

Functions

- Functions are the most important kind of value in functional programming
- Functions are values!
- Mathematically, a function f associates an element of a set X to a unique element of second set Y
- We write $f: \mathbf{X - > Y}$

```
three :: Integer -> Integer
infinity :: Integer
square :: Integer -> Integer
smaller :: (Integer, Integer) -> Integer
```


Currying Functions

- Functional can be applied to a partially resulting in new functions with fewer arguments

```
smaller :: (Integer, Integer) -> Integer
smaller (x,y)= if x <= y then x else y
smaller2 :: Integer -> Integer -> Integer
smaller2 x y = if x <= y then x else y
```

- The value of the application smaller2 x is a function with type Integer -> Integer
- This is known as currying a function

Curried Functions

- Curried functions help reduce the number of parentheses
- Parentheses make the syntax of some functional languages (e.g. Lisp, Scheme) ugly

Operators

- Operators are functions in infix notation rather than prefix notation
$-E . g .3+4$ rather than plus 34
- Functions can be used in infix notation using the ' f ' notation
-E.g. 3 `plus` 4
- Operators can be used in prefix notation using the (op) notation
-E.g. (+) 34
- As any other function, operators can be applied partially using the sections notation

Operator Associativity

- Operators associate from left to right (leftassociative) or from right to left (right-associative)
- E.g. - is left-associative 3-4-5 means (3-4) - 5
- Operator $->$ is right-associative

$$
\text { - X } \rightarrow \text { Y } \rightarrow \text { Z means X }->(Y \rightarrow Z)
$$

- Exercise: deduce the type of h in

```
h x y = f (g x y)
f :: Integer -> Integer
g :: Integer -> Integer -> Integer
```


Function Definition

- Functions with no parameters are constants
- E.g. pi = 3.14 has type pi : : Float
- The definition of a function can depend on the value of the parameters
- Definitions with conditional expressions
- Definitions with guarded equation

```
smaller :: Integer -> Integer -> Integer
smaller x y = if x<= y then x else y
smaller2 x y
    | x <= y = x
    |y>x}=\mathbf{y

\section*{Recursive definitions}
- Functional languages make extensive use of recursion
```

fact :: Integer -> Integer
fact n = if n == 0 then 1 else n * fact (n - 1)

```
- What is the result of fact -1 ?
- The following definition is more a
```

fact n

```
\[
\begin{aligned}
& \text { I } n<0 \quad=\text { error "negative argument for fact" } \\
& \text { | } n=0 \quad=1 \\
& \text { | otherwise }=n * \text { fact ( } n-1 \text { ) }
\end{aligned}
\]

\section*{Local Definitions}
- Another useful notation in function definition is a local definition
- Local declarations are introduced using the keyword where
- For instance,
```

f :: Integer -> Integer -> Integer
f x y
| x <= 10 = x + a
| x > 10 = x - a
where a = square b
b}=y+

```

\section*{Types}
- The following primitive time are available in Haskell
- Bool
- Integer
- Float
- Double
- Char
- Any expression in Haskell has a type
- Primitive types
- Derived types
- Polymorphic types

\section*{Polymorphic Types}
- Some functions and operations work with many types
- Polymorphic types are specified using type variables
- For instance, the curry function has a polymorphic type
```

curry :: ((a,b) -> c) -> (a -> b -> c)

```
curry \(f x y=f(x, y)\)
- Type variables can be qualified using type classes
```

(*) :: Num a => a -> a -> a

```

\section*{Lists}
- Lists are the workhorse of functional programming
- Lists are denoted as sequences of elements separated by commas and enclosed within square brackets
\[
- \text { E.g. }[1,2,3]
\]
- The previous notation is a shorthand for the List data type
-E.g. 1:2:3: []

\section*{Lists Functions}
- Functions that operate on lists often have polymorphic types Polymorphic List
```

length :: [a] -> Integer
length [] = 0
length (x:xs) = 1 + length xs

```

\section*{Pattern Matching}
- In the previous example, the appropriate definition of the function for the specific arguments was chosen using pattern matching

\section*{Lists \\ Example Derivation}
```

length :: [a] -> Integer
length [] = 0
length (x:xs) = 1 + length xs
length (x:xs) $=1+$ length $x s$

```
```

 length [1,2,3]
 = { definition (2) }
1 + length [2,3]
= { definition (2) }
1 + 1 + length [3]
= { definition of + }
2 + length [3]
= { definition (2) }
2 + 1 + length []

```
```

= { definition of + }
3 + length []
= { definition (1) }
3+0
= { definition of + }
3

```

\section*{Lists \\ Other Functions}
```

head :: [a] -> a
head (x:xs) = x
tail :: [a] -> [a]
tail (x:xs) = xs

```

\section*{Data Types}
- New data types can be created using the keyword data
- Examples
data Bool \(=\) False I True Type Constructor
data Color = Red | Green | Blue | Violet \(\xrightarrow{ }\) Polymorphic Type
data Point a \(=\mathrm{Pt} a \mathrm{a}\)

\section*{Polymorphic Types}
- Type constructors have types

Pt : : a -> a -> Point
data Point \(a=P t a \operatorname{a}\)
- Examples

Pt 2.03 .0 : : Point Float
Pt 'a' 'b' : : Point Char
Pt True False : : Point Bool

\section*{Recursive Types Binary Trees}
```

data Tree a = Leaf a | Branch (Tree a) (Tree a)
Branch :: Tree a -> Tree a -> Tree a
Leaf :: a -> Tree a

```
- Example function that operates on trees
fringe : : Tree a -> [a]
fringe (Leaf \(x\) ) \(=\) [x]
fringe (Branch left right) = fringe left
++ fringe right

\section*{List Comprehensions}
- Lists can be defined by enumeration using list comprehensions
- Syntax:

Generator
[ \(f x \mid x<-x s\) ]
[ \((x, y)\) | \(x<-x s, y<-y s]\)
- Example
quicksort [] = []
quicksort (x:xs) = quicksort [y | y <- xs, \(\mathrm{y}<\mathrm{x}\) ]
++ [x]
++ quicksort [y | y <- \(\mathrm{xs}, \mathrm{y}>=\mathrm{x}\) ]

\section*{Reading Assignment}
- A Gentle Introduction to Haskell by Paul Hudak, John Peterson, and Joseph H. Fasel.
- http://www.haskell.org/tutorial/
- Read sections 1 and 2```

