COMP 144
Programming Language Concepts
Lecture 22: Object-Oriented Programming

q\‘; The University of North Carolina at Chapel Hill

COMP 144 Programming Language Concepts

Spring 2002

Lecture 22:

Object-Oriented Programming

Felix Hernandez-Campos
March 11

COMP 144 Programming Language Concepts
Felix Hernandez-Campos

My Fundamental Concepts in OOP

e Inheritance

* Encapsulation
— Data Abstraction
— Information hiding
— The notion of class and object

— Code reusability

— Is-a vs. has-a relationships
* Polymorphism

— Dynamic method binding

COMP 144 Programming Language Concepts
Felix Hernandez-Campos

Felix Hernandez-Campos

March 8, 2002

COMP 144 March 8, 2002
Programming Language Concepts

Lecture 22: Object-Oriented Programming

My Encapsulation

» Data abstraction allow programmers to hide data
representation details behind a (comparatively)
simple set of operations (an interface)

* What the benefits of data abstraction?

(— Reduces conceptual load
» Programmers need to knows less about the rest of the program
— Provides fault containment
» Bugs are located in independent components
— Provides a significant degree of independence of program
components

\. » Separate the roles of different programmer
Software
Engineering

COMP 144 Programming Language Concepts
Goals Felix Hernandez-Campos

» Encapsulation
WY, Classes, Objects and Methods

* The unit of encapsulation in an O-O PL is a class

— An abstract data type
» The set of values is the set of objects (or instances)

* Objects can have a

— Set of instance attributes (has-a relationship)
— Set of instance methods ——

e Classes can have a , Method calls are
— Set of class attributes known as messages

— Set of class methods
* The entire set of methods of an object is known as
the message protocol or the message interface of the

b by t COMP 144 Programming Language Concepts
0 J ec Felix Hernandez-Campos

Felix Hernandez-Campos 2

COMP 144

Programming Language Concepts
Lecture 22: Object-Oriented Programming

Inheritance

» Encapsulation improves code reusability
— Abstract Data Types
— Modules
— Classes

» However, it is generally the case that the code a
programmer wants to reuse is close but not exactly
what the programmer needs

* Inheritance provides a mechanism to extend or
refine units of encapsulation
— By adding or overriding methods
— By adding attributes

COMP 144 Programming Language Concepts
Felix Hernandez-Campos

Inheritance

¥, Notation

v

Base Class
Java.awt.Dialog (or Parent Class
or Superclass)

ﬂ Is-a relationship
Derived Class
Java.awt EileDialog (or Child Class
or Subclass)

COMP 144 Programming Language Concepts
Felix Hernandez-Campos

Felix Hernandez-Campos

March 8, 2002

COMP 144

Programming Language Concepts
Lecture 22: Object-Oriented Programming

ey Polymorphism

* The is-a relationship supports the development of
generic operations that can be applied to objects of a
class and all its subclasses

— This feature is known as polymorphism
—E.g. paint () method

» The binding of messages to method definition is
instance-dependent, and it is known as dynamic
binding

— It has to be resolved at run-time
— Dynamic binding requires the virtual keyword in C++
— Static binding requires the final keyword in Java

COMP 144 Programming Language Concepts
Felix Hernandez-Campos

» Encapsulation

\¥¥, Modules and Classes

 The basic unit of OO, the class, is a unit of scope
— This idea originated in module-based languages in the
mid-70s
» E.g. Clu, Modula, Euclid

* Rules of scope enforce data hiding
— Names have to be exported in order to be accessible by
other modules

— What kind of data hiding mechanisms we have in Java?
» http://java.sun.com/docs/books/tutorial/java/javaOQO/accesscontrol

.html
— And in Python?

» http://www.python.org/doc/current/tut/nodel 1 .htmI#SECTIONOOQ
11600000000000000000

COMP 144 Programming Language Concepts
Felix Hernandez-Campos

Felix Hernandez-Campos

March 8, 2002

COMP 144 March 8, 2002
Programming Language Concepts

Lecture 22: Object-Oriented Programming

» Classes and Encapsulation
¥, Two Views

* Module-as-type
— A module is an abstract data type
— Standardized constructor and destructor syntax
— Object-oriented design is applied everywhere
— E.g. Java, Smalltalk, Eiffel, C++, Python

* Module-as-manager
— A module exports an abstract data type
— Create and destroy operations
— Object-oriented design is optional (OO as an extension)
—E.g. Ada 95, Modula-3, Oberon, CLOS, Perl

COMP 144 Programming Language Concepts
Felix Hernandez-Campos

Ada 95

package gp_list is
list_err : exception;
type gp_list_node is tagged private;
-- 'tagged’ means extendible; 'private’ means opaque
type gp_list node ptr is access all gp_list_node;
-- 7all’ means that this can point at 'aliased’ non-heap data
procedure initialize (self : access gp_list_node);
procedure finalize (self : access gp_list_node);
function predecessor (self : access gp_list_node) return gp_list_node_ptr;
function successer (self : access gp_list_nede) return gp_list_node ptr;
function singleton (self : access gp_list_node) return boolean;
procedure insert_before (self : access gp_list_node; new_node : gp_list_node_ptr);
procedure remove (self : access gp_list_node);

COMP 144 Programming Language Concepts
Felix Hernandez-Campos

Felix Hernandez-Campos 5

COMP 144 March 8, 2002
Programming Language Concepts
Lecture 22: Object-Oriented Programming

type list is tagged private;
type list_ptr is access all list;
procedure initialize (self : access list);
procedure finalize (self : access list);
function empty (self : access list) return boolean;
function head (self : access list) return gp_list_node_ptr;
procedure append (self : access list; new_nede : gp_list_node_ptr);
private
type gp_list_node is tagged record
prev, next, head node : gp_list nede ptr;
end record;
type list is tagged record
header : aliased gp_list_node;
-- ’aliased’ means that an ’all’ peinter can refer to this
end record;
end gp_list;

COMP 144 Programming Language Concepts
Felix Hernandez-Campos

Ada 95

package bedy gp_list is
-- definitions of subroutines

end gp_list;

package gp_list.queue is -- 'child’ of gp_list
type queue is new list with private
-- 'new’ means it’s a subtype; 'with’ means it’s an extension
procedure initialize (self : access queue);
procedure finalize (self : access queue);
procedure enqueue (self : access queue; new_node : gp_list_nede ptr);
function dequeue (self : access queue) return gp_list_nede_ptr;
private
type queue is new list with mull record;
-- no nev data members
end gp_list.queue;

COMP 144 Programming Language Concepts
Felix Hernandez-Campos

Felix Hernandez-Campos 6

COMP 144 March 8, 2002
Programming Language Concepts
Lecture 22: Object-Oriented Programming

L Reading Assignment

* Scott
— Read Ch. 10 intro

— Read Sect. 10.1
» Study the list and queue examples

— Read Sect. 10.2
» Go through the documents linked in slide 8

COMP 144 Programming Language Concepts
Felix Hernandez-Campos

Felix Hernandez-Campos 7

