COMP 144
Programming Language Concepts
Lecture 20: Lists and Higher-Order Functions in Haskell

q\‘; The University of North Carolina at Chapel Hill
W\ ‘//

COMP 144 Programming Language Concepts
Spring 2002

Lecture 20: Lists and Higher-Order
Functions in Haskell

Felix Hernandez-Campos

Feb 27

COMP 144 Programming Language Concepts
Felix Hernandez-Campos

L List Comprehensions

« Lists can be defined by enumeration using /is¢
comprehensions

— Syntax: Generator
[£x |[x < xs|]
[(x,¥) | x<-xs, y <-ys]
« Example
quicksort [] = []
quicksort (x:xs) = quicksort [y | y <- xs, y<x]
++ [x]
++ quicksort [y | y <- xs, y>=x]

COMP 144 Programming Language Concepts
Felix Hernandez-Campos

Felix Hernandez-Campos

February 27, 2002

COMP 144 February 27, 2002
Programming Language Concepts
Lecture 20: Lists and Higher-Order Functions in Haskell

. Arithmetic Sequences

 Haskell support a special syntax for arithmetic
sequences

— Notation: [start, next element..end]

[1..10] = [1,2,3,4,5,6,7,8,9,10]
[1,3..10] = [1,3,5,7,9]

[1,3..] = [1,3,5,7,9,.. (infinite sequence)

COMP 144 Programming Language Concepts
Felix Hernandez-Campos

. Lists as Data Types

* List can be seen as the following data types:

data List a = | a (List a)

[]

COMP 144 Programming Language Concepts
Felix Hernandez-Campos

Felix Hernandez-Campos

COMP 144
Programming Language Concepts
Lecture 20: Lists and Higher-Order Functions in Haskell

| “;‘ List Operations

» Concatenation

1:2:[] ++ 3:4:[]

{ definition (2) }
1:(2:[] ++ 3:4:[1)
{ definition (2) }
1: 2:([]1 ++ 3:4:[1)
{ definition (1) }
1:2:3:4:[]

COMP 144 Programming Language Concepts
Felix Hernandez-Campos

(++) 1 [a] -> [a] -> [a]
[l ++ ys = ys (1)
(x : xs) ++ ys = x : (xs ++ ys) (2)

Example [1, 2] ++ [3, 4] = [1, 2, 3, 4]

My List Operations

* Concat
concat :: [[al]l -> [a]
concat [] = [1

concat (xs : xss)
— Example

concat [[1],I[],[2,3,4]1] =

COMP 144 Programming Language Concepts
Felix Hernandez-Campos

xs ++ concat xss

[1,2,3,4]

Felix Hernandez-Campos

February 27, 2002

COMP 144 February 27, 2002
Programming Language Concepts
Lecture 20: Lists and Higher-Order Functions in Haskell

| “;‘ List Operations

* Reverse
reverse 1 [a] -> [a]
reverse [] =[]
reverse (X : Xs) = reverse xs ++ [x]
— Example
reverse [1,2,3,4] = [4,3,2,1]

COMP 144 Programming Language Concepts
Felix Hernandez-Campos

| W\‘j; Higher-Order Functions

 Higher-order functions are functions that take other
functions as arguments

* They can be use to implement algorithmic skeletons
— Generic algorithmic techniques

» Three predefined higher-order functions are specially
useful for working with list
- map
- fold
- filter

COMP 144 Programming Language Concepts
Felix Hernandez-Campos

Felix Hernandez-Campos 4

COMP 144
Programming Language Concepts
Lecture 20: Lists and Higher-Order Functions in Haskell

 Applies a function to all the elements of a list

map (a -> b) -> [a] -> [b]
map £ [] = []

map £ (x : xs) = £ x : map £ xs

— Examples

map square [9, 3] = [81, 9]

map (<3) [1, 5] = [True, False]

COMP 144 Programming Language Concepts
Felix Hernandez-Campos

Filter

 Extracts the elements of a list that satisfy a boolean
function

filter (a -> Bool) -> [a] -> [a]

filter p [] = []

filter p (x : xs) = if p x then x : filter p xs
else filter p xs

— Example

filter (>3) [1, 5, -5, 10, -10] = [5, 10]

COMP 144 Programming Language Concepts
Felix Hernandez-Campos

Felix Hernandez-Campos

February 27, 2002

COMP 144
Programming Language Concepts
Lecture 20: Lists and Higher-Order Functions in Haskell

elements of a list

» Two flavors:
— Right-wise fold: [x,, X,, X;] = X,

foldr
foldr £ e []
foldr £ e (x:xs)

[1

Felix Hernandez-Campos

Fold Operator

(a ->b ->Db)

 Takes in a function and folds it in between the

X /
(Xz ® (X5 63@)

-> b -> [a]

f x (foldr £ e xs)

COMP 144 Programming Language Concepts

Base Element

-> [a]

®» Foldr
W%, Examples

powerful

foldr

concat

[[all

* The algorithmic skeleton defined by foldr is very

* We can redefine many functions seen so far using

-> [a]

[]
xs ++

concat []

concat (xs Xss) =

concat xss

foldr

concat

(++) I[1

COMP 144 Programming Language
Felix Hernandez-Campos

Concepts

February 27, 2002

Felix Hernandez-Campos

COMP 144
Programming Language Concepts
Lecture 20: Lists and Higher-Order Functions in Haskell

®» Foldr
WY, Examples

length :: [a] -> Int
length [] =0
length (x : xs) = 1 + length xs
length = foldr oneplus 0
where oneplus x n =1 + n
map it (a =-> b) -> [a] -> [b]
map £ [] =[]
map £ (x : xs) = £ x : map f xs
map £ = foldr (cons . £f) []
where cons x xs = x : Xs

COMP 144 Programming Language Concepts
Felix Hernandez-Campos

L Composition

operator, function composition

* [t is defined as follows:

(f . g9) x =f£f (g x)

COMP 144 Programming Language Concepts
Felix Hernandez-Campos

* In the previous example, we used an important

(.) . (b=->¢) => (a -=>b) -> (a -> ¢)

Felix Hernandez-Campos

February 27, 2002

COMP 144
Programming Language Concepts
Lecture 20: Lists and Higher-Order Functions in Haskell

o Left-wise fold: [x,, X5, X3] = ((e ® X;) ® X,) ® X,

» How can rewrite reverse to be O(n)?

COMP 144 Programming Language Concepts
Felix Hernandez-Campos

foldl :: (@ -=>b ->b) -=> b -> [a] -> [a]
foldl £ e [] = [1]
foldl f e (x:xs) = foldl £ (f e x) xs
« Example
max a b = if a > b then a else b
foldl max 0 [1,2,3] = 3
COMP 144 Programming Language Concepts
Felix Hernandez-Campos
15
W\' Foldr and Foldl
reverse 1 [a]l -> [a]
reverse [] = [1] O 2
reverse (X : Xs) = reverse xs ++ [x] (n)
reverser = foldr snoc []
2
where snoc x xs = xs ++ [x] O(n)
reversel = foldl cons []
where cons Xxs x = X Xs o(n)

Felix Hernandez-Campos

February 27, 2002

COMP 144
Programming Language Concepts
Lecture 20: Lists and Higher-Order Functions in Haskell

T\ Solution

rev 11 [a] -> [a]

rev xs = rev2 xs []

rev2 1 [a] -> [a] -> [a]
rev2 [] ys = ys
rev2 (x:xs) ys = (rev2 xs) (x:ys)

COMP 144 Programming Language Concepts
Felix Hernandez-Campos

. Reading Assignment

John Peterson, and Joseph H. Fasel.
— http://www.haskell.org/tutorial/
— Read sections 3 and 4 (intro, 4.1-3)

COMP 144 Programming Language Concepts
Felix Hernandez-Campos

* A Gentle Introduction to Haskell by Paul Hudak,

Felix Hernandez-Campos

February 27, 2002

