
COMP 144
Programming Language Concepts
Lecture 20: Lists and Higher-Order Functions in Haskell

February 27, 2002

Felix Hernandez-Campos 1

COMP 144 Programming Language Concepts
Felix Hernandez-Campos

11

Lecture 20: Lists and HigherLecture 20: Lists and Higher--Order Order
Functions in HaskellFunctions in Haskell

COMP 144 Programming Language ConceptsCOMP 144 Programming Language Concepts
Spring 2002Spring 2002

Felix HernandezFelix Hernandez--CamposCampos

Feb 27Feb 27

The University of North Carolina at Chapel HillThe University of North Carolina at Chapel Hill

COMP 144 Programming Language Concepts
Felix Hernandez-Campos

22

List ComprehensionsList Comprehensions

•• Lists can be defined by enumeration using Lists can be defined by enumeration using list list
comprehensionscomprehensions

–– Syntax: Syntax:
[f x | x <- xs]

[(x,y) | x <- xs, y <- ys]

•• ExampleExample
quicksort [] = []

quicksort (x:xs) = quicksort [y | y <- xs, y<x]

++ [x]

++ quicksort [y | y <- xs, y>=x]

GeneratorGenerator

COMP 144
Programming Language Concepts
Lecture 20: Lists and Higher-Order Functions in Haskell

February 27, 2002

Felix Hernandez-Campos 2

COMP 144 Programming Language Concepts
Felix Hernandez-Campos

33

Arithmetic SequencesArithmetic Sequences

•• Haskell support a special syntax for arithmetic Haskell support a special syntax for arithmetic
sequencessequences

–– Notation: [start, next element..end]Notation: [start, next element..end]

[1..10] fl [1,2,3,4,5,6,7,8,9,10]

[1,3..10] fl [1,3,5,7,9]

[1,3..] fl [1,3,5,7,9,… (infinite sequence)

COMP 144 Programming Language Concepts
Felix Hernandez-Campos

44

Lists as Data TypesLists as Data Types

•• List can be seen as the following data types:List can be seen as the following data types:

data List a = Nil | Cons a (List a)data List a = Nil | Cons a (List a)

[][] ::

COMP 144
Programming Language Concepts
Lecture 20: Lists and Higher-Order Functions in Haskell

February 27, 2002

Felix Hernandez-Campos 3

COMP 144 Programming Language Concepts
Felix Hernandez-Campos

55

List OperationsList Operations

•• ConcatenationConcatenation
(++) :: [a] (++) :: [a] --> [a] > [a] --> [a]> [a]

[] ++ [] ++ ys ys = = ysys (1)(1)
(x :(x : xsxs) ++) ++ ys ys = x = x : (: (xs xs ++ ++ ysys)) (2)(2)

–– Example Example [1, 2] ++ [3, 4] [1, 2] ++ [3, 4] fl [1, 2, 3, 4][1, 2, 3, 4]
1:2:[] ++ 3:4:[]1:2:[] ++ 3:4:[]

= { definition (2) }= { definition (2) }
1:(2:[] ++ 3:4:[])1:(2:[] ++ 3:4:[])

= { definition (2) }= { definition (2) }
1: 2:([] ++ 3:4:[])1: 2:([] ++ 3:4:[])

= { definition (1) }= { definition (1) }
1:2:3:4:[]1:2:3:4:[]

COMP 144 Programming Language Concepts
Felix Hernandez-Campos

66

List OperationsList Operations

•• ConcatConcat

concat concat :: [[a]] :: [[a]] --> [a]> [a]
concatconcat [] [] = []= []
concatconcat ((xsxs : : xssxss) =) = xs xs ++ ++ concat xssconcat xss

–– ExampleExample

concatconcat [[1],[],[2,3,4]][[1],[],[2,3,4]] fl [1,2,3,4][1,2,3,4]

COMP 144
Programming Language Concepts
Lecture 20: Lists and Higher-Order Functions in Haskell

February 27, 2002

Felix Hernandez-Campos 4

COMP 144 Programming Language Concepts
Felix Hernandez-Campos

77

List OperationsList Operations

•• ReverseReverse

reverse :: [a] reverse :: [a] --> [a]> [a]
reverse [] = []reverse [] = []
reverse (x : reverse (x : xsxs) = reverse) = reverse xs xs ++ [x]++ [x]

–– ExampleExample

reverse [1,2,3,4]reverse [1,2,3,4] fl [4,3,2,1][4,3,2,1]

COMP 144 Programming Language Concepts
Felix Hernandez-Campos

88

HigherHigher--Order FunctionsOrder Functions

•• HigherHigher--order functions are functions that take other order functions are functions that take other
functions as argumentsfunctions as arguments

•• They can be use to implement algorithmicThey can be use to implement algorithmic skeletonsskeletons
–– Generic algorithmic techniquesGeneric algorithmic techniques

•• Three predefined higherThree predefined higher--order functions are specially order functions are specially
useful for working with listuseful for working with list
–– mapmap
–– foldfold
–– filterfilter

COMP 144
Programming Language Concepts
Lecture 20: Lists and Higher-Order Functions in Haskell

February 27, 2002

Felix Hernandez-Campos 5

COMP 144 Programming Language Concepts
Felix Hernandez-Campos

99

MapMap

•• Applies a function to all the elements of a listApplies a function to all the elements of a list
map :: (a map :: (a --> b) > b) --> [a] > [a] --> [b]> [b]
map f [] = []map f [] = []
map f (x : map f (x : xsxs) = f x : map f) = f x : map f xsxs

–– ExamplesExamples

map square [9, 3] map square [9, 3] fl [81, 9][81, 9]

map (<3) [1, 5] map (<3) [1, 5] fl [True, False][True, False]

COMP 144 Programming Language Concepts
Felix Hernandez-Campos

1010

FilterFilter

•• Extracts the elements of a list that satisfy a boolean Extracts the elements of a list that satisfy a boolean
functionfunction

filter :: (a filter :: (a --> > BoolBool)) --> [a] > [a] --> [a] > [a]
filter p [] = []filter p [] = []
filter p (x :filter p (x : xsxs) = if p x then x : filter p) = if p x then x : filter p xsxs

else filter p else filter p xsxs

–– ExampleExample

filter (>3) [1, 5, filter (>3) [1, 5, --5, 10, 5, 10, --10] 10] fl [5, 10][5, 10]

COMP 144
Programming Language Concepts
Lecture 20: Lists and Higher-Order Functions in Haskell

February 27, 2002

Felix Hernandez-Campos 6

COMP 144 Programming Language Concepts
Felix Hernandez-Campos

1111

FoldFold

•• Takes in a function and Takes in a function and foldsfolds it in between the it in between the
elements of a listelements of a list

•• Two flavors:Two flavors:
–– RightRight--wisewise fold: [xfold: [x11, x, x22, x, x33]] fl xx11 ∆∆ (x(x22 ∆∆ (x(x3 3 ∆∆ e))e))

Fold OperatorFold Operator Base ElementBase Element

foldr foldr :: (a :: (a --> b > b --> b) > b) --> b > b --> [a] > [a] --> [a] > [a]
foldrfoldr f e [] = []f e [] = []
foldrfoldr f e (x:f e (x:xsxs) = f x () = f x (foldr foldr f e f e xsxs))

COMP 144 Programming Language Concepts
Felix Hernandez-Campos

1212

FoldrFoldr
ExamplesExamples

•• The algorithmic skeleton defined by The algorithmic skeleton defined by foldr foldr is very is very
powerfulpowerful

•• We can redefine many functions seen so far using We can redefine many functions seen so far using
foldrfoldr
concat concat :: [[a]] :: [[a]] --> [a]> [a]

concatconcat [] = [][] = []
concatconcat ((xsxs :: xssxss) =) = xsxs ++++ concat xssconcat xss

concat concat = = foldr foldr (++) [](++) []

COMP 144
Programming Language Concepts
Lecture 20: Lists and Higher-Order Functions in Haskell

February 27, 2002

Felix Hernandez-Campos 7

COMP 144 Programming Language Concepts
Felix Hernandez-Campos

1313

FoldrFoldr
ExamplesExamples

lengthlength :: [a] :: [a] --> > IntInt

length [] = 0length [] = 0
length (x : length (x : xsxs) = 1 + length) = 1 + length xsxs

length = length = foldrfoldr oneplusoneplus 00
where where oneplus oneplus x n = 1 + nx n = 1 + n

mapmap :: (a :: (a --> b) > b) --> [a] > [a] --> [b]> [b]

map f [] = []map f [] = []
map f (x :map f (x : xsxs) = f x : map f) = f x : map f xsxs

map f = map f = foldr foldr (cons (cons . f) []. f) []
where cons x where cons x xs xs = x : = x : xsxs

COMP 144 Programming Language Concepts
Felix Hernandez-Campos

1414

CompositionComposition

•• In the previous example, we used an important In the previous example, we used an important
operator, operator, function compositionfunction composition

•• It is defined as follows:It is defined as follows:

(.) :: (b (.) :: (b --> c) > c) --> (a > (a --> b) > b) --> (a > (a --> c)> c)

(f . g) x = f (g x)(f . g) x = f (g x)

COMP 144
Programming Language Concepts
Lecture 20: Lists and Higher-Order Functions in Haskell

February 27, 2002

Felix Hernandez-Campos 8

COMP 144 Programming Language Concepts
Felix Hernandez-Campos

1515

FoldlFoldl

•• LeftLeft--wisewise fold: [xfold: [x11, x, x22, x, x33]] fl ((e ((e ∆∆ xx11)) ∆∆ xx22)) ∆∆ xx33

foldl foldl :: (a :: (a --> b > b --> b) > b) --> b > b --> [a] > [a] --> [a]> [a]

foldlfoldl f e [] = []f e [] = []

foldlfoldl f e (x:f e (x:xsxs) =) = foldlfoldl f (f e x) f (f e x) xsxs

•• ExampleExample
max a b = if a > b then a else bmax a b = if a > b then a else b

foldlfoldl max 0 [1,2,3] max 0 [1,2,3] fl 33

COMP 144 Programming Language Concepts
Felix Hernandez-Campos

1616

Foldr Foldr and and FoldlFoldl

reverse :: [a] reverse :: [a] --> [a]> [a]

reverse [] = []reverse [] = []
reverse (x :reverse (x : xsxs) = reverse) = reverse xsxs ++ [x]++ [x]

reverserreverser = = foldr snoc foldr snoc [][]
where where snoc snoc x x xs xs = = xs xs ++ [x]++ [x]

reverselreversel = = foldl foldl cons []cons []
where cons where cons xs xs x = x : x = x : xsxs

•• How can rewrite reverse to be O(n)?How can rewrite reverse to be O(n)?

O(nO(n22))

O(n)O(n)

O(nO(n22))

COMP 144
Programming Language Concepts
Lecture 20: Lists and Higher-Order Functions in Haskell

February 27, 2002

Felix Hernandez-Campos 9

COMP 144 Programming Language Concepts
Felix Hernandez-Campos

1717

SolutionSolution

rev :: [a] rev :: [a] --> [a]> [a]

revrev xsxs = rev2= rev2 xsxs [][]

rev2 :: [a] rev2 :: [a] --> [a] > [a] --> [a]> [a]

rev2 []rev2 [] ys ys = = ysys

rev2 (x:rev2 (x:xsxs)) ysys = (rev2= (rev2 xsxs) (x:) (x:ysys))

COMP 144 Programming Language Concepts
Felix Hernandez-Campos

1818

Reading AssignmentReading Assignment

•• A Gentle Introduction to HaskellA Gentle Introduction to Haskell by Paulby Paul HudakHudak, ,
John Peterson, and Joseph H. John Peterson, and Joseph H. FaselFasel..

–– http://www.haskell.org/tutorial/http://www.haskell.org/tutorial/
–– Read sections 3 and 4 (intro, 4.1Read sections 3 and 4 (intro, 4.1--3)3)

