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List ComprehensionsList Comprehensions

•• Lists can be defined by enumeration using Lists can be defined by enumeration using list list 
comprehensionscomprehensions

–– Syntax: Syntax: 
[ f x | x <- xs ]

[ (x,y) | x <- xs, y <- ys ]

•• ExampleExample
quicksort [] = []

quicksort (x:xs) = quicksort [y | y <- xs, y<x ]

++ [x]

++ quicksort [y | y <- xs, y>=x]

GeneratorGenerator
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Arithmetic SequencesArithmetic Sequences

•• Haskell support a special syntax for arithmetic Haskell support a special syntax for arithmetic 
sequencessequences

–– Notation: [start, next element..end]Notation: [start, next element..end]

[1..10] fl [1,2,3,4,5,6,7,8,9,10]

[1,3..10] fl [1,3,5,7,9]

[1,3..]  fl [1,3,5,7,9,… (infinite sequence)
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Lists as Data TypesLists as Data Types

•• List can be seen as the following data types:List can be seen as the following data types:

data List a = Nil | Cons a (List a)data List a = Nil | Cons a (List a)

[ ][ ] ::
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List OperationsList Operations

•• ConcatenationConcatenation
(++)           :: [a] (++)           :: [a] --> [a] > [a] --> [a]> [a]

[] ++ [] ++ ys        ys        = = ysys (1)(1)
(x :(x : xsxs) ++ ) ++ ys ys = x = x : (: (xs xs ++ ++ ysys)) (2)(2)

–– Example Example [1, 2] ++ [3, 4] [1, 2] ++ [3, 4] fl [1, 2, 3, 4][1, 2, 3, 4]
1:2:[] ++ 3:4:[]1:2:[] ++ 3:4:[]

= { definition (2) }= { definition (2) }
1:(2:[] ++ 3:4:[])1:(2:[] ++ 3:4:[])

= { definition (2) }= { definition (2) }
1: 2:([] ++ 3:4:[])1: 2:([] ++ 3:4:[])

= { definition (1) }= { definition (1) }
1:2:3:4:[]1:2:3:4:[]
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List OperationsList Operations

•• ConcatConcat

concat            concat            :: [[a]] :: [[a]] --> [a]> [a]
concatconcat [] [] = []= []
concatconcat ((xsxs : : xssxss)  = )  = xs xs ++ ++ concat xssconcat xss

–– ExampleExample

concatconcat [[1],[],[2,3,4]][[1],[],[2,3,4]] fl [1,2,3,4][1,2,3,4]
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List OperationsList Operations

•• ReverseReverse

reverse         :: [a] reverse         :: [a] --> [a]> [a]
reverse []       = []reverse []       = []
reverse (x : reverse (x : xsxs) = reverse ) = reverse xs xs ++ [x]++ [x]

–– ExampleExample

reverse [1,2,3,4]reverse [1,2,3,4] fl [4,3,2,1][4,3,2,1]
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HigherHigher--Order FunctionsOrder Functions

•• HigherHigher--order functions are functions that take other order functions are functions that take other 
functions as argumentsfunctions as arguments

•• They can be use to implement algorithmicThey can be use to implement algorithmic skeletonsskeletons
–– Generic algorithmic techniquesGeneric algorithmic techniques

•• Three predefined higherThree predefined higher--order functions are specially order functions are specially 
useful for working with listuseful for working with list
–– mapmap
–– foldfold
–– filterfilter
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MapMap

•• Applies a function to all the elements of a listApplies a function to all the elements of a list
map           :: (a map           :: (a --> b) > b) --> [a] > [a] --> [b]> [b]
map f []       = []map f []       = []
map f (x : map f (x : xsxs) = f x : map f ) = f x : map f xsxs

–– ExamplesExamples

map square [9, 3] map square [9, 3] fl [81, 9][81, 9]

map (<3) [1, 5] map (<3) [1, 5] fl [True, False][True, False]
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FilterFilter

•• Extracts the elements of a list that satisfy a boolean Extracts the elements of a list that satisfy a boolean 
functionfunction

filter           :: (a filter           :: (a --> > BoolBool) ) --> [a] > [a] --> [a] > [a] 
filter p []       = []filter p []       = []
filter p (x :filter p (x : xsxs) = if p x then x : filter p ) = if p x then x : filter p xsxs

else filter p else filter p xsxs

–– ExampleExample

filter (>3) [1, 5, filter (>3) [1, 5, --5, 10, 5, 10, --10] 10] fl [5, 10][5, 10]
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FoldFold

•• Takes in a function and Takes in a function and foldsfolds it in between the it in between the 
elements of a listelements of a list

•• Two flavors:Two flavors:
–– RightRight--wisewise fold: [xfold: [x11, x, x22, x, x33] ] fl xx11 ∆∆ (x(x22 ∆∆ (x(x3 3 ∆∆ e))e))

Fold OperatorFold Operator Base ElementBase Element

foldr           foldr           :: (a :: (a --> b > b --> b) > b) --> b > b --> [a] > [a] --> [a] > [a] 
foldrfoldr f e []     = []f e []     = []
foldrfoldr f e (x:f e (x:xsxs) = f x () = f x (foldr foldr f e f e xsxs))
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FoldrFoldr
ExamplesExamples

•• The algorithmic skeleton defined by The algorithmic skeleton defined by foldr foldr is very is very 
powerfulpowerful

•• We can redefine many functions seen so far using We can redefine many functions seen so far using 
foldrfoldr
concat            concat            :: [[a]] :: [[a]] --> [a]> [a]

concatconcat []          = [][]          = []
concatconcat ((xsxs :: xssxss)  =)  = xsxs ++++ concat xssconcat xss

concat             concat             = = foldr foldr (++) [](++) []
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FoldrFoldr
ExamplesExamples

lengthlength :: [a] :: [a] --> > IntInt

length []        = 0length []        = 0
length (x : length (x : xsxs)  = 1 + length )  = 1 + length xsxs

length = length = foldrfoldr oneplusoneplus 00
where where oneplus oneplus x n = 1 + nx n = 1 + n

mapmap :: (a :: (a --> b) > b) --> [a] > [a] --> [b]> [b]

map f []       = []map f []       = []
map f (x :map f (x : xsxs) = f x : map f ) = f x : map f xsxs

map f = map f = foldr foldr (cons (cons . f) []. f) []
where cons x where cons x xs xs = x : = x : xsxs
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CompositionComposition

•• In the previous example, we used an important In the previous example, we used an important 
operator, operator, function compositionfunction composition

•• It is defined as follows:It is defined as follows:

(.)   :: (b (.)   :: (b --> c) > c) --> (a > (a --> b) > b) --> (a > (a --> c)> c)

(f . g) x  = f (g x)(f . g) x  = f (g x)
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FoldlFoldl

•• LeftLeft--wisewise fold: [xfold: [x11, x, x22, x, x33] ] fl ((e ((e ∆∆ xx11) ) ∆∆ xx22) ) ∆∆ xx33

foldl           foldl           :: (a :: (a --> b > b --> b) > b) --> b > b --> [a] > [a] --> [a]> [a]

foldlfoldl f e []     = []f e []     = []

foldlfoldl f e (x:f e (x:xsxs) = ) = foldlfoldl f (f e x) f (f e x) xsxs

•• ExampleExample
max a b = if a > b then a else bmax a b = if a > b then a else b

foldlfoldl max 0 [1,2,3] max 0 [1,2,3] fl 33
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Foldr Foldr and and FoldlFoldl

reverse         :: [a] reverse         :: [a] --> [a]> [a]

reverse []       = []reverse []       = []
reverse (x :reverse (x : xsxs) = reverse) = reverse xsxs ++ [x]++ [x]

reverserreverser = = foldr snoc foldr snoc [][]
where where snoc snoc x x xs xs = = xs xs ++ [x]++ [x]

reverselreversel = = foldl foldl cons []cons []
where cons where cons xs xs x = x : x = x : xsxs

•• How can rewrite reverse to be O(n)?How can rewrite reverse to be O(n)?

O(nO(n22))

O(n)O(n)

O(nO(n22))
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SolutionSolution

rev    :: [a] rev    :: [a] --> [a]> [a]

revrev xsxs = rev2= rev2 xsxs [][]

rev2           :: [a] rev2           :: [a] --> [a] > [a] --> [a]> [a]

rev2 []rev2 [] ys   ys   = = ysys

rev2 (x:rev2 (x:xsxs)) ysys = (rev2= (rev2 xsxs) (x:) (x:ysys))

COMP 144 Programming Language Concepts
Felix  Hernandez-Campos

1818

Reading AssignmentReading Assignment

•• A Gentle Introduction to HaskellA Gentle Introduction to Haskell by Paulby Paul HudakHudak, , 
John Peterson, and Joseph H. John Peterson, and Joseph H. FaselFasel..

–– http://www.haskell.org/tutorial/http://www.haskell.org/tutorial/
–– Read sections 3 and 4 (intro, 4.1Read sections 3 and 4 (intro, 4.1--3)3)


