
COMP 144
Programming Language Concepts
Lecture 27: Prolog’s Resolution and Programming Techniques

March 27, 2002

Felix Hernandez-Campos 1

COMP 144 Programming Language Concepts
Felix Hernandez-Campos

11

Lecture 27: Prolog’s Resolution Lecture 27: Prolog’s Resolution
and Programming Techniquesand Programming Techniques

COMP 144 Programming Language ConceptsCOMP 144 Programming Language Concepts
Spring 2002Spring 2002

Felix HernandezFelix Hernandez--CamposCampos

March 27March 27

The University of North Carolina at Chapel HillThe University of North Carolina at Chapel Hill

COMP 144 Programming Language Concepts
Felix Hernandez-Campos

22

SWISWI--PrologProlog

•• We will use SWIWe will use SWI--Prolog for the Prolog programming Prolog for the Prolog programming
assignmentsassignments

–– http://www.http://www.swiswi--prolog.org/prolog.org/

•• After the installation, try the example programAfter the installation, try the example program
??-- [likes].[likes].
% likes compiled 0.00 sec, 2,148 bytes% likes compiled 0.00 sec, 2,148 bytes
YesYes
??-- likes(likes(samsam, curry)., curry).
NoNo
??-- likes(likes(samsam, X)., X).
X =X = dahldahl ;;
X =X = tandooritandoori ;;
X =X = kurmakurma ;;

Load example likes.pl Load example likes.pl

This goal cannot be proved, so it assumed This goal cannot be proved, so it assumed
to be false (This is the so called to be false (This is the so called Close Close
World AssumptionWorld Assumption))

Asks the interpreter to Asks the interpreter to
find more solutionsfind more solutions

COMP 144
Programming Language Concepts
Lecture 27: Prolog’s Resolution and Programming Techniques

March 27, 2002

Felix Hernandez-Campos 2

COMP 144 Programming Language Concepts
Felix Hernandez-Campos

33

SWISWI--PrologProlog

•• The editor shipped as part of SWIThe editor shipped as part of SWI--Prolog supports Prolog supports
coloring and contextcoloring and context--sensitive indentationsensitive indentation

–– Try “Edit” under “File”Try “Edit” under “File”

COMP 144 Programming Language Concepts
Felix Hernandez-Campos

44

Prolog Programming ModelProlog Programming Model

•• A program is a A program is a database of (Horn) clausesdatabase of (Horn) clauses
•• Each clauses is composed of Each clauses is composed of termsterms::

–– ConstantsConstants (atoms, that are identifier starting with a (atoms, that are identifier starting with a
lowercase letter, or numbers)lowercase letter, or numbers)

»» E.g. E.g. curry, 4.5curry, 4.5

–– Variables Variables (identifiers starting with an uppercase letter)(identifiers starting with an uppercase letter)
»» E.g. E.g. FoodFood

–– Structures Structures (predicates or data structures)(predicates or data structures)
»» E.g. E.g. indianindian(Food)(Food), , date(Year,Month,Day)date(Year,Month,Day)

COMP 144
Programming Language Concepts
Lecture 27: Prolog’s Resolution and Programming Techniques

March 27, 2002

Felix Hernandez-Campos 3

COMP 144 Programming Language Concepts
Felix Hernandez-Campos

55

Data StructuresData Structures

•• Data structures consist of an atom called the Data structures consist of an atom called the functorfunctor
and a list of argumentsand a list of arguments

–– E.g. E.g. date(Year,Month,Day)date(Year,Month,Day)

–– E.g.E.g.

T = tree(3, tree(2,nil,nil), tree(5,nil,nil))T = tree(3, tree(2,nil,nil), tree(5,nil,nil))

33

5522

FunctorsFunctors

COMP 144 Programming Language Concepts
Felix Hernandez-Campos

66

Principle of ResolutionPrinciple of Resolution

•• Prolog execution is based on the Prolog execution is based on the principle of principle of
resolutionresolution

–– If CIf C11 and Cand C22 are Horn clauses and the head of Care Horn clauses and the head of C11 matches matches
one of the terms in the body of Cone of the terms in the body of C22, then we can replace the , then we can replace the
term in Cterm in C22 with the body of Cwith the body of C11

•• For example,For example,
CC11: : likes(likes(samsam,Food) :,Food) :-- indianindian(Food), mild(Food).(Food), mild(Food).
CC22: : indianindian((dahldahl).).
CC33: : mild(mild(dahldahl).).

–– We can replace the first and the second terms in CWe can replace the first and the second terms in C11 by Cby C22
and Cand C3 3 using the principle of resolution (after using the principle of resolution (after instantiatinginstantiating
variable variable FoodFood to to dahldahl))

–– Therefore, Therefore, likes(likes(samsam,, dahldahl)) can be provedcan be proved

COMP 144
Programming Language Concepts
Lecture 27: Prolog’s Resolution and Programming Techniques

March 27, 2002

Felix Hernandez-Campos 4

COMP 144 Programming Language Concepts
Felix Hernandez-Campos

77

UnificationUnification

•• Prolog associates variables and values using a Prolog associates variables and values using a
process known as process known as unificationunification

–– Variable that receive a value are said to be Variable that receive a value are said to be instantiatedinstantiated

•• Unification rulesUnification rules
–– A constant unifies only with itselfA constant unifies only with itself
–– Two structures unify if and only if they have the same Two structures unify if and only if they have the same

functor and the same number of arguments, and the functor and the same number of arguments, and the
corresponding arguments unify recursivelycorresponding arguments unify recursively

–– A variable unifies to with anythingA variable unifies to with anything

COMP 144 Programming Language Concepts
Felix Hernandez-Campos

88

EqualityEquality

•• Equality is defined as Equality is defined as unifiabilityunifiability
–– An equality goal is using an infix predicate An equality goal is using an infix predicate ==

•• For instance,For instance,
??-- dahldahl == dahldahl..
YesYes
??-- dahldahl = curry.= curry.
NoNo
??-- likes(Person,likes(Person, dahldahl) = likes() = likes(samsam, Food)., Food).
Person =Person = samsam
Food =Food = dahldahl ;;
NoNo
??-- likes(Person, curry) = likes(likes(Person, curry) = likes(samsam, Food)., Food).
Person =Person = samsam
Food = curry ;Food = curry ;
NoNo

COMP 144
Programming Language Concepts
Lecture 27: Prolog’s Resolution and Programming Techniques

March 27, 2002

Felix Hernandez-Campos 5

COMP 144 Programming Language Concepts
Felix Hernandez-Campos

99

EqualityEquality

•• What is the results ofWhat is the results of

??-- likes(Person, Food) = likes(likes(Person, Food) = likes(samsam, Food)., Food).

Person =Person = samsam
Food = _G158 ;Food = _G158 ;

NoNo

Internal Representation for an Internal Representation for an
uninstantiateduninstantiated variablevariable
AnyAny instantiation proves the equalityinstantiation proves the equality

COMP 144 Programming Language Concepts
Felix Hernandez-Campos

1010

Execution OrderExecution Order

•• Prolog searches for a resolution sequence that Prolog searches for a resolution sequence that
satisfies the goalsatisfies the goal

•• In order to satisfy the logical predicate, we can In order to satisfy the logical predicate, we can
imagine two search strategies:imagine two search strategies:

–– Forward chainingForward chaining, derived the goal from the axioms, derived the goal from the axioms
–– Backward chainingBackward chaining, start with the goal and attempt to , start with the goal and attempt to

resolve them working backwardsresolve them working backwards

•• Backward chaining is usually more efficient, so it is Backward chaining is usually more efficient, so it is
the mechanism underlying the execution of Prolog the mechanism underlying the execution of Prolog
programsprograms

–– Forward chaining is more efficient when the number of Forward chaining is more efficient when the number of
facts is small and the number of rules is very largefacts is small and the number of rules is very large

COMP 144
Programming Language Concepts
Lecture 27: Prolog’s Resolution and Programming Techniques

March 27, 2002

Felix Hernandez-Campos 6

COMP 144 Programming Language Concepts
Felix Hernandez-Campos

1111

Backward Chaining in PrologBackward Chaining in Prolog

•• Backward Backward
chaining chaining
follows a follows a
classic classic
depthdepth--first first
backtracking backtracking
algorithmalgorithm

•• ExampleExample
–– Goal:Goal:
Snowy(C)Snowy(C)

COMP 144 Programming Language Concepts
Felix Hernandez-Campos

1212

DepthDepth--first backtrackingfirst backtracking

•• The search for a resolution is ordered and depthThe search for a resolution is ordered and depth--firstfirst
–– The behavior of the interpreter is predictableThe behavior of the interpreter is predictable

•• Ordering is fundamental in recursionOrdering is fundamental in recursion
–– Recursion is again the basic computational technique, as it Recursion is again the basic computational technique, as it

was in functional languageswas in functional languages
–– Inappropriate ordering of the terms may result in nonInappropriate ordering of the terms may result in non--

terminating resolutions (infinite regression)terminating resolutions (infinite regression)
–– For example: GraphFor example: Graph

edge(a,b). edge(b, c). edge(c, d).edge(a,b). edge(b, c). edge(c, d).

edge(d,e). edge(b, e). edge(d, f).edge(d,e). edge(b, e). edge(d, f).

path(X, X).path(X, X).

path(X, Y) :path(X, Y) :-- edge(Z, Y), path(X, Z).edge(Z, Y), path(X, Z).

CorrectCorrect

COMP 144
Programming Language Concepts
Lecture 27: Prolog’s Resolution and Programming Techniques

March 27, 2002

Felix Hernandez-Campos 7

COMP 144 Programming Language Concepts
Felix Hernandez-Campos

1313

DepthDepth--first backtrackingfirst backtracking

•• The search for a resolution is ordered and depthThe search for a resolution is ordered and depth--firstfirst
–– The behavior of the interpreter is predictableThe behavior of the interpreter is predictable

•• Ordering is fundamental in recursionOrdering is fundamental in recursion
–– Recursion is again the basic computational technique, as it Recursion is again the basic computational technique, as it

was in functional languageswas in functional languages
–– Inappropriate ordering of the terms may result in nonInappropriate ordering of the terms may result in non--

terminating resolutions (infinite regression)terminating resolutions (infinite regression)
–– For example: GraphFor example: Graph

edge(a,b). edge(b, c). edge(c, d).edge(a,b). edge(b, c). edge(c, d).

edge(d,e). edge(b, e). edge(d, f).edge(d,e). edge(b, e). edge(d, f).

path(X, Y) :path(X, Y) :-- path(X, Z), edge(Z, Y).path(X, Z), edge(Z, Y).

path(X, X).path(X, X).

IncorrectIncorrect

COMP 144 Programming Language Concepts
Felix Hernandez-Campos

1414

Infinite RegressionInfinite Regression

GoalGoal

COMP 144
Programming Language Concepts
Lecture 27: Prolog’s Resolution and Programming Techniques

March 27, 2002

Felix Hernandez-Campos 8

COMP 144 Programming Language Concepts
Felix Hernandez-Campos

1515

ExamplesExamples

•• GenealogyGenealogy
–– http://ktiml.mff.cuni.cz/~bartak/prolog/genealogy.htmlhttp://ktiml.mff.cuni.cz/~bartak/prolog/genealogy.html

•• Data structures and arithmeticData structures and arithmetic
–– Prolog has an arithmetic functor Prolog has an arithmetic functor isis that unifies arithmetic that unifies arithmetic

valuesvalues
»» E.g.E.g. is (X, 1+2), X is 1+2is (X, 1+2), X is 1+2

–– Dates exampleDates example
»» http://ktiml.mff.cuni.cz/~bartak/prolog/genealogy.htmlhttp://ktiml.mff.cuni.cz/~bartak/prolog/genealogy.html

COMP 144 Programming Language Concepts
Felix Hernandez-Campos

1616

Reading AssignmentReading Assignment

•• ReadRead
–– Scott Sect. 11.3.1Scott Sect. 11.3.1

•• Guide to Prolog ExampleGuide to Prolog Example, Roman, Roman BartákBarták
–– Go through the first two examplesGo through the first two examples
–– http://ktiml.mff.cuni.cz/~bartak/prolog/learning.htmlhttp://ktiml.mff.cuni.cz/~bartak/prolog/learning.html

