
COMP 144
Programming Language Concepts
Lecture 19: Functions, Types and Data Structures in Haskell

February 25, 2002

Felix Hernandez-Campos 1

COMP 144 Programming Language Concepts
Felix Hernandez-Campos

11

Lecture 19: Functions, Types and Lecture 19: Functions, Types and
Data Structures in HaskellData Structures in Haskell

COMP 144 Programming Language ConceptsCOMP 144 Programming Language Concepts
Spring 2002Spring 2002

Felix HernandezFelix Hernandez--CamposCampos

Feb 25Feb 25

The University of North Carolina at Chapel HillThe University of North Carolina at Chapel Hill

COMP 144 Programming Language Concepts
Felix Hernandez-Campos

22

FunctionsFunctions

•• Functions are the most important kind of value in Functions are the most important kind of value in
functional programmingfunctional programming

–– Functions are values!Functions are values!

•• Mathematically, a function Mathematically, a function ff associates an element of associates an element of
a set X to a unique element of second set Ya set X to a unique element of second set Y

–– We write We write ff::X::X-->Y>Y

three :: Integer three :: Integer --> Integer> Integer

infinity :: Integerinfinity :: Integer

square :: Integer square :: Integer --> Integer> Integer

smaller :: (Integer, Integer) smaller :: (Integer, Integer) --> Integer> Integer

COMP 144
Programming Language Concepts
Lecture 19: Functions, Types and Data Structures in Haskell

February 25, 2002

Felix Hernandez-Campos 2

COMP 144 Programming Language Concepts
Felix Hernandez-Campos

33

Currying FunctionsCurrying Functions

•• Functional can be applied to a partially resulting in Functional can be applied to a partially resulting in
new functions with fewer argumentsnew functions with fewer arguments

smaller :: (Integer, Integer) smaller :: (Integer, Integer) --> Integer> Integer

smaller (x,y) = if x <= y then x else ysmaller (x,y) = if x <= y then x else y

smaller2 :: Integer smaller2 :: Integer --> Integer > Integer --> Integer> Integer

smaller2 x y = if x <= y then x else ysmaller2 x y = if x <= y then x else y

•• The value of the application The value of the application smaller2 x smaller2 x is a function is a function
with type with type Integer Integer --> Integer> Integer

–– This is known as This is known as curryingcurrying a functiona function

COMP 144 Programming Language Concepts
Felix Hernandez-Campos

44

Curried FunctionsCurried Functions

•• Curried functions help reduce the number of Curried functions help reduce the number of
parenthesesparentheses

–– Parentheses make the syntax of some functional languages Parentheses make the syntax of some functional languages
((e.g.e.g. Lisp, Scheme) uglyLisp, Scheme) ugly

•• Curried functions are usefulCurried functions are useful
twice :: (Integer twice :: (Integer --> Integer) > Integer) --> (Integer > (Integer --> Integer)> Integer)

twice f x = f (f x)twice f x = f (f x)

square :: Integer square :: Integer --> Integer> Integer

square x = x * xsquare x = x * x

quad :: Integer quad :: Integer --> Integer> Integer

quad = twice squarequad = twice square

Function as argumentFunction as argument

Function as resultFunction as result

COMP 144
Programming Language Concepts
Lecture 19: Functions, Types and Data Structures in Haskell

February 25, 2002

Felix Hernandez-Campos 3

COMP 144 Programming Language Concepts
Felix Hernandez-Campos

55

OperatorsOperators

•• OperatorsOperators are functions in infix notation rather than are functions in infix notation rather than
prefix notationprefix notation

–– E.g.E.g. 3 + 43 + 4 rather than rather than plus 3 4plus 3 4

•• Functions can be used in infix notation using the ‘Functions can be used in infix notation using the ‘f f ‘ ‘
notationnotation

–– E.g.E.g. 3 `plus` 43 `plus` 4

•• Operators can be used in prefix notation using the Operators can be used in prefix notation using the
((opop) notation) notation

–– E.g.E.g. (+) 3 4(+) 3 4

•• As any other function, operators can be applied As any other function, operators can be applied
partially using the partially using the sectionssections notationnotation

–– E.g. E.g. The type ofThe type of (+3)(+3) is is Integer Integer --> Integer> Integer

COMP 144 Programming Language Concepts
Felix Hernandez-Campos

66

Operator AssociativityOperator Associativity

•• Operators associate from left to right (Operators associate from left to right (leftleft--
associativeassociative) or from right to left () or from right to left (rightright--associativeassociative))

–– E.g. E.g. -- is leftis left--associative associative 3 3 –– 4 4 –– 5 5 meansmeans (3 (3 –– 4) 4) –– 55

•• Operator Operator --> is > is rightright--associativeassociative
–– X X ––> Y > Y ––> Z > Z meansmeans X X --> (Y > (Y ––> Z)> Z)

•• Exercise: deduce the type of Exercise: deduce the type of hh inin
h x y = f (g x y)h x y = f (g x y)

f :: Integer f :: Integer --> Integer> Integer

g :: Integer g :: Integer --> Integer > Integer --> Integer> Integer

COMP 144
Programming Language Concepts
Lecture 19: Functions, Types and Data Structures in Haskell

February 25, 2002

Felix Hernandez-Campos 4

COMP 144 Programming Language Concepts
Felix Hernandez-Campos

77

Function DefinitionFunction Definition

•• Functions with no parameters are constantsFunctions with no parameters are constants
–– E.g. E.g. pi = 3.14pi = 3.14 has type has type pi :: Floatpi :: Float

•• The definition of a function can depend on the value The definition of a function can depend on the value
of the parametersof the parameters

–– Definitions with Definitions with conditional expressionsconditional expressions
–– Definitions with Definitions with guarded equationguarded equation

smaller :: Integer smaller :: Integer --> Integer > Integer --> Integer> Integer

smaller x y = if x <= y then x else ysmaller x y = if x <= y then x else y

smaller2 x ysmaller2 x y

| x <= y = x| x <= y = x

| y > x = y| y > x = y

COMP 144 Programming Language Concepts
Felix Hernandez-Campos

88

Recursive definitionsRecursive definitions

•• Functional languages make extensive use of Functional languages make extensive use of
recursionrecursion

fact :: Integer fact :: Integer --> Integer> Integer

fact n = if n == 0 then 1 else n * fact (n fact n = if n == 0 then 1 else n * fact (n –– 1)1)

•• What is the result of What is the result of fact fact --11??

•• The following definition is more aThe following definition is more a
fact nfact n

| n < 0 = error “negative argument for fact”| n < 0 = error “negative argument for fact”

| n == 0 = 1| n == 0 = 1

| otherwise = n * fact (n| otherwise = n * fact (n--1)1)

COMP 144
Programming Language Concepts
Lecture 19: Functions, Types and Data Structures in Haskell

February 25, 2002

Felix Hernandez-Campos 5

COMP 144 Programming Language Concepts
Felix Hernandez-Campos

99

Local DefinitionsLocal Definitions

•• Another useful notation in function definition is a Another useful notation in function definition is a
local definitionlocal definition

•• Local declarations are introduced using the keyword Local declarations are introduced using the keyword
wherewhere

•• For instance,For instance,
f :: Integer f :: Integer --> Integer > Integer --> Integer> Integer

f x yf x y

| x <= 10 = x + a| x <= 10 = x + a

| x > 10 = x | x > 10 = x –– aa

where a = square bwhere a = square b

b = y + 1b = y + 1

COMP 144 Programming Language Concepts
Felix Hernandez-Campos

1010

TypesTypes

•• The following primitive time are available in HaskellThe following primitive time are available in Haskell
–– BoolBool
–– IntegerInteger
–– FloatFloat
–– DoubleDouble
–– CharChar

•• Any expression in Haskell has a typeAny expression in Haskell has a type
–– Primitive typesPrimitive types
–– Derived typesDerived types
–– Polymorphic typesPolymorphic types

COMP 144
Programming Language Concepts
Lecture 19: Functions, Types and Data Structures in Haskell

February 25, 2002

Felix Hernandez-Campos 6

COMP 144 Programming Language Concepts
Felix Hernandez-Campos

1111

Polymorphic TypesPolymorphic Types

•• Some functions and operations work with many Some functions and operations work with many
typestypes

•• Polymorphic types are specified using Polymorphic types are specified using type variablestype variables
•• For instance, the curry function has a polymorphic For instance, the curry function has a polymorphic

typetype
curry :: ((a, b) curry :: ((a, b) --> c) > c) --> (a > (a --> b > b --> c)> c)

curry f x y = f (x,y)curry f x y = f (x,y)

•• Type variables can be qualified using Type variables can be qualified using type classestype classes
(*) :: Num a => a (*) :: Num a => a --> a > a --> a> a

COMP 144 Programming Language Concepts
Felix Hernandez-Campos

1212

ListsLists

•• Lists are the workhorse of functional programmingLists are the workhorse of functional programming

•• Lists are denoted as sequences of elements separated Lists are denoted as sequences of elements separated
by commas and enclosed within square bracketsby commas and enclosed within square brackets

–– E.g.E.g. [1,2,3][1,2,3]

•• The previous notation is a shorthand for the The previous notation is a shorthand for the ListList
data typedata type

–– E.g.E.g. 1:2:3:[]1:2:3:[]

COMP 144
Programming Language Concepts
Lecture 19: Functions, Types and Data Structures in Haskell

February 25, 2002

Felix Hernandez-Campos 7

COMP 144 Programming Language Concepts
Felix Hernandez-Campos

1313

ListsLists
FunctionsFunctions

•• Functions that operate on lists often have Functions that operate on lists often have
polymorphic typespolymorphic types
length :: [a] -> Integer
length [] = 0
length (x:xs) = 1 + length xs

•• In the previous example, the appropriate definition of In the previous example, the appropriate definition of
the function for the specific arguments was chosen the function for the specific arguments was chosen
using using pattern matchingpattern matching

Polymorphic ListPolymorphic List

Pattern MatchingPattern Matching

COMP 144 Programming Language Concepts
Felix Hernandez-Campos

1414

ListsLists
Example DerivationExample Derivation

length :: [a] -> Integer
length [] = 0 (1)
length (x:xs) = 1 + length xs (2)

length [1,2,3]
= { definition (2) }

1 + length [2,3]
= { definition (2) }

1 + 1 + length [3]
= { definition of + }

2 + length [3]
= { definition (2) }

2 + 1 + length []

= { definition of + }
3 + length []

= { definition (1) }
3 + 0

= { definition of + }
3

COMP 144
Programming Language Concepts
Lecture 19: Functions, Types and Data Structures in Haskell

February 25, 2002

Felix Hernandez-Campos 8

COMP 144 Programming Language Concepts
Felix Hernandez-Campos

1515

ListsLists
Other FunctionsOther Functions

head :: [a] -> a

head (x:xs) = x

tail :: [a] -> [a]

tail (x:xs) = xs

COMP 144 Programming Language Concepts
Felix Hernandez-Campos

1616

Data TypesData Types

•• New data types can be created using the keyword New data types can be created using the keyword
datadata

•• ExamplesExamples

data Bool = False | True

data Color = Red | Green | Blue | Violet

data Point a = Pt a a

Type ConstructorType Constructor

Polymorphic TypePolymorphic Type

Type ConstructorType Constructor

COMP 144
Programming Language Concepts
Lecture 19: Functions, Types and Data Structures in Haskell

February 25, 2002

Felix Hernandez-Campos 9

COMP 144 Programming Language Concepts
Felix Hernandez-Campos

1717

Polymorphic TypesPolymorphic Types

•• Type constructors have typesType constructors have types

Pt :: a -> a -> Point

data Point a = Pt a a

•• ExamplesExamples
Pt 2.0 3.0 :: Point Float

Pt 'a' 'b' :: Point Char

Pt True False :: Point Bool

COMP 144 Programming Language Concepts
Felix Hernandez-Campos

1818

Recursive TypesRecursive Types
Binary TreesBinary Trees

data Tree a = Leaf a | Branch (Tree a) (Tree a)

Branch :: Tree a -> Tree a -> Tree a

Leaf :: a -> Tree a

•• Example function that operates on treesExample function that operates on trees
fringe :: Tree a -> [a]

fringe (Leaf x) = [x]

fringe (Branch left right) = fringe left

++ fringe right

COMP 144
Programming Language Concepts
Lecture 19: Functions, Types and Data Structures in Haskell

February 25, 2002

Felix Hernandez-Campos 10

COMP 144 Programming Language Concepts
Felix Hernandez-Campos

1919

List ComprehensionsList Comprehensions

•• Lists can be defined by enumeration using Lists can be defined by enumeration using list list
comprehensionscomprehensions

–– Syntax: Syntax:
[f x | x <- xs]

[(x,y) | x <- xs, y <- ys]

•• ExampleExample
quicksort [] = []

quicksort (x:xs) = quicksort [y | y <- xs, y<x]

++ [x]

++ quicksort [y | y <- xs, y>=x]

GeneratorGenerator

COMP 144 Programming Language Concepts
Felix Hernandez-Campos

2020

Reading AssignmentReading Assignment

•• A Gentle Introduction to HaskellA Gentle Introduction to Haskell by Paulby Paul HudakHudak, ,
John Peterson, and Joseph H. John Peterson, and Joseph H. FaselFasel..

–– http://www.haskell.org/tutorial/http://www.haskell.org/tutorial/
–– Read sections 1 and 2Read sections 1 and 2

