print your name up top of each page) pledging that the work you submit is your own:

Signature: __

Q1 (12%) True or False (T / F):

a) ______ The run-time heap is dynamic memory from which objects are allocated on calls to “new”

b) ______ An N-ary tree is a tree with height of N

c) ______ For all computations P, if P is worst case time O(2^N) then P is also worst case O(N^2)

d) ______ Making a binary heap of N items by calling the insert operation N times is sometimes as
 efficient as using the “magic” build operation

e) ______ Garbage collection in Java makes it impossible to run out of run-time stack space
 during execution.

f) ______ Array representation for a binary tree is very fast to use, but usually space inefficient

g) ______ Time/space trade off says no program can be efficient in both run time and space used

h) ______ Recursion is a useful programming technique because theoretically it allows us to
 compute some functions that cannot be done with looping alone.

i) ______ Items put into a priority queue might come out in LIFO order

j) ______ pre-order traversal on the tree that is a minimum binary heap always produces the
 elements in increasing priority sequence

k) ______ For any set of unique data elements, if we insert these elements into an empty BST in
 different orders, we get the same final BST

l) ______ In practical terms, it is possible for a recursive function to fail to produce results, when an
 iterative version of that function will succeed in producing correct results

Q2 (4%): Consider a node M in a minimum binary heap; M is stored in the heap array at index 51.

a) At what array index will we find the parent of node M ? answer: _____________

b) At what array index will we find the right child of node M ? answer: _____________

Q3 (3%): What is the minimum number of nodes that might be in a complete binary tree with height K, if

we also have that the tree is not a full binary tree:

a) 2^K – 2 b) 2^K c) 2*(K-1) d) 2^(K+1) –1 e) 2^(K –1) answer: ___________

Name (print): ___

For Q4 through Q10, fill in the table cells with the best (tightest, closest) Big Oh time complexities.

If you think an answer is “O(M log k)” (for example), you may just write “M log k”, leave off O(…).

Q4 (3%) Fill in with worst-case time complexity for binary search tree (vanilla BST) of N items

 operation add delete contains

 Big Oh a) b) c)

Q5 (3%) Fill in with average-case time complexity for binary search tree (not balanced) of N items

 operation add delete contains

 Big Oh
a) b) c)

Q6 (3%) Fill in the table with worst-case time complexity for queue (doubly linked cells) of N items

 operation enque deque front

 Big Oh a) b) c)

Q7 (3%) Fill in the table with worst-case time complexity for list (array implementation) of N items

 operation add at i remove at i get ith

 Big Oh a) b) c)

Q8 (3%) Fill in the table with worst-case time complexity for stack (array implementation) of N items

 operation push pop top

 Big Oh a) b) c)

Q9 (3%) Fill in the table with worst-case time complexity for min binary heap of N items

 operation add getMin delMin

 Big Oh a) b) c)

Name (print): ___

Q10 (8%) Fill in this table comparing sort methods for N items. Use theoretical Big Oh notation

Time complexity Worst case Average case

sort N items with a minimum
binary heap a) b)

put N items into linked list,
keep it sorted each insert
(inSort operation) c) d)

BST sort N items (vanilla BST)
e) f)

bubble sort (on an array) N
items g) h)

Q11 (8%) Consider this 3-ary tree

 mark

 harm boat team

 goal joy age wind tarheel

 pen zoo sim

Here are your answer choices:

1) mark harm goal joy pen boat age zoo wind team tarheel sim

2) goal harm joy pen mark boat zoo age wind team sim tarheel

3) mark harm boat team tarheel sim zoo pen goal joy age wind

4) goal pen joy harm zoo age wind boat sim tarheel team mark

5) none of the above

a) which sequence is an in-order traversal? __________

b) which sequence is a pre-order traversal? __________

c) which sequence is a breadth-first traversal? __________

d) which sequence is a post-order traversal? __________

Name (print): ___

Q12 (3%): Consider this code fragment for function bublee:

 public static long bublee(int N) { answer: _______________
 int[] arr = new int[N];

 for (int n=0; n<N; n++) { arr[n]=genRandInt(); }

 for (int i=0; i<N; i++) {

 for (int k=0; k<i*i; k++) { bubblesort(arr); }

 }

If we limit N to being a positive integer (not 0), and assume bubblesort has worst case complexity each

time it runs, what is a good “Big Oh” complexity for the worst case execution time of function bublee ?

Q13 (3%): Consider this code fragment for function foo:

 public static long foo(int N) {

 int x = 2; answer: _______________

 for (int i=N; i>0; i--) {

 for (int j=i; j<i+5; j++) {

 for (int k=0; k<i; k++) {x *= i + j*k;} } }

 }

If we limit N to being a positive integer (not 0), what is a good “Big Oh” complexity for the worst case

execution time of function foo ?

Q14 (3%) Consider the program code to the right:

Which of these is most accurate when “main” is run?

a) the amount of run-time stack space that might be

needed is finite

b) the amount of run-time stack space that might be

needed is finite, but unbounded

c) the amount of run-time stack space that might be

needed is infinite

 answer: _______________

Q15 (3%) Consider the program code to the right:

Which of these is most accurate when “main” is run?

a) the amount of run-time stack space that might be

needed is finite

b) the amount of run-time stack space that might be

needed is finite, but unbounded

c) the amount of run-time stack space that might be

needed is infinite

 answer: _______________

function main () {

 var x = getUserInput();

 var result = foo(x);

 alert(result);

}

function foo (n) {

 if (n==1) return 1;

 return n * foo(n-1);

}

function main () {

 var x = 7683910024;

 var result = foo(x);

 alert(result);

}

function foo (n) {

 if (n==1) return 1;

 return n * foo(n-1);

}

Name (print): ___

Q16 (3%) Consider the data structure represented at right

a) (T/F) ______ This could be a binary heap

b) (T/F) ______ This could be a BST (not being balanced)

c) (T/F) ______ This could be a doubly linked list

Q17 (4%) Consider the data structure/sequence represented at right

a) (T/F) ______ This could be a queue

b) (T/F) ______ This could be a stack

c) (T/F) ______ This could be a priority queue (done as list)

d) (T/F) ______ This could be a BST (not being balanced)

Q18 (10%): Binary Search Tree (not balanced)

Starting with an initially empty Binary Search Tree (vanilla, not being balanced), show the tree that results

after inserting the following string values in the order given left to right:

 link, queue, heap, tree, axiom, mean, root, worst, stack, best

1

12

22 10 33

13

15

4

25

3

19

1

22

Name (print): ___

Q19 (5%) Consider the heap H shown to the right:

Show (in box below) the heap that results after a delMin() operation

Q20 (5%) Consider the heap H shown above right (in previous question):

Show (in the box below) the heap that results after add(7) followed by add(2)

3

9 6

10 28 18 13

40 11

Heap H

34

Name (print): ___

Q21 (3%): Consider this code fragment for function recur:

 public static long recur(int N) {

 if (N <= 1) return 2; answer: _______________
 return recur(N-1) * recur(N-1);

 }

If we limit N to being a positive integer (not 0), what is a good “Big Oh” complexity for the worst case
execution time of function recur ?

Q22 (5%): Consider the BST B (basic, not balanced) below. Show its structure after “delete (18)” is

complete. Show your final tree in the box:

 BST B 10

 7 18

 2 9 14 23

 4 11 48

