COMP 144 March 1, 2002
Programming Language Concepts
Lecture 21: Functional Programming in Python

q\‘; The University of North Carolina at Chapel Hill

COMP 144 Programming Language Concepts
Spring 2002

Lecture 21: Functional
Programming in Python

Felix Hernandez-Campos
March 1

COMP 144 Programming Language Concepts
Felix Hernandez-Campos

» List Comprehensions
WY, Haskell

* Lists can be defined by enumeration using /list
comprehensions
—Syntax:

Generator
x| <]

[(x,¥) | x <- x5, y <-ys]

COMP 144 Programming Language Concepts
Felix Hernandez-Campos

Felix Hernandez-Campos 1

COMP 144
Programming Language Concepts
Lecture 21: Functional Programming in Python

®» List Comprehensions
3y, Python

>>> freshfruit = [' banana', '
', 'passion fruit ']

>>> [weapon.strip() for weapon in
freshfruit]

['banana', 'loganberry', 'passion

COMP 144 Programming Language Concepts
Felix Hernandez-Campos

loganberry

fruit']

» List Comprehensions
¥y, Python

>>> vec = [2, 4, 6]

>>> [3*x for x in vec]

[6, 12, 18]

>>> [3*x for x in vec if x > 3]
[12, 18]

>>> [3*x for x in vec if x < 2]

[1

COMP 144 Programming Language Concepts
Felix Hernandez-Campos

Felix Hernandez-Campos

March 1, 2002

COMP 144
Programming Language Concepts
Lecture 21: Functional Programming in Python

®» List Comprehensions
3y, Python

>>> [{x: x**2} for x in vec]
[{2: 4}, {4: 16}, {6: 36}]
>>> [[x,x**2] for x in vec]
[[2, 4], [4, 16], [6, 36]]

>>> [x, x**2 for x in vec]
parens required for tuples

File "<stdin>", line 1, in ?
[x, x**2 for x in vec]

A

SyntaxError: invalid syntax

COMP 144 Programming Language Concepts
Felix Hernandez-Campos

error -

» List Comprehensions
-WN‘; Python

>>> [(x, x**2) for x in vec]

[(2, 4), (4, 16), (6, 36)]

>>> vecl = [2, 4, 6]

>>> vec2 = [4, 3, -9]

>>> [x*y for x in vecl for y in vec2]
[8, 6, -18, 16, 12, -36, 24, 18, -54]
>>> [x+y for x in vecl for y in vec2]
[, s, -7, 8, 7, -5, 10, 9, -3]

[8, 12, -54]

COMP 144 Programming Language Concepts
Felix Hernandez-Campos

>>> [vecl[i]*vec2[i] for i in range (len(vecl))]

Felix Hernandez-Campos

March 1, 2002

COMP 144
Programming Language Concepts
Lecture 21: Functional Programming in Python

~ T\, Python

List Comprehension

quicksort [] = []

quicksort (x:xs)

* Quicksort example

= quicksort [y | ¥y <- xs, y<x]
++ [x]
++ quicksort [y | y <- xs, y>=x]

COMP 144 Programming Language Concepts
Felix Hernandez-Campos

Ay, Python

» List Comprehensions

def quicksort(list):

return []

else:
pivot = list[0]
1=1]

1.append (pivot)

return 1

if (len(list) == 0):

1l =1 + quicksort([x for x in list[l:] if x < pivot])

1l =1 + quicksort([x for x in list[l:] if x >= pivot])

COMP 144 Programming Language Concepts
Felix Hernandez-Campos

Felix Hernandez-Campos

March 1, 2002

COMP 144
Programming Language Concepts
Lecture 21: Functional Programming in Python

o Higher-Order Functions

 Higher-order functions are functions that take other
functions as arguments

» They can be use to implement algorithmic skeletons
— Generic algorithmic techniques

* Three predefined higher-order functions are specially
useful for working with list
- map
- fold
- filter

COMP 144 Programming Language Concepts
Felix Hernandez-Campos

» Map
A, Haskell

» Applies a function to all the elements of a list
map :: (a -> b) -> [a] -> [b]
map £ [] []
map £ (x : xs) f x : map £ xs

— Examples
map square [9, 3] = [81, 9]
map (<3) [1, 5] = [True, False]

COMP 144 Programming Language Concepts
Felix Hernandez-Campos

Felix Hernandez-Campos

March 1, 2002

COMP 144 March 1, 2002
Programming Language Concepts
Lecture 21: Functional Programming in Python

» Map
3y, Python

* "map(function, sequence)" calls function(item) for
each of the sequence's items and returns a list of the
return values.

* For example, to compute some cubes:

>>> def cube(x): return x*x*x

>>> map (cube, range(l, 11))

[1L, 8, 27, 64, 125, 216, 343, 512, 729,
1000]

COMP 144 Programming Language Concepts
Felix Hernandez-Campos

» Map
Wy, Python

* More than one sequence may be passed

+ the function must then have as many arguments as
there are sequences

* It is called with the corresponding item from each
sequence (or None if some sequence is shorter than
another). If None is passed for the function, a
function returning its argument(s) is substituted.

COMP 144 Programming Language Concepts
Felix Hernandez-Campos

Felix Hernandez-Campos 6

COMP 144
Programming Language Concepts
Lecture 21: Functional Programming in Python

» Map
3y, Python

turning a pair of lists into a list of pairs.

* For example
>>> seq = range(8)

>>> def square(x): return x*x

>>> map (None, seq, map (square, seq))

» Combining these two special cases, we see that
"map(None, listl, list2)" is a convenient way of

zip (x:xs) (y:ys) = (x,y):zip(xs,ys)

COMP 144 Programming Language Concepts
Felix Hernandez-Campos

[, o), (1, 1), (2, 4), (3, 9), (4, 16),
(5, 25), (6, 36), (7, 49)]

« Zip combines two lists into a list of pairs

zip :: [a] -> [b] -> [(a,b)]

zip [] ys = [l

zip (x:xs) [] = [1

Felix Hernandez-Campos

March 1, 2002

COMP 144 March 1, 2002

Programming Language Concepts
Lecture 21: Functional Programming in Python

» Filter
WY, Haskell

 Extracts the elements of a list that satisfy a boolean

function
filter :: (a -> Bool) -> [a] -> [a]
filter p [] = []

if p x then x : filter p xs
else filter p xs

filter p (x : xs)

— Example

filter (>3) [1, 5, -5, 10, -10] = [5, 10]

COMP 144 Programming Language Concepts
Felix Hernandez-Campos

» Filter
¥y, Python

« filter(function, sequence)" returns a sequence (of the
same type, if possible) consisting of those items from
the sequence for which function(item) is true.

 For example, to compute some primes:

>>> def £(x): return x $ 2 '= 0 and x $ 3 '=0

>>> filter(f, range(2, 25))
[5, 7, 11, 13, 17, 19, 23]

COMP 144 Programming Language Concepts
Felix Hernandez-Campos

Felix Hernandez-Campos

COMP 144

Programming Language Concepts
Lecture 21: Functional Programming in Python

 Takes in a function and folds it in between the

elements of a list
Fold Operator Base Element

» Two flavors: X
— Right-wise fold: [x,, X,, X3] = x, [®](x, ® (x; ®[¢))

foldr :: (@ ->b ->b) -> b -> [a] -> [a]
foldr £ e [] []1
foldr £ e (x:xs) f x (foldr £ e xs)

COMP 144 Programming Language Concepts
Felix Hernandez-Campos

Foldl

* Left-wise fold: [x,, X5, X3] = ((e @ x;) D X,) D X3

foldl :: (@ -=>b ->Db) -> b -> [a] -> [a]
foldl £ e [] []
foldl £ e (x:xs) foldl £ (f e x) =xs

« Example
max a b = if a > b then a else b
foldl max 0 [1,2,3] = 3

COMP 144 Programming Language Concepts
Felix Hernandez-Campos

Felix Hernandez-Campos

March 1, 2002

COMP 144
Programming Language Concepts
Lecture 21: Functional Programming in Python

My Folding in Python: Reduce

* "reduce(func, sequence)" returns a single value constructed by
calling the binary function func on the first two items of the
sequence, then on the result and the next item, and so on.

* For example, to compute the sum of the numbers 1 through
10:

>>> def add(x,y): return xty

>>> reduce (add, range(l, 11))
55

« If there's only one item in the sequence, its value is returned,
if the sequence is empty, an exception is raised.

COMP 144 Programming Language Concepts
Felix Hernandez-Campos

| W\ Reduce

* A third argument can be passed to indicate the starting value.
In this case the starting value is returned for an empty
sequence, and the function is first applied to the starting value
and the first sequence item, then to the result and the next
item, and so on.

» For example,

>>> def sum(seq):

def add(x,y): return x+y

return reduce (add, seq, 0)

>>> sum(range (1, 11))
55
>>> sum([])

0 COMP 144 Programming Language Concepts
Felix Hernandez-Campos
20

Felix Hernandez-Campos

March 1, 2002

10

COMP 144 March 1, 2002
Programming Language Concepts
Lecture 21: Functional Programming in Python

o Lambda Abstractions

* Anonymous functions are also useful
— They are known as lambda abstractions

» Haskell
map (\x->3*x) [1,2,3]

* Python

>>> car = lambda 1lst: 1lst[O0]

>>> cdr = lambda 1lst: 1lst[l:]

>>> sum2 = lambda lst: car(lst)+car(cdr(lst))
>>> sum2 (range (10))

1

COMP 144 Programming Language Concepts
Felix Hernandez-Campos
21

» More on Python Functional
%%, Programming

* Articles by David Mertz

* http://www-
106.ibm.com/developerworks/linux/library/I-

prog.html

* http://www-106.1bm.com/developerworks/library/l-
prog2.html

COMP 144 Programming Language Concepts
Felix Hernandez-Campos

22

Felix Hernandez-Campos 11

COMP 144 March 1, 2002
Programming Language Concepts
Lecture 21: Functional Programming in Python

L Reading Assignment

* Python tutorial

— List comprehensions
» http://www.python.org/doc/current/tut/node7.html#SECTION007
140000000000000000
— List displays
» http://www.python.org/doc/current/ref/lists.html#12h-238
— Higher-order programming with list
» http://www.python.org/doc/current/tut/node7.html#SECTION007
130000000000000000

COMP 144 Programming Language Concepts
Felix Hernandez-Campos

23

Felix Hernandez-Campos 12

