COMP 144
Programming Language Concepts
Lecture 35: In-line Expansion and Local Optimization

q\‘; The University of North Carolina at Chapel Hill
i 1557

Spring

COMP 144 Programming Language Concepts

2002

Lecture 35: In-line Expansion and
Local Optimization

Felix Hernandez-Campos
April 19

COMP 144 Programming Language Concepts
Felix Hernandez-Campos

Character strearn

q\‘:' P h ases Token stream

Parse tree

Absiract syntax tree with
annetations (high-level 1IF}

Control flow graph with
psende-instructions in basic
blocks {medium-level IF)

Modified control flow graph

Modified control flow graph

Modified control flow graph

{Almost) assembly language
{low-level TF)

Modified assembly language

Maodified assembly language

Modified assemmbly language

Final assembly language

* (Smrmer (lexical analysis))
—

\M"'* Parser (syntax analysis))
—(

‘-“\‘ (Semantic analysis J
/ Front end
Back end
\ Intermediate 1
/ code generation
\ (Local redundancy J .
PR Machine-
*_,.’—" elimination in neent
‘\\""‘m Global redundancy
‘____--" eliminarion
\-‘“‘" (Loop improvement)
/ =)
\ M
— (Target code generation)
‘-“\—; Preliminary
"___,_,-— instruction scheduling
. . Machine-
— Register allocation { specific
\\‘ Final instruction schcduling)
< .
Peephole optimization)
—(

_J

Felix Hernandez-Campos

April 19, 2002

COMP 144 April 19, 2002

Programming Language Concepts
Lecture 35: In-line Expansion and Local Optimization

9 Subroutine In-line Expansion

* Subroutines may be expanded in-line at the point of
the call
— Rather than use a stack-based calling convention

* In-line expansion saves subroutine overheads and
help code improvement

* In-line expansion may be decided by the compiler
based on some optimization heuristics

— E.g. short, non-recursive subroutines are always in-lined in
some languages

COMP 144 Programming Language Concepts
Felix Hernandez-Campos

My Subroutine In-line Expansion

* In-line expansion can also be suggested by the
programmer
—E.g C++
inline int max (int a, int b) {
return a > b ? a : b;
}
—E.g. Ada
function max(a, b : integer) return integer is
begin
if a > b then return a; else return b; end if;
end max;
pragma inline (max);

COMP 144 Programming Language Concepts
Felix Hernandez-Campos

Felix Hernandez-Campos

COMP 144 April 19, 2002
Programming Language Concepts
Lecture 35: In-line Expansion and Local Optimization

i Macros and In-line Expansion

» What is the difference between a macro and a
programmer suggested expansion?
— Optional in the second case

— Most importantly, in-line expansion is an implementation
technique with no effect in program semantics

- Eg

#define MAX(a,b) ((a) > (b) 2 (a) : (b))

— No type checking
— What happens after MAX (x++, y++)?
— The larger argument is incremented twice

COMP 144 Programming Language Concepts
Felix Hernandez-Campos

T In-line Expansion

* In-line expansion has some disadvantages
— Increase in code size
— It cannot be used with recursive subroutines

* It i1s sometimes useful to expand the first case in a

recursion SU.bI'OlltlnC range_t bucket_contents (bucket *b, domain_t x)

— Optimize the common | 1

case rule it (b->key = %)

return b->val;
elee 1f (b-»next == 0)
/ return ERROR;
Most hash chains else
are only return bucket_contents (b->next, x);

one bucket long }

COMP 144 Programming Language Concepts
Felix Hernandez-Campos

Felix Hernandez-Campos 3

COMP 144
Programming Language Concepts
Lecture 35: In-line Expansion and Local Optimization

ey Phases

Character strearn

Token stream

Abstract syntax tree with
annetations (high-level 1)

Contrel flow graph with
psendo-instructions in basic
blocks {(medinm-level IF)

Modified control flow graph

Modified control flow graph

Maodified control flow graph

Modified assembly language

Maodified assembly language

Final assembly language

\\'* (Scarmer (lexical analysis})
—

-‘\‘-* Parser (syntax analysis) j
—(

Parse tree _\‘
(Semantic analysis J
/ Front end
\ —| Back end
Intermediate
/ code generation
\ Local redundancy)
— C elimination J maCh“t}lf‘l—ellt
\"-; Global redundancy
— elimination
\\\"' (Loop improvement)
/ -/
\ n
(Almost) assembly language — (Target code generation)
low-1 11
(low-level IFy \\"‘“"--; Preliminary)
Modified as bly language — instruction scheduling
. . Machine-
< Register allocation ¢ specific
Final instruction schedulingj
—C
\“ Peephole optimization)
4—-"".‘ (_J

? Example
q‘\‘-‘// Control Flow Graph

* Basic blocks are
maximal-length set
of sequential
operations

— Operations on a set
of virtual registers

» Unlimited

» A new one for each
computed value

* Arcs represent

interblock control
flow

COMP 144 1
Fe

al:= &input
call readint
[IEE

al - &input
call readint
Jo- v

vl
W2 =]

V3 1= Wl e V2
test w3

= al = &output
W13 =i

a2 = w13
call waiteint
al = &output
call writelin

vd -
vh 1=]
WG = VA = v End
test e

V0 -
VT =i
V12 - i — vl
jo- w1z

Felix Hernandez-Campos

April 19, 2002

COMP 144

Programming Language Concepts
Lecture 35: In-line Expansion and Local Optimization

1
=

Redundancy Elimination
%Y, in Basic Blocks

» We will consider the
example on the right

* [t computes the
binomial coefficients

n
m
for 0 < m=n

* [t 1s based on

combinations (int n, int *4) {

int i, ©;

Af0O] = 1;

Aln] = 1;

t = 1;

for (1 =1; 1 <= nf2; i++) {
t = (t % (n+t1-1)) / 1;
A[1] = t©;
Alm-1i] = t©;

T

m n—m COMP 144 Programming Language Concepts

Felix Hernandez-Campos

Syntax Tree for the

Block 1

Block 3

it VAN /=\ T
SN Dot i
AN

t/\ AT 4 A
+/\i N

- 1 _J

Block 2

COMP 144 Programming Language Concepts
Felix Hernandez-Campos

Felix Hernandez-Campos

April 19, 2002

COMP 144

Programming Language Concepts

Lecture 35: In-line Expansion and Local Optimization

Block =:
w13 = t
- R =S =rmrn
Naive Control Flow Graph ISy
Rl =1 = w1l 4 w1l 5
- - w1 T =i
for the combinations vis = vis— iz
w19 = w3 w2
a R] ES
subroutine Y T e div wzo
Tt = w1
N AN
=S =i
e 1= <}
R = = = W3 e w2l
NN = W W
Elock 1: =T o=t
2R = =p — 8 DS I — w2T
wl = rd ——n S = A
mor= wl W=D =
e = r5 —_— O i—
PN W) Ry | = WS — SO
WS = A
WS D= AT = w31 W w32
Wt 1— 1 T = Wl 4 wI3S5S
= r= e wAS =t
s t—= M S L — w3 E
WS = RS = i
wF o= < WA = 1
Wi 1= WS 2w WS L= WIS - WS T
WE t= WS e wnES]
wlo o= 1 gcto Block =
e = w1 O
w11 =1 T
t = w11
w2 =1 B loc b &
o= w1= fvic =l
cobs Block = —_— O e
el t= 2
w2 = w1
Block «: WL = W3S = w2
=P l= S 4 S if vz goto Black =
aoto =ra - sles goto Block 4

\L Naive Control Flow Graph

Uses virtual registers
— A new register for each new value

ra is the return addres, fp is the frame pointer

n, A, I and t perform the appropriate displacement
addressing with respect to the stack pointer (sp)

register

Parameter passing using 4 and 5

COMP 144 Programming Language Concepts
Felix Hernandez-Campos

Felix Hernandez-Campos

April 19, 2002

COMP 144 April 19, 2002
Programming Language Concepts
Lecture 35: In-line Expansion and Local Optimization

L Value Numbering

* How can we eliminate redundant loads and
computations?
— Expression DAG
— Value numbering

* In value numbering, the compilers assigns the same
name (i.e., number) to any two or symbolically
equivalent computations (i.e., values)

* A dictionary is used to keep track of values that have
already been loaded or computed

COMP 144 Programming Language Concepts
Felix Hernandez-Campos

4

W,

« Ifa value is already in a register, reuse that register

— E.g., the load instruction can be eliminated vi := x if the
value x is already in register vj
» Replace all uses of vi by vj

Value Numbering

 Similarly, we can get rid of small constants using
immediate value

COMP 144 Programming Language Concepts
Felix Hernandez-Campos

Felix Hernandez-Campos 7

COMP 144 April 19, 2002
Programming Language Concepts
Lecture 35: In-line Expansion and Local Optimization

L Value Numbering

* In vi ;= vj op vk, we can use constant folding if the
values in vj and vk are known to be constants
— Local constant folding and constant propagation

— At the same time, strength reduction and useless
abstraction elimination

* A key that combine the registers and the operator is
used to keep track of the previous operation in the
dictionary

COMP 144 Programming Language Concepts
Felix Hernandez-Campos

Block 2
w13 =1
Wl e
Control Flow Graph for e w14 e 1
combinations after /ocal viT =l
. . . WlE =w1E —wlT
redundancy elimination V18 = w13 x V18
. w21 = w19 div w17
and strength reduction vaz - A
w25 = w1T =< 2
WEEG lm WEP 4 W25
26 = w21
Block 1 w31 = w14 — w17
2P = sp— 8 w33 = w31 =< 2
vl =4 ——n w3 o= w22 + w33
LU w34 = w21
w2 = rS ——A w3AB = w17 + 1
B w2 t=w21
w2 =1 . =]
vB =wl =<2 goto Block 3
v = w2 4+ wB Y
- ="
t:=1 h 4
iz=1 Block 5°
goto Block 3 WD e |
wad O =N
w42 = w40 == 1
Block - vadE = w39 = wa2
=20 - sp s 8 if wa3 gote Block 2
goto =ra, elsa goto Elock 4

Felix Hernandez-Campos

COMP 144 April 19, 2002
Programming Language Concepts
Lecture 35: In-line Expansion and Local Optimization

L Reading Assignment

» Read Scott
— Sect. 8.2.3
—Ch. 133

COMP 144 Programming Language Concepts
Felix Hernandez-Campos

» Peephole Optimization
W¥%, Common Techniques

Elimination of redundant loads and stores

:E_Tgrl o r2.=rl+5

r?.._'— : becomes i =r2

4= 3% 3 rd . =r2 = 3
Clonstant folding

r2 =3 x 2 becoimes r2 =0

COMP 144 Programming Language Concepts
Felix Hernandez-Campos

Felix Hernandez-Campos 9

COMP 144 April 19, 2002
Programming Language Concepts
Lecture 35: In-line Expansion and Local Optimization

> Peephole Optimization
Wy, Common Techniques

Constant propagation

r2 =4 r2:=4

3i=1rl+4
r3i =rl+r2 becomes r3=rl+ 4 and then ' o
r2 =
r2=... r2 =
r2 =4 —
r3:=rl+r2 becomes 3=l 4 and then r3 = #(rl+4)
r3 = #r3
r3 = #r3
=3 rl =13 rl =3
r2 =1l x 2 becomes r2 =3 x 2 and then r2:=6

COMP 144 Programming Language Concepts
Felix Hernandez-Campos

» Peephole Optimization
W¥%, Common Techniques

Copy propagation

r2:=rl r2:=rl 3—n4+n

r3:=rl+1r2 becomes r3=rl+1l and tlhen [2 :; '

r2:=5h r2:=5 -
Strength reduction

rl=r2x2 becomes rl=r2 4 r2 or rl=r2<<1

rl=r2/2 becomes r=r2=x1

rl=r2x0 becomes rl:=10

COMP 144 Programming Language Concepts
Felix Hernandez-Campos
20

Felix Hernandez-Campos 10

COMP 144 April 19, 2002
Programming Language Concepts
Lecture 35: In-line Expansion and Local Optimization

> Peephole Optimization
Wy, Common Techniques

Elimination of useless instructions
rl1:=rl+ 0
rl:=rl =1

COMP 144 Programming Language Concepts
Felix Hernandez-Campos
21

Felix Hernandez-Campos 11

