
COMP 144
Programming Language Concepts
Lecture 35: In-line Expansion and Local Optimization

April 19, 2002

Felix Hernandez-Campos 1

COMP 144 Programming Language Concepts
Felix Hernandez-Campos

11

Lecture 35: InLecture 35: In--line Expansion and line Expansion and
Local OptimizationLocal Optimization

COMP 144 Programming Language ConceptsCOMP 144 Programming Language Concepts
Spring 2002Spring 2002

Felix HernandezFelix Hernandez--CamposCampos

April 19April 19

The University of North Carolina at Chapel HillThe University of North Carolina at Chapel Hill

COMP 144 Programming Language Concepts
Felix Hernandez-Campos

22

PhasesPhases

COMP 144
Programming Language Concepts
Lecture 35: In-line Expansion and Local Optimization

April 19, 2002

Felix Hernandez-Campos 2

COMP 144 Programming Language Concepts
Felix Hernandez-Campos

33

Subroutine InSubroutine In--line Expansionline Expansion

•• Subroutines may be expanded inSubroutines may be expanded in--line at the point of line at the point of
the callthe call

–– Rather than use a stackRather than use a stack--based calling conventionbased calling convention

•• InIn--line expansion saves subroutine overheads and line expansion saves subroutine overheads and
help code improvementhelp code improvement

•• InIn--line expansion may be decided by the compiler line expansion may be decided by the compiler
based on some optimization heuristicsbased on some optimization heuristics

–– E.g.E.g. short, nonshort, non--recursive subroutines are always inrecursive subroutines are always in--lined in lined in
some languagessome languages

COMP 144 Programming Language Concepts
Felix Hernandez-Campos

44

Subroutine InSubroutine In--line Expansionline Expansion

•• InIn--line expansion can also be line expansion can also be suggestedsuggested by the by the
programmerprogrammer

–– E.g.E.g. C++C++
inlineinline int int max (max (int int a, a, int int b) { b) {
return a > b ? a : b; return a > b ? a : b;

}}
–– E.g.E.g. AdaAda

function max(a, b : integer) return integer isfunction max(a, b : integer) return integer is
beginbegin
if a > b then return a; else return b; end if;if a > b then return a; else return b; end if;

end max;end max;
pragmapragma inlineinline (max);(max);

COMP 144
Programming Language Concepts
Lecture 35: In-line Expansion and Local Optimization

April 19, 2002

Felix Hernandez-Campos 3

COMP 144 Programming Language Concepts
Felix Hernandez-Campos

55

Macros and InMacros and In--line Expansionline Expansion

•• What is the difference between a macro and a What is the difference between a macro and a
programmer suggested expansion?programmer suggested expansion?

–– Optional in the second caseOptional in the second case
–– Most importantly, inMost importantly, in--line expansion is an implementation line expansion is an implementation

technique with no effect in program semanticstechnique with no effect in program semantics

•• E.g.E.g.

#define MAX(a,b) ((a) > (b) ? (a) : (b))#define MAX(a,b) ((a) > (b) ? (a) : (b))

–– No type checkingNo type checking
–– What happens What happens after MAX(x++, y++)after MAX(x++, y++)??
–– The larger argument is incremented twiceThe larger argument is incremented twice

COMP 144 Programming Language Concepts
Felix Hernandez-Campos

66

InIn--line Expansionline Expansion

•• InIn--line expansion has some disadvantagesline expansion has some disadvantages
–– Increase in code sizeIncrease in code size
–– It cannot be used with recursive subroutinesIt cannot be used with recursive subroutines

•• It is sometimes useful to expand the first case in a It is sometimes useful to expand the first case in a
recursion subroutinerecursion subroutine

–– Optimize the commonOptimize the common
case rulecase rule

Most hash chains Most hash chains
are onlyare only

one bucket longone bucket long

COMP 144
Programming Language Concepts
Lecture 35: In-line Expansion and Local Optimization

April 19, 2002

Felix Hernandez-Campos 4

COMP 144 Programming Language Concepts
Felix Hernandez-Campos

77

PhasesPhases

COMP 144 Programming Language Concepts
Felix Hernandez-Campos

88

Example Example
Control Flow GraphControl Flow Graph

•• Basic blocksBasic blocks are are
maximalmaximal--length set length set
of sequential of sequential
operationsoperations

–– Operations on a set Operations on a set
of of virtual registersvirtual registers

»» UnlimitedUnlimited
»» A new one for each A new one for each

computed valuecomputed value

•• Arcs representArcs represent
interblockinterblock control control
flowflow

COMP 144
Programming Language Concepts
Lecture 35: In-line Expansion and Local Optimization

April 19, 2002

Felix Hernandez-Campos 5

COMP 144 Programming Language Concepts
Felix Hernandez-Campos

99

Redundancy Elimination Redundancy Elimination
in Basic Blocksin Basic Blocks

•• We will consider the We will consider the
example on the rightexample on the right

•• It computes the It computes the
binomial coefficientsbinomial coefficients

for 0 for 0 §§ mm§§nn

•• It is based onIt is based on









m
n









−

=







mn

n
m
n

COMP 144 Programming Language Concepts
Felix Hernandez-Campos

1010

Syntax Tree for the Syntax Tree for the
combinations combinations subroutinesubroutine

COMP 144
Programming Language Concepts
Lecture 35: In-line Expansion and Local Optimization

April 19, 2002

Felix Hernandez-Campos 6

COMP 144 Programming Language Concepts
Felix Hernandez-Campos

1111

Naïve Control Flow Graph Naïve Control Flow Graph
for the for the combinations combinations
subroutinesubroutine

COMP 144 Programming Language Concepts
Felix Hernandez-Campos

1212

Naïve Control Flow GraphNaïve Control Flow Graph

•• Uses virtual registersUses virtual registers
–– A new register for each new valueA new register for each new value

•• rara is the return is the return addresaddres, , fpfp is the frame pointeris the frame pointer

•• nn, , AA, , II and and tt perform the appropriate displacement perform the appropriate displacement
addressing with respect to the stack pointer (addressing with respect to the stack pointer (spsp))
registerregister

•• Parameter passing using Parameter passing using r4r4 and and r5r5

COMP 144
Programming Language Concepts
Lecture 35: In-line Expansion and Local Optimization

April 19, 2002

Felix Hernandez-Campos 7

COMP 144 Programming Language Concepts
Felix Hernandez-Campos

1313

Value NumberingValue Numbering

•• How can we eliminate redundant loads and How can we eliminate redundant loads and
computations?computations?

–– Expression DAGExpression DAG
–– Value numberingValue numbering

•• In value numbering, the compilers assigns the same In value numbering, the compilers assigns the same
name (name (i.e.,i.e., numbernumber) to any two or symbolically) to any two or symbolically
equivalent computations (equivalent computations (i.e.,i.e., valuesvalues))

•• A dictionary is used to keep track of values that have A dictionary is used to keep track of values that have
already been loaded or computedalready been loaded or computed

COMP 144 Programming Language Concepts
Felix Hernandez-Campos

1414

Value NumberingValue Numbering

•• If a value is already in a register, reuse that registerIf a value is already in a register, reuse that register
–– E.g.,E.g., the load instruction can be eliminated vthe load instruction can be eliminated vii := x if the := x if the

value x is already in register value x is already in register vvjj
»» Replace all uses of vReplace all uses of vii by by vvjj

•• Similarly, we can get rid of small constants using Similarly, we can get rid of small constants using
immediate valueimmediate value

COMP 144
Programming Language Concepts
Lecture 35: In-line Expansion and Local Optimization

April 19, 2002

Felix Hernandez-Campos 8

COMP 144 Programming Language Concepts
Felix Hernandez-Campos

1515

Value NumberingValue Numbering

•• In vIn vii :=:= vvjj opop vvkk, we can use constant folding if the , we can use constant folding if the
values invalues in vvjj andand vvkk are known to be constantsare known to be constants

–– Local constant folding and constant propagationLocal constant folding and constant propagation
–– At the same time, strength reduction and useless At the same time, strength reduction and useless

abstraction eliminationabstraction elimination

•• A key that combine the registers and the operator is A key that combine the registers and the operator is
used to keep track of the previous operation in the used to keep track of the previous operation in the
dictionarydictionary

COMP 144 Programming Language Concepts
Felix Hernandez-Campos

1616

Control Flow Graph for Control Flow Graph for
combinationscombinations after after local local
redundancy eliminationredundancy elimination
and and strength reductionstrength reduction

COMP 144
Programming Language Concepts
Lecture 35: In-line Expansion and Local Optimization

April 19, 2002

Felix Hernandez-Campos 9

COMP 144 Programming Language Concepts
Felix Hernandez-Campos

1717

Reading AssignmentReading Assignment

•• Read ScottRead Scott
–– Sect. 8.2.3Sect. 8.2.3
–– Ch. 13.3Ch. 13.3

COMP 144 Programming Language Concepts
Felix Hernandez-Campos

1818

Peephole OptimizationPeephole Optimization
Common TechniquesCommon Techniques

COMP 144
Programming Language Concepts
Lecture 35: In-line Expansion and Local Optimization

April 19, 2002

Felix Hernandez-Campos 10

COMP 144 Programming Language Concepts
Felix Hernandez-Campos

1919

Peephole OptimizationPeephole Optimization
Common TechniquesCommon Techniques

COMP 144 Programming Language Concepts
Felix Hernandez-Campos

2020

Peephole OptimizationPeephole Optimization
Common TechniquesCommon Techniques

COMP 144
Programming Language Concepts
Lecture 35: In-line Expansion and Local Optimization

April 19, 2002

Felix Hernandez-Campos 11

COMP 144 Programming Language Concepts
Felix Hernandez-Campos

2121

Peephole OptimizationPeephole Optimization
Common TechniquesCommon Techniques

