
COMP 144
Programming Language Concepts
Lecture 21: Functional Programming in Python

March 1, 2002

Felix Hernandez-Campos 1

COMP 144 Programming Language Concepts
Felix  Hernandez-Campos

11

Lecture 21: Functional Lecture 21: Functional 
Programming in PythonProgramming in Python

COMP 144 Programming Language ConceptsCOMP 144 Programming Language Concepts
Spring 2002Spring 2002

Felix HernandezFelix Hernandez--CamposCampos

March 1March 1

The University of North Carolina at Chapel HillThe University of North Carolina at Chapel Hill

COMP 144 Programming Language Concepts
Felix  Hernandez-Campos

22

List ComprehensionsList Comprehensions
HaskellHaskell

•• Lists can be defined by enumeration using Lists can be defined by enumeration using list list 
comprehensionscomprehensions
–– Syntax: Syntax: 
[ f x | x <- xs ]

[ (x,y) | x <- xs, y <- ys ]

GeneratorGenerator



COMP 144
Programming Language Concepts
Lecture 21: Functional Programming in Python

March 1, 2002

Felix Hernandez-Campos 2

COMP 144 Programming Language Concepts
Felix  Hernandez-Campos

33

List ComprehensionsList Comprehensions
PythonPython

>>>>>> freshfruitfreshfruit = ['  banana', '  loganberry = ['  banana', '  loganberry 
', 'passion fruit  ']', 'passion fruit  ']

>>> [weapon.strip() for weapon in>>> [weapon.strip() for weapon in
freshfruitfreshfruit]]

['banana', 'loganberry', 'passion fruit']['banana', 'loganberry', 'passion fruit']

COMP 144 Programming Language Concepts
Felix  Hernandez-Campos

44

List ComprehensionsList Comprehensions
PythonPython

>>>>>> vecvec = [2, 4, 6]= [2, 4, 6]

>>> [3*x for x in>>> [3*x for x in vecvec]]

[6, 12, 18][6, 12, 18]

>>> [3*x for x in>>> [3*x for x in vecvec if x > 3]if x > 3]

[12, 18][12, 18]

>>> [3*x for x in>>> [3*x for x in vecvec if x < 2]if x < 2]

[][]



COMP 144
Programming Language Concepts
Lecture 21: Functional Programming in Python

March 1, 2002

Felix Hernandez-Campos 3

COMP 144 Programming Language Concepts
Felix  Hernandez-Campos

55

List ComprehensionsList Comprehensions
PythonPython

>>> [{x: x**2} for x in>>> [{x: x**2} for x in vecvec]]

[{2: 4}, {4: 16}, {6: 36}][{2: 4}, {4: 16}, {6: 36}]

>>> [[x,x**2] for x in>>> [[x,x**2] for x in vecvec]]

[[2, 4], [4, 16], [6, 36]][[2, 4], [4, 16], [6, 36]]

>>> [x, x**2 for x in>>> [x, x**2 for x in vecvec]      # error ]      # error --
parensparens required forrequired for tuplestuples

File "<File "<stdinstdin>", line 1, in ?>", line 1, in ?

[x, x**2 for x in[x, x**2 for x in vecvec]]

^̂

SyntaxErrorSyntaxError: invalid syntax: invalid syntax

COMP 144 Programming Language Concepts
Felix  Hernandez-Campos

66

List ComprehensionsList Comprehensions
PythonPython

>>> [(x, x**2) for x in>>> [(x, x**2) for x in vecvec]]

[(2, 4), (4, 16), (6, 36)][(2, 4), (4, 16), (6, 36)]

>>> vec1 = [2, 4, 6]>>> vec1 = [2, 4, 6]

>>> vec2 = [4, 3, >>> vec2 = [4, 3, --9]9]

>>> [x*y for x in vec1 for y in vec2]>>> [x*y for x in vec1 for y in vec2]

[8, 6, [8, 6, --18, 16, 12, 18, 16, 12, --36, 24, 18, 36, 24, 18, --54]54]

>>> [x+y for x in vec1 for y in vec2]>>> [x+y for x in vec1 for y in vec2]

[6, 5, [6, 5, --7, 8, 7, 7, 8, 7, --5, 10, 9, 5, 10, 9, --3]3]

>>> [vec1[i]*vec2[i] for i in range(>>> [vec1[i]*vec2[i] for i in range(lenlen(vec1))](vec1))]

[8, 12, [8, 12, --54]54]



COMP 144
Programming Language Concepts
Lecture 21: Functional Programming in Python

March 1, 2002

Felix Hernandez-Campos 4

COMP 144 Programming Language Concepts
Felix  Hernandez-Campos

77

List ComprehensionList Comprehension
PythonPython

•• QuicksortQuicksort exampleexample

quicksort [] = []

quicksort (x:xs) = quicksort [y | y <- xs, y<x ]

++ [x]

++ quicksort [y | y <- xs, y>=x]

COMP 144 Programming Language Concepts
Felix  Hernandez-Campos

88

List ComprehensionsList Comprehensions
PythonPython

defdef quicksortquicksort(list):(list):

if (if (lenlen(list) == 0):(list) == 0):

return []return []

else:else:

pivot = list[0]pivot = list[0]

l = []l = []

l = l +l = l + quicksortquicksort([x for x in list[1:] if x < pivot])([x for x in list[1:] if x < pivot])

l.append(pivot)l.append(pivot)

l = l +l = l + quicksortquicksort([x for x in list[1:] if x >= pivot])([x for x in list[1:] if x >= pivot])

return lreturn l



COMP 144
Programming Language Concepts
Lecture 21: Functional Programming in Python

March 1, 2002

Felix Hernandez-Campos 5

COMP 144 Programming Language Concepts
Felix  Hernandez-Campos

99

HigherHigher--Order FunctionsOrder Functions

•• HigherHigher--order functions are functions that take other order functions are functions that take other 
functions as argumentsfunctions as arguments

•• They can be use to implement algorithmicThey can be use to implement algorithmic skeletonsskeletons
–– Generic algorithmic techniquesGeneric algorithmic techniques

•• Three predefined higherThree predefined higher--order functions are specially order functions are specially 
useful for working with listuseful for working with list
–– mapmap
–– foldfold
–– filterfilter

COMP 144 Programming Language Concepts
Felix  Hernandez-Campos

1010

MapMap
HaskellHaskell

•• Applies a function to all the elements of a listApplies a function to all the elements of a list
map           :: (a map           :: (a --> b) > b) --> [a] > [a] --> [b]> [b]
map f []       = []map f []       = []
map f (x : map f (x : xsxs) = f x : map f ) = f x : map f xsxs

–– ExamplesExamples

map square [9, 3] map square [9, 3] fl [81, 9][81, 9]

map (<3) [1, 5] map (<3) [1, 5] fl [True, False][True, False]



COMP 144
Programming Language Concepts
Lecture 21: Functional Programming in Python

March 1, 2002

Felix Hernandez-Campos 6

COMP 144 Programming Language Concepts
Felix  Hernandez-Campos

1111

MapMap
PythonPython

•• "map(function, sequence)" calls function(item) for "map(function, sequence)" calls function(item) for 
each of the sequence's items and returns a list of the each of the sequence's items and returns a list of the 
return values. return values. 

•• For example, to compute some cubes: For example, to compute some cubes: 
>>> def cube(x): return x*x*x>>> def cube(x): return x*x*x

......

>>> map(cube, range(1, 11))>>> map(cube, range(1, 11))

[1, 8, 27, 64, 125, 216, 343, 512, 729, [1, 8, 27, 64, 125, 216, 343, 512, 729, 
1000]1000]

COMP 144 Programming Language Concepts
Felix  Hernandez-Campos

1212

MapMap
PythonPython

•• More than one sequence may be passedMore than one sequence may be passed

•• the function must then have as many arguments as the function must then have as many arguments as 
there are sequencesthere are sequences

•• It is called with the corresponding item from each It is called with the corresponding item from each 
sequence (or None if some sequence is shorter than sequence (or None if some sequence is shorter than 
another). If None is passed for the function, a another). If None is passed for the function, a 
function returning its argument(s) is substituted. function returning its argument(s) is substituted. 



COMP 144
Programming Language Concepts
Lecture 21: Functional Programming in Python

March 1, 2002

Felix Hernandez-Campos 7

COMP 144 Programming Language Concepts
Felix  Hernandez-Campos

1313

MapMap
PythonPython

•• Combining these two special cases, we see that Combining these two special cases, we see that 
"map(None, list1, list2)" is a convenient way of "map(None, list1, list2)" is a convenient way of 
turning a pair of lists into a list of pairs. turning a pair of lists into a list of pairs. 

•• For exampleFor example
>>> >>> seqseq = range(8)= range(8)

>>> def square(x): return x*x>>> def square(x): return x*x

......

>>> map(None,>>> map(None, seqseq, map(square,, map(square, seqseq))))

[(0, 0), (1, 1), (2, 4), (3, 9), (4, 16), [(0, 0), (1, 1), (2, 4), (3, 9), (4, 16), 
(5, 25), (6, 36), (7, 49)](5, 25), (6, 36), (7, 49)]

COMP 144 Programming Language Concepts
Felix  Hernandez-Campos

1414

ZipZip

•• Zip combines two lists into a list of pairsZip combines two lists into a list of pairs

zip              :: [a] zip              :: [a] --> [b] > [b] --> [(a,b)]> [(a,b)]

zip [] zip [] ys         ys         = []= []

zip (x:zip (x:xsxs) []     = []) []     = []

zip (x:zip (x:xsxs) (y:) (y:ysys) = (x,y):zip() = (x,y):zip(xsxs,,ysys))



COMP 144
Programming Language Concepts
Lecture 21: Functional Programming in Python

March 1, 2002

Felix Hernandez-Campos 8

COMP 144 Programming Language Concepts
Felix  Hernandez-Campos

1515

FilterFilter
HaskellHaskell

•• Extracts the elements of a list that satisfy a boolean Extracts the elements of a list that satisfy a boolean 
functionfunction

filter           :: (a filter           :: (a --> > BoolBool) ) --> [a] > [a] --> [a] > [a] 
filter p []       = []filter p []       = []
filter p (x :filter p (x : xsxs) = if p x then x : filter p ) = if p x then x : filter p xsxs

else filter p else filter p xsxs

–– ExampleExample

filter (>3) [1, 5, filter (>3) [1, 5, --5, 10, 5, 10, --10] 10] fl [5, 10][5, 10]

COMP 144 Programming Language Concepts
Felix  Hernandez-Campos

1616

FilterFilter
PythonPython

•• filter(function, sequence)" returns a sequence (of the filter(function, sequence)" returns a sequence (of the 
same type, if possible) consisting of those items from same type, if possible) consisting of those items from 
the sequence for which function(item) is true.the sequence for which function(item) is true.

•• For example, to compute some primes: For example, to compute some primes: 

>>> def f(x): return x % 2 != 0 and x % 3 != 0>>> def f(x): return x % 2 != 0 and x % 3 != 0

......

>>> filter(f, range(2, 25))>>> filter(f, range(2, 25))

[5, 7, 11, 13, 17, 19, 23][5, 7, 11, 13, 17, 19, 23]



COMP 144
Programming Language Concepts
Lecture 21: Functional Programming in Python

March 1, 2002

Felix Hernandez-Campos 9

COMP 144 Programming Language Concepts
Felix  Hernandez-Campos

1717

FoldFold

•• Takes in a function and Takes in a function and foldsfolds it in between the it in between the 
elements of a listelements of a list

•• Two flavors:Two flavors:
–– RightRight--wisewise fold: [xfold: [x11, x, x22, x, x33] ] fl xx11 ∆∆ (x(x22 ∆∆ (x(x3 3 ∆∆ e))e))

Fold OperatorFold Operator Base ElementBase Element

foldr           foldr           :: (a :: (a --> b > b --> b) > b) --> b > b --> [a] > [a] --> [a] > [a] 
foldrfoldr f e []     = []f e []     = []
foldrfoldr f e (x:f e (x:xsxs) = f x () = f x (foldr foldr f e f e xsxs))

COMP 144 Programming Language Concepts
Felix  Hernandez-Campos

1818

FoldlFoldl

•• LeftLeft--wisewise fold: [xfold: [x11, x, x22, x, x33] ] fl ((e ((e ∆∆ xx11) ) ∆∆ xx22) ) ∆∆ xx33

foldl           foldl           :: (a :: (a --> b > b --> b) > b) --> b > b --> [a] > [a] --> [a]> [a]

foldlfoldl f e []     = []f e []     = []

foldlfoldl f e (x:f e (x:xsxs) = ) = foldlfoldl f (f e x) f (f e x) xsxs

•• ExampleExample
max a b = if a > b then a else bmax a b = if a > b then a else b

foldlfoldl max 0 [1,2,3] max 0 [1,2,3] fl 33



COMP 144
Programming Language Concepts
Lecture 21: Functional Programming in Python

March 1, 2002

Felix Hernandez-Campos 10

COMP 144 Programming Language Concepts
Felix  Hernandez-Campos

1919

Folding in Python: ReduceFolding in Python: Reduce

•• "reduce("reduce(funcfunc, sequence)" returns a single value constructed by , sequence)" returns a single value constructed by 
calling the binary functioncalling the binary function funcfunc on the first two items of the on the first two items of the 
sequence, then on the result and the next item, and so on. sequence, then on the result and the next item, and so on. 

•• For example, to compute the sum of the numbers 1 through For example, to compute the sum of the numbers 1 through 
10: 10: 

>>> def add(x,y): return x+y>>> def add(x,y): return x+y
......
>>> reduce(add, range(1, 11))>>> reduce(add, range(1, 11))
5555
•• If there's only one item in the sequence, its value is returned;If there's only one item in the sequence, its value is returned;

if the sequence is empty, an exception is raised. if the sequence is empty, an exception is raised. 

COMP 144 Programming Language Concepts
Felix  Hernandez-Campos

2020

ReduceReduce

•• A third argument can be passed to indicate the starting value. A third argument can be passed to indicate the starting value. 
In this case the starting value is returned for an empty In this case the starting value is returned for an empty 
sequence, and the function is first applied to the starting valusequence, and the function is first applied to the starting value e 
and the first sequence item, then to the result and the next and the first sequence item, then to the result and the next 
item, and so on. item, and so on. 

•• For example, For example, 
>>> def sum(>>> def sum(seqseq):):

...     def add(x,y): return x+y...     def add(x,y): return x+y

...     return reduce(add,...     return reduce(add, seqseq, 0), 0)

... ... 

>>> sum(range(1, 11))>>> sum(range(1, 11))

5555

>>> sum([])>>> sum([])

00



COMP 144
Programming Language Concepts
Lecture 21: Functional Programming in Python

March 1, 2002

Felix Hernandez-Campos 11

COMP 144 Programming Language Concepts
Felix  Hernandez-Campos

2121

Lambda AbstractionsLambda Abstractions

•• Anonymous functions are also usefulAnonymous functions are also useful
–– They are known as lambda abstractionsThey are known as lambda abstractions

•• HaskellHaskell
map (map (\\xx-->3*x) [1,2,3]>3*x) [1,2,3]

•• PythonPython
>>> car = lambda>>> car = lambda lstlst:: lstlst[0][0]

>>> >>> cdrcdr = lambda= lambda lstlst:: lstlst[1:][1:]

>>> sum2 = lambda>>> sum2 = lambda lstlst: car(: car(lstlst)+car()+car(cdrcdr((lstlst))))

>>> sum2(range(10))>>> sum2(range(10))

11

COMP 144 Programming Language Concepts
Felix  Hernandez-Campos

2222

More on Python Functional More on Python Functional 
ProgrammingProgramming

•• Articles by David MertzArticles by David Mertz

•• http://wwwhttp://www--
106.ibm.com/developerworks/linux/library/l106.ibm.com/developerworks/linux/library/l--
prog.htmlprog.html

•• http://wwwhttp://www--106.ibm.com/developerworks/library/l106.ibm.com/developerworks/library/l--
prog2.htmlprog2.html



COMP 144
Programming Language Concepts
Lecture 21: Functional Programming in Python

March 1, 2002

Felix Hernandez-Campos 12

COMP 144 Programming Language Concepts
Felix  Hernandez-Campos

2323

Reading AssignmentReading Assignment

•• Python tutorialPython tutorial
–– List comprehensionsList comprehensions

»» http://www.python.org/doc/current/tut/node7.html#SECTION007http://www.python.org/doc/current/tut/node7.html#SECTION007
140000000000000000140000000000000000

–– List displaysList displays
»» http://www.python.org/doc/current/ref/lists.html#l2hhttp://www.python.org/doc/current/ref/lists.html#l2h--238238

–– HigherHigher--order programming with listorder programming with list
»» http://www.python.org/doc/current/tut/node7.html#SECTION007http://www.python.org/doc/current/tut/node7.html#SECTION007

130000000000000000130000000000000000


