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» List Comprehensions
WY, Haskell

* Lists can be defined by enumeration using /list
comprehensions
—Syntax:

Generator
x| <]

[ (x,¥) | x <- x5, y <-ys ]
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®» List Comprehensions
3y, Python

>>> freshfruit = [' banana', '
', 'passion fruit ']

>>> [weapon.strip() for weapon in
freshfruit]

['banana', 'loganberry', 'passion
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loganberry

fruit']

» List Comprehensions
¥y, Python

>>> vec = [2, 4, 6]

>>> [3*x for x in vec]

[6, 12, 18]

>>> [3*x for x in vec if x > 3]
[12, 18]

>>> [3*x for x in vec if x < 2]

[1
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®» List Comprehensions
3y, Python

>>> [{x: x**2} for x in vec]
[{2: 4}, {4: 16}, {6: 36}]
>>> [[x,x**2] for x in vec]
[[2, 4], [4, 16], [6, 36]]

>>> [x, x**2 for x in vec]
parens required for tuples

File "<stdin>", line 1, in ?
[x, x**2 for x in vec]

A

SyntaxError: invalid syntax
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# error -

» List Comprehensions
-WN‘; Python

>>> [(x, x**2) for x in vec]

[(2, 4), (4, 16), (6, 36)]

>>> vecl = [2, 4, 6]

>>> vec2 = [4, 3, -9]

>>> [x*y for x in vecl for y in vec2]
[8, 6, -18, 16, 12, -36, 24, 18, -54]
>>> [x+y for x in vecl for y in vec2]
[, s, -7, 8, 7, -5, 10, 9, -3]

[8, 12, -54]
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>>> [vecl[i]*vec2[i] for i in range (len(vecl))]
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~ T\, Python

List Comprehension

quicksort [] = []

quicksort (x:xs)

* Quicksort example

= quicksort [y | ¥y <- xs, y<x ]
++ [x]
++ quicksort [y | y <- xs, y>=x]
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Ay, Python

» List Comprehensions

def quicksort(list):

return []

else:
pivot = list[0]
1=1]

1.append (pivot)

return 1

if (len(list) == 0):

1l =1 + quicksort([x for x in list[l:] if x < pivot])

1l =1 + quicksort([x for x in list[l:] if x >= pivot])
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o Higher-Order Functions

 Higher-order functions are functions that take other
functions as arguments

» They can be use to implement algorithmic skeletons
— Generic algorithmic techniques

* Three predefined higher-order functions are specially
useful for working with list
- map
- fold
- filter
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» Map
A, Haskell

» Applies a function to all the elements of a list
map :: (a -> b) -> [a] -> [b]
map £ [] []
map £ (x : xs) f x : map £ xs

— Examples
map square [9, 3] = [81, 9]
map (<3) [1, 5] = [True, False]
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» Map
3y, Python

* "map(function, sequence)" calls function(item) for
each of the sequence's items and returns a list of the
return values.

* For example, to compute some cubes:

>>> def cube(x): return x*x*x

>>> map (cube, range(l, 11))

[1L, 8, 27, 64, 125, 216, 343, 512, 729,
1000]
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» Map
Wy, Python

* More than one sequence may be passed

+ the function must then have as many arguments as
there are sequences

* It is called with the corresponding item from each
sequence (or None if some sequence is shorter than
another). If None is passed for the function, a
function returning its argument(s) is substituted.
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» Map
3y, Python

turning a pair of lists into a list of pairs.

* For example
>>> seq = range(8)

>>> def square(x): return x*x

>>> map (None, seq, map (square, seq))

» Combining these two special cases, we see that
"map(None, listl, list2)" is a convenient way of

zip (x:xs) (y:ys) = (x,y):zip(xs,ys)
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[, o), (1, 1), (2, 4), (3, 9), (4, 16),
(5, 25), (6, 36), (7, 49)]

« Zip combines two lists into a list of pairs

zip :: [a] -> [b] -> [(a,b)]

zip [] ys = [l

zip (x:xs) [] = [1
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» Filter
WY, Haskell

 Extracts the elements of a list that satisfy a boolean

function
filter :: (a -> Bool) -> [a] -> [a]
filter p [] = []

if p x then x : filter p xs
else filter p xs

filter p (x : xs)

— Example

filter (>3) [1, 5, -5, 10, -10] = [5, 10]
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» Filter
¥y, Python

« filter(function, sequence)" returns a sequence (of the
same type, if possible) consisting of those items from
the sequence for which function(item) is true.

 For example, to compute some primes:

>>> def £(x): return x $ 2 '= 0 and x $ 3 '=0

>>> filter(f, range(2, 25))
[5, 7, 11, 13, 17, 19, 23]
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 Takes in a function and folds it in between the

elements of a list
Fold Operator Base Element

» Two flavors: X
— Right-wise fold: [x,, X,, X3] = x, [®](x, ® (x; ®[¢))

foldr :: (@ ->b ->b) -> b -> [a] -> [a]
foldr £ e [] []1
foldr £ e (x:xs) f x (foldr £ e xs)
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Foldl

* Left-wise fold: [x,, X5, X3] = ((e @ x;) D X,) D X3

foldl :: (@ -=>b ->Db) -> b -> [a] -> [a]
foldl £ e [] []
foldl £ e (x:xs) foldl £ (f e x) =xs

« Example
max a b = if a > b then a else b
foldl max 0 [1,2,3] = 3
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My Folding in Python: Reduce

* "reduce(func, sequence)" returns a single value constructed by
calling the binary function func on the first two items of the
sequence, then on the result and the next item, and so on.

* For example, to compute the sum of the numbers 1 through
10:

>>> def add(x,y): return xty

>>> reduce (add, range(l, 11))
55

« If there's only one item in the sequence, its value is returned,
if the sequence is empty, an exception is raised.
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| W\ Reduce

* A third argument can be passed to indicate the starting value.
In this case the starting value is returned for an empty
sequence, and the function is first applied to the starting value
and the first sequence item, then to the result and the next
item, and so on.

» For example,

>>> def sum(seq):

def add(x,y): return x+y

return reduce (add, seq, 0)

>>> sum(range (1, 11))
55
>>> sum([])
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o Lambda Abstractions

* Anonymous functions are also useful
— They are known as lambda abstractions

» Haskell
map (\x->3*x) [1,2,3]

* Python

>>> car = lambda 1lst: 1lst[O0]

>>> cdr = lambda 1lst: 1lst[l:]

>>> sum2 = lambda lst: car(lst)+car(cdr(lst))
>>> sum2 (range (10))

1
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» More on Python Functional
%%, Programming

* Articles by David Mertz

* http://www-
106.ibm.com/developerworks/linux/library/I-

prog.html

* http://www-106.1bm.com/developerworks/library/l-
prog2.html
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L Reading Assignment

* Python tutorial

— List comprehensions
» http://www.python.org/doc/current/tut/node7.html#SECTION007
140000000000000000
— List displays
» http://www.python.org/doc/current/ref/lists.html#12h-238
— Higher-order programming with list
» http://www.python.org/doc/current/tut/node7.html#SECTION007
130000000000000000
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