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9 Subroutine In-line Expansion

* Subroutines may be expanded in-line at the point of
the call
— Rather than use a stack-based calling convention

* In-line expansion saves subroutine overheads and
help code improvement

* In-line expansion may be decided by the compiler
based on some optimization heuristics

— E.g. short, non-recursive subroutines are always in-lined in
some languages
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My Subroutine In-line Expansion

* In-line expansion can also be suggested by the
programmer
—E.g C++
inline int max (int a, int b) {
return a > b ? a : b;
}
—E.g. Ada
function max(a, b : integer) return integer is
begin
if a > b then return a; else return b; end if;
end max;
pragma inline (max);
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i Macros and In-line Expansion

» What is the difference between a macro and a
programmer suggested expansion?
— Optional in the second case

— Most importantly, in-line expansion is an implementation
technique with no effect in program semantics

- Eg

#define MAX(a,b) ((a) > (b) 2 (a) : (b))

— No type checking
— What happens after MAX (x++, y++)?
— The larger argument is incremented twice
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T In-line Expansion

* In-line expansion has some disadvantages
— Increase in code size
— It cannot be used with recursive subroutines

* It i1s sometimes useful to expand the first case in a

recursion SU.bI'OlltlnC range_t bucket_contents (bucket *b, domain_t x)

— Optimize the common | 1

case rule it (b->key = %)

return b->val;
elee 1f (b-»next == 0)
/ return ERROR;
Most hash chains else
are only return bucket_contents (b->next, x);

one bucket long }
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? Example
q‘\‘-‘// Control Flow Graph

* Basic blocks are
maximal-length set
of sequential
operations

— Operations on a set
of virtual registers

» Unlimited

» A new one for each
computed value

* Arcs represent

interblock control
flow
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1
=

Redundancy Elimination
%Y, in Basic Blocks

» We will consider the
example on the right

* [t computes the
binomial coefficients

n
m
for 0 < m=n

* [t 1s based on

combinations (int n, int *4) {

int i, ©;

Af0O] = 1;

Aln] = 1;

t = 1;

for (1 =1; 1 <= nf2; i++) {
t = (t % (n+t1-1)) / 1;
A[1] = t©;
Alm-1i] = t©;

T
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\L Naive Control Flow Graph

Uses virtual registers
— A new register for each new value

ra is the return addres, fp is the frame pointer

n, A, I and t perform the appropriate displacement
addressing with respect to the stack pointer (sp)

register

Parameter passing using 4 and 5
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L Value Numbering

* How can we eliminate redundant loads and
computations?
— Expression DAG
— Value numbering

* In value numbering, the compilers assigns the same
name (i.e., number) to any two or symbolically
equivalent computations (i.e., values)

* A dictionary is used to keep track of values that have
already been loaded or computed
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W,

« Ifa value is already in a register, reuse that register

— E.g., the load instruction can be eliminated vi := x if the
value x is already in register vj
» Replace all uses of vi by vj

Value Numbering

 Similarly, we can get rid of small constants using
immediate value
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L Value Numbering

* In vi ;= vj op vk, we can use constant folding if the
values in vj and vk are known to be constants
— Local constant folding and constant propagation

— At the same time, strength reduction and useless
abstraction elimination

* A key that combine the registers and the operator is
used to keep track of the previous operation in the
dictionary
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L Reading Assignment

» Read Scott
— Sect. 8.2.3
—Ch. 133
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» Peephole Optimization
W¥%, Common Techniques

Elimination of redundant loads and stores

:E_Tgrl o r2.=rl+5

r?.._'— : becomes i =r2

4= 3% 3 rd . =r2 = 3
Clonstant folding

r2 =3 x 2 becoimes r2 =0
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> Peephole Optimization
Wy, Common Techniques

Constant propagation

r2 =4 r2:=4

3i=1rl+4
r3i =rl+r2 becomes r3=rl+ 4 and then ' o
r2 =
r2=... r2 =
r2 =4 —
r3:=rl+r2 becomes 3=l 4 and then r3 = #(rl+4)
r3 = #r3
r3 = #r3
=3 rl =13 rl =3
r2 =1l x 2 becomes r2 =3 x 2 and then r2:=6
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» Peephole Optimization
W¥%, Common Techniques

Copy propagation

r2:=rl r2:=rl 3—n4+n

r3:=rl+1r2 becomes r3=rl+1l and tlhen [2 :; '

r2:=5h r2:=5 -
Strength reduction

rl=r2x2 becomes rl=r2 4 r2 or rl=r2<<1

rl=r2/2 becomes r=r2=x1

rl=r2x0 becomes rl:=10
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> Peephole Optimization
Wy, Common Techniques

Elimination of useless instructions
rl1:=rl+ 0
rl:=rl =1
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