COMP 144
Programming Language Concepts
Lecture 23: Object Lifetime and Garbage Collection

q\‘; The University of North Carolina at Chapel Hill

COMP 144 Programming Language Concepts

Spring 2002

Lecture 23: Object Lifetime and
Garbage Collection

Felix Hernandez-Campos

March 18

COMP 144 Programming Language Concepts
Felix Hernandez-Campos

My Fundamental Concepts in OOP

* Encapsulation

e Inheritance

* Polymorphism

— Data Abstraction
— Information hiding
— The notion of class and object

— Code reusability
— Is-a vs. has-a relationships

— Dynamic method binding

COMP 144 Programming Language Concepts
Felix Hernandez-Campos

Felix Hernandez-Campos

March 18, 2002

COMP 144

Programming Language Concepts
Lecture 23: Object Lifetime and Garbage Collection

Object Lifetime: Constructors

» Contructors are methods used to initialize the
content of an object
— They do not allocate space

* Most languages allow multiple constructors

— They are distinguished using different names or different
parameters (type and/or number)

— Java and C++ overload the constructor name, so the
appropriate methods is selected using the number and the
type of the arguments

» Rectangle r;
» Invokes the parameterless constructor
— Smalltalk and Eiffel support different constructor names

COMP 144 Programming Language Concepts
Felix Hernandez-Campos

Inheritance

¥, Notation

v

Base Class
Java.awt.Dialog (or Parent Class
or Superclass)

ﬂ Is-a relationship
Derived Class
Java.awt EileDialog (or Child Class
or Subclass)

COMP 144 Programming Language Concepts
Felix Hernandez-Campos

Felix Hernandez-Campos

March 18, 2002

COMP 144
Programming Language Concepts
Lecture 23: Object Lifetime and Garbage Collection

My Java Example

* Dialog constructors

— http://java.sun.com/j2se/1.4/docs/api/java/awt/Dialog.html

#constructor summary

* FileDialog contructors

— http://java.sun.com/docs/books/jls/second _edition/html/ex

pressions.doc.html#23302

COMP 144 Programming Language Concepts
Felix Hernandez-Campos

L Constructors in Eiffel

class COMPLEX

feature {ANY}

X, ¥ : REAL;
new_ca:rtesia.nl(x_val, y_val : R.E.AL)lis
do
x = x_val; y := y_val; Complex
end;
oo o o] | > Numbers
do
X := ro % cos (theta); Class
¥ := ro % sin (theta)
end;

—-- other public methods
feature {NONE}

-- private methods

end -- class COMPFLEX _/

a, b : COMPLEX;

mming Language Concepts
Jernandez-Campos

‘'a.new_polar (pi/2, 1);

'\
creation ol e B
new_carvessan, new o - Expligit Constructor Declaration

i mew_cartestan (0. 1); } Constructors (!! equals new)

Felix Hernandez-Campos

March 18, 2002

COMP 144
Programming Language Concepts

Lecture 23: Object Lifetime and Garbage Collection

i References and Values

 Other languages use the value model
— More efficient

— More difficult to control initialization
» E.g. uninitialized objects, mutual references

— E.g C++, Ada 95

COMP 144 Programming Language Concepts
Felix Hernandez-Campos

» Some OO languages use the reference model
— More elegant
— Extra level of indirection on every access
— E.g. Java, Simula, Smalltalk

L Constructors in C++

foo b;
foo b (10,
foo a;
bar b;
foo ¢ (a);
foo d (b);
foo c = a
foo d = b;

foo a, c, d;

)x));

1/

1/

1/
1/

/7

1/
1/

1/
1/

1/
1/

calls foo:

calls foo:

calls foo:
calls bar:

calls foo:
calls foo:

calls foo:
calls foo:

calls foo::
calls foo:

1foo ()

:foo (int, char)

1foo ()
tbar ()

:foo (fook)
:foo (bar&)

:foo (foof)
:1oo (bar&)

calls foo::foo () three times

calls bar::bar ()

operator= (foof)

roperator= (bar&)

COMP 144 Programming Language Concepts
Felix Hernandez-Campos

Initialization
(not assignment)

Copy Constructor
operator=

Felix Hernandez-Campos

March 18, 2002

COMP 144 March 18, 2002
Programming Language Concepts

Lecture 23: Object Lifetime and Garbage Collection

i Execution Order

* How is an object of class B derived from class A
initialized?

* In C++ and Java, the constructor of A 1s invoked
before the constructor of B
— Why?
» So the B constructor never sees uninitialized attributes
— What are the arguments of the A constructor?
» In C++, they are explicitly defined
B::B (B_params) : A (A_args) { ..}
» Futhermore, constructors for object arguments can also be
initialized
list node() : prev(this), next(this),
head node(this), val(0) { }

COMP 144 Programming Language Concepts
Felix Hernandez-Campos

L Java Example

» See Java Language Specification

— http://java.sun.com/docs/books/jls/second edition/html/cla
sses.doc.html#41652

— http://java.sun.com/docs/books/jls/second edition/html/ex
pressions.doc.html#23302

e Alternate constructor

* Superclass constructor
— Unqualified superclass constructor

— Qualified superclass constructor invocations
» Inner classes

COMP 144 Programming Language Concepts
Felix Hernandez-Campos

Felix Hernandez-Campos 5

COMP 144
Programming Language Concepts
Lecture 23: Object Lifetime and Garbage Collection

| “;‘ Object Lifetime: Destructors

* Destructors are methods used to finalize the content
of an object
— They do not deallocate space

— Language implementations that support garbage collection
greatly reduce the need for destructors
» Most C++ compiler do not support GC

COMP 144 Programming Language Concepts
Felix Hernandez-Campos

T C++ Example

* In general, C++ destructors are used for manual
storage reclamation

class name_list_node : public gp_list_node {
char *name; // pointer to the data in a node

public:
name_list_node () {
name = 0; // empty string
T

name_list_node (char #n) {

name = new char[strlen(n)];

strcpy (name, n); // copy argument into member
hs
I “name_list_node () { I Destructor

if (name '= 0) {

T

COMP 144 Programming Language Concepts
Felix Hernandez-Campos

Felix Hernandez-Campos

March 18, 2002

COMP 144

Programming Language Concepts
Lecture 23: Object Lifetime and Garbage Collection

o Heap-based Allocation

* The heap is a region of storage in which subblock
can be allocated and deallocated
— This not the heap data structure

Heap

Allocation request

COMP 144 Programming Language Concepts
Felix Hernandez-Campos

March 18, 2002

Garbage Collection

W,

 Explicit reclamation of heap objects is problematic
— The programmer may forget to deallocate some objects

» Causing memory leaks
» In the previous example, the programmer may forget to include

the delete statement
— References to deallocated objects may not be reset

» Creating dangling references

ptr1 \
/

ptr2
COMP 144 Programming Language Concepts
Felix Hernandez-Campos

Felix Hernandez-Campos

COMP 144 March 18, 2002
Programming Language Concepts
Lecture 23: Object Lifetime and Garbage Collection

o Garbage Collection

 Explicit reclamation of heap objects is problematic

— The programmer may forget to deallocate some objects
» Causing memory leaks

» In the previous example, the programmer may forget to include
the delete statement

— References to deallocated objects may not be reset
» Creating dangling references

/

ptr2

COMP 144 Programming Language Concepts
Felix Hernandez-Campos

\L Garbage Collection

» Automatic reclamation of the head space used by
object that are no longer useful
— Developed for functional languages
» It is essential in this programming paradigm. Why?

— Getting more and more popular in imperative languages
» Java, C#, Python

* It is generally slower than manual reclamation, but it
eliminates a very frequent programming error
— Language without GC usually have memory profiling tools
» E.g. http://www.mozilla.org/performance/tools.html,

http://www.pds-
site.com/VMGear/profiler/bigger/Objectallocationview.htm

COMP 144 Programming Language Concepts
Felix Hernandez-Campos

Felix Hernandez-Campos 8

COMP 144 March 18, 2002
Programming Language Concepts
Lecture 23: Object Lifetime and Garbage Collection

» Garbage Collection
Gy, Techniques

* When is an object no longer useful?

» There are several garbage collection techniques that
answer this question in a different manner
— Reference counting
— Mark-and-sweep collection

COMP 144 Programming Language Concepts
Felix Hernandez-Campos

L Reference Counting

» Each object has an associated reference counter

Stack Heap

stooges

'larry'l —I—bl 1 | “mc-e'b

* The run-time system
— keeps reference counters up to date, and
— recursively deallocates objects when the counter is zero

Felix Hernandez-Campos 9

COMP 144 March 18, 2002
Programming Language Concepts
Lecture 23: Object Lifetime and Garbage Collection

®» Reference Counting
WY, Problems

 Extra overhead of storing and updating reference
counts

* Strong typing required
— Impossible in a language like C
— It cannot be used for variant records

It does not work with circular data structures

— This is a problem with this definition of useful object as an
object with one or more references

COMP 144 Programming Language Concepts
Felix Hernandez-Campos

» Reference Counting
WY, Circular Data Structures

» Each object has an associated reference counter

Stack Heap

stooges

'larry'l —I—bl 1 | *me

_e-b

Circular Structure

| lI'larr}"'l 4|—’| 1 | 'rnce'b

stooges = nil;

20

Felix Hernandez-Campos 10

COMP 144

Programming Language Concepts
Lecture 23: Object Lifetime and Garbage Collection

| “;‘ Mark-and-Sweep Collection

A better definition of useless object is one that
cannot be reached by following a chain of valid
pointers starting from outside the heap

Mark-and-Sweep GC applies this definition

Algorithm:
— Mark every block in the heap as useless

— Starting with all pointers outside the heap, recursively
explore all linked data structures

— Add every block that remain marked to the free list

» Run whenever the free space is low

COMP 144 Programming Language Concepts
Felix Hernandez-Campos
21

Mark-and-Sweep Collection

Y, Problems

» Block must begin with an indication of its size

— Type descriptor that indicate their size makes this
requirement unnecessary

« A stack of depth proportional to the longest reference
chain is required
— But we are already running are out of space!

— Pointer reversal embeds the stack in the sequence of
references in the heap
» The GC reverses each pointer it traverses

COMP 144 Programming Language Concepts
Felix Hernandez-Campos
22

Felix Hernandez-Campos

March 18, 2002

11

COMP 144

Programming Language Concepts
Lecture 23: Object Lifetime and Garbage Collection

Ny

il
] | 4 2 N
Iz{ﬂ/ﬂ\l‘WI/’I/’]
GIPAEN
x| 17 v[,
IZ{’I/’I IW5"1/”I

Mark-and-Sweep Collection

¥, Pointer Reversal

Y,

@ Store-and-Copy

 Use to reduce external fragmentation

Heap

Allocation request

» S-C divides the available space in half, and allocates
everything in that half until it is full

* When that happens, copy each usefu/ block to the
other half, clean up the remaining block, and switch

the roles of each half

COMP 144 Programming Language Concepts
Felix Hernandez-Campos
24

Felix Hernandez-Campos

March 18, 2002

12

COMP 144 March 18, 2002
Programming Language Concepts
Lecture 23: Object Lifetime and Garbage Collection

L Reading Assignment

 Scott
—Read Sect. 10.3
—Read Sect. 7.7.2 (dangling references)
— Read Sect. 7.7.3 (garbage collection)

— Garbage collection in Java JDK 1.2

» http://developer.java.sun.com/developer/technical Articles/ALT/R
efObj/

COMP 144 Programming Language Concepts
Felix Hernandez-Campos

25

Felix Hernandez-Campos 13

