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Evaluation of deep le
arning for detecting intraosseous jaw
lesions in cone beam computed tomography volumes

Yiing-Shiuan Huang, DDS, MS,a Pavel Iakubovskii, MS,b Li Zhen Lim, BDS, MS,a,c

Andr�e Mol, DDS, MS, PhD,a and Donald A. Tyndall, DDS, MSPH, PhD, FICDa
Objective. The study aim was to develop and assess the performance of a deep learning (DL) algorithm in the detection of radiolu-

cent intraosseous jaw lesions in cone beam computed tomography (CBCT) volumes.

Study Design. A total of 290 CBCT volumes from more than 12 different scanners were acquired. Fields of view ranged from

6 £ 6 £ 6 cm to 18 £ 18 £ 16 cm. CBCT volumes contained either zero or at least one biopsy-confirmed intraosseous lesion. 80

volumes with no intraosseous lesions were included as controls and were not annotated. 210 volumes with intraosseous lesions

were manually annotated using ITK-Snap 3.8.0. 150 volumes (10 control, 140 positive) were presented to the DL software for

training. Validation was performed using 60 volumes (30 control, 30 positive). Testing was performed using the remaining 80 vol-

umes (40 control, 40 positive).

Results. The DL algorithm obtained an adjusted sensitivity by case, specificity by case, positive predictive value by case, and neg-

ative predictive value by case of 0.975, 0.825, 0.848, and 0.971, respectively.

Conclusions. A DL algorithm showed moderate success at lesion detection in their correct locations, as well as recognition of

lesion shape and extent. This study demonstrated the potential of DL methods for intraosseous lesion detection in CBCT volumes.

(Oral Surg Oral Med Oral Pathol Oral Radiol 2024;138:173�183)
Artificial intelligence (AI) is defined as the theory

and development of computer programs capable of per-

forming complex tasks traditionally accomplished

using human intelligence.1 Although first introduced in

the 1960s, early computer vision tasks were limited by

computing power and the amount of data available

until the development of deep learning and artificial

neural networks in the 1980s. Deep learning (DL) is a

branch of AI that uses multiple interconnected and lay-

ered networks to learn from data.2 Since then, AI has

shown promising results in the medical field in serving

as an aid for diagnosis and treatment decision-making

for physicians.

In dentistry, AI algorithms have focused on diagnos-

tic tasks, including anatomic landmark localization,3

automatic tooth identification,4 assessment of root mor-

phology,5 temporomandibular joint assessment,6 and

detection of diseases such as dental caries,7 periapical

lesions,8 periodontal bone loss,9,10 and vertical root

fractures.11 Several studies have investigated the use of

various AI methods to classify and diagnose maxillofa-

cial cysts and tumors on radiographic images for surgi-

cal treatment planning.12,13 At this time, such studies
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have focused on a narrow scope of diseases, namely

cystic and periapical lesions.14

Furthermore, most of these studies investigate algo-

rithms developed from 2-dimensional imaging modali-

ties—intraoral and panoramic radiography. While 2D

imaging provides useful information, image distortion

and superimposition of anatomic structures may impact

the diagnostic accuracy of the AI models. In contrast,

cone beam computed tomography (CBCT) allows for

visualization of osseous structures and pathoses in high

resolution and in 3 dimensions. Therefore, the applica-

tion of AI to 3D imaging in dentistry may overcome

limitations of 2D image-based models.

Literature suggests that CBCT-trained models for

cyst and tumor classification and segmentation are

early in development. Yilmaz et al15 used a support

vector machine to classify 50 CBCT image datasets as

either odontogenic keratocysts or periapical cysts. Lee

et al16 found that a deep convolutional neural network

(CNN) could be effectively used to distinguish between

various odontogenic cysts and showed better results

with CBCT axial slices than with panoramic radio-

graphs. Chai et al17 developed a CNN to automatically

classify lesions as either ameloblastoma or OKC using

CBCT data. While these studies have shown moderate
Statement of Clinical Relevance

The development of an automatic lesion detection

and segmentation model may eventually improve

dental practitioners’ ability to identify potentially

clinically significant findings in cone beam com-

puted tomography volumes requiring further fol-

low-up or referral for management.
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to excellent results, most use small training datasets with

a particular set of conditions or images from a single insti-

tution, therefore limiting the generalizability. In addition,

all of these models still require that the initial step of

lesion detection be performed manually by a clinician,12

and thus are dependent upon the clinician’s ability to rec-

ognize and identify areas of pathosis. Currently, 2 studies

have demonstrated excellent results using a deep CNN to

automatically segment and detect periapical pathosis in

CBCT volumes, detecting approximately 93% of periapi-

cal lesions.18,19 These studies illustrated that AI methods

can potentially be developed for lesion detection in

CBCT volumes.

By providing an assessment purely based on data

analysis, AI has been suggested to serve as a “second

opinion” that is both objective and reliable, allowing

healthcare professionals to form more accurate diagno-

ses and make appropriate referrals.20 Although deep

learning diagnostic software may benefit all dental

practitioners, its potential applications to CBCT imag-

ing may be of greater use to clinicians not specialized

in radiology. CBCT imaging in dentistry has signifi-

cantly increased in recent years, with an estimated

5.2 million volumes taken annually as of 2014-15.21

However, CBCT interpretation requires more time and

familiarity with navigating 3D anatomy as compared

to 2-dimensional imaging. General practitioners are

responsible for all information within an acquired

image22 but may have less experience in identifying

lesions on CBCT and may take longer to review entire

CBCT volumes compared to radiology specialists.

Therefore, by serving as an adjunctive diagnostic tool,

AI software has the potential to improve efficiency and

reduce the workload of general dentists by identifying

potentially significant lesions.

To our knowledge, no other published studies have

investigated the performance of deep learning algo-

rithms for intraosseous lesion detection and segmenta-

tion in CBCT volumes. Therefore, the aim of this study

was to develop and assess the performance of a deep

learning algorithm in the detection and segmentation

of various radiolucent jaw lesions in CBCT volumes.

MATERIALS ANDMETHODS
CBCT dataset selection
Institutional review board approval and waivers of

informed consent for research were provided by the Uni-

versity of North Carolina at Chapel Hill (#21-0534).

CBCT volumes were selected retrospectively from the

UNC-CH Adams School of Dentistry (UNC ASoD) and

the Peking University School and Hospital of Stomatol-

ogy. Volumes were acquired with 16 different CBCT

imaging models and included fields of view (FOV) rang-

ing from 6 £ 6 £ 6 cm to 18 £ 18 £ 16 cm. The scan-

ners included the Galileos (Sirona Dental Systems),
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Orthophos XG or SL (Dentsply Sirona), CS 9000 or CS

9300 (Carestream Dental Inc.), NewTom3G or 5G or

VGi MK4 (NewTom Inc.), Scanora 3D (Soredex Co.),

Promax 3D (Planmeca), i-CAT 17-19 or 17-19DX (Imag-

ing Sciences International LLC), 3D Accuitomo 170 (J

Morita Corp), and DCT PRO (Vatech Co., Ltd.).

Inclusion criteria for lesion-positive volumes. (i)

Patients with radiolucent intraosseous jaw lesions in

either the maxilla or mandible, including recurrent or

multiple lesions and (ii) lesions with a definitive histo-

pathologic diagnosis.

Exclusion criteria for lesion-positive volumes: (i)

CBCT volumes of poor diagnostic quality or that did

not include the entire intraosseous lesion, (ii) lesions

with inconclusive histopathologic results, (iii) lesions

of systemic/metabolic or developmental nature, and

(iv) lesions with poorly defined borders.

Inclusion criteria for control volumes: Absence of

intraosseous lesions as verified by a board-certified

oral and maxillofacial radiologist (OMR) with over

40 years of experience.

Exclusion criteria for control volumes: (i) CBCT

volumes of poor diagnostic quality due to artifacts, (ii)

apical rarefying lesions of odontogenic origin, (iii) par-

anasal sinus inflammation with > 10 mm thickness,

and (iv) patients with generalized, systemic/metabolic,

or developmental conditions.

The final dataset consisted of 290 volumes. The

dataset was divided into a training set (n = 150), valida-

tion set (n = 60), and testing set (n = 80). Together, the

training and validation sets consisted of an equal distri-

bution of positive volumes from the UNC ASoD and

Peking University. The validation set consisted of 30

lesion-positive and 30 control volumes. The testing set

consisted of 40 lesion-positive and 40 control volumes.

Of the lesion-positive test volumes, 20 volumes were

from UNC and 20 volumes were from Peking Univer-

sity. Tables I and II show the distribution of lesions

and CBCT volume sources in the complete dataset.

CBCT volume preparation
All CBCT volumes were anonymized and exported in a

multifile DICOM (Digital Imaging and Communica-

tions in Medicine) format.

The following characteristics were recorded for each

control volume: CBCT unit, FOV, and reason for scan.

The following characteristics were recorded for each

lesion-positive volume: CBCT unit, FOV, develop-

mental stage of dentition (mixed or permanent denti-

tion), and number of radiolucent intraosseous lesions

present. For each lesion, the location (maxilla or man-

dible, anterior or posterior), internal architecture (uni-

locular or multilocular), disease category (cyst, benign

tumor, lesion of bone, inflammation, malignancy) and

diagnosis were noted. One malignant lesion
arolina at Chapel Hill from ClinicalKey.com by Elsevier on 
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Table I. Distribution and allocation of CBCT dataset

Total volumes (n = 290)

Training Validation Testing

Pilot (n = 60) Positive volumes Positive volumes N/A

UNC-CH (n = 20) UNC-CH (n = 5)

Peking (n = 20) Peking (n = 5)

Control volumes

UNC-CH (n = 10)

Extended (n = 290) Positive volumes Positive volumes Positive volumes

UNC-CH (n = 68) UNC-CH (n = 17) UNC-CH (n = 20)

Peking (n = 72) Peking (n = 13) Peking (n = 20)

Control volumes Control volumes Control volumes

UNC-CH (n = 10) UNC-CH (n = 30) UNC-CH (n = 40)
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(fibrosarcoma) with well-defined margins was

included. The following characteristics were addition-

ally recorded for the lesions in the test set volumes:

lesion shape (round or non-round), border cortication

(completely, partially or noncorticated), border expan-

sion (expansion or no expansion), association with

teeth (crown, root or nontooth associated), and the wid-

est approximate dimension of the lesion. The widest

approximate dimension of the lesions was reported to

the closest millimeter. Supplemental Table SI shows

the distribution of characteristics for the complete data-

set and the training, validation and testing subsets.

Lesion-positive volumes were manually annotated

on multiple slices in the axial, coronal and sagittal

planes using ITK-Snap 3.8.023 (Figure 1). The brush

annotation tool allowed for approximation of the lesion

borders. Therefore, lesion borders and a narrow margin

of the surrounding normal tissue were included within

the region of annotation. Annotations were made by an
Table II. Distribution of intraosseous lesions

210 positive volumes, 227 lesions UNC-CH Peking

Cyst Dentigerous cyst 20 27

Radicular or residual cyst 12 27

Odontogenic keratocyst 26 22

Nasopalatine duct cyst 10 10

Calcifying odontogenic

cyst

2 0

Buccal bifurcation cyst 2 0

Surgical ciliated cyst 1 0

Lateral periodontal cyst

or botryoid cyst

7 0

Benign tumors Ameloblastoma 11 13

Myxoma 4 1

Adenomatoid odonto-

genic tumor

2 0

Central odontogenic

fibroma

2 0

Lesions of bone Simple bone cavity 7 2

Aneurysmal bone cyst 1 0

Central giant cell lesion 1 0

Inflammation Periapical granuloma 11 5

Malignancy Fibrosarcoma 1 0

Downloaded for Anonymous User (n/a) at The University of North C
January 06, 2025. For personal use only. No other uses without perm
OMR resident (Y.S.H.) and a board-certified OMR

with 5 years of experience (L.Z.L.) and were exported

as NRRD (Nearly Raw Raster Data) files. All annota-

tions were reviewed by the OMR resident for consis-

tency prior to presentation to the DL algorithm.

Control volumes were not annotated.
Pilot training and validation
A pilot trial was first conducted using a subset of 60

volumes (Table I) to develop a DL algorithm and ver-

ify methodology. A U-Net-like segmentation model

based on a ResNet18 encoder initialized with Image-

Net weights was used. 40 positive volumes with an

equal distribution between the two institutional sources

were used to develop and train the model using super-

vised and transfer learning. Training was performed

with axial slices from the positive volumes, where pos-

itive slices (containing lesion) and negative slices

(without lesion) were sampled with a 1:1 ratio. The

pilot model was validated using 20 volumes (10 posi-

tive, 10 control). Model predictions were visually com-

pared with the lesion annotations. The pilot model

predicted lesions in the correct locations in 8 of the 10

positive volumes. All predictions showed a reduced

size, especially in the superoinferior dimension, in

comparison to the corresponding annotation size.

False-positive predictions were present in all control

and in 8 of the 10 positive volumes and presented as a

linear, flat shape, consistent with training based on

axial slices only. The pilot model demonstrated a pre-

liminary ability to recognize patterns and detect intra-

osseous lesions in the correct locations and suggested

that further training would improve the quality of

lesion detection. As the pilot model was trained only

on axial slices, the pilot trial also suggested the possi-

bility of improved algorithm performance with training

based on 3D (i.e., volumetric) data instead of 2D

(i.e., axial slices) data alone. It was also hypothesized

that training using 3D data could help to eliminate the

characteristic flat-shaped false-positive predictions

observed in the pilot trial.
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Fig. 1. Completed annotation on a positive CBCT volume using ITK-Snap 3.8.0.
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Extended algorithm training and validation
All volumes were resized to a spatial resolution of

0.5 mm/pixel in all dimensions. Because some CBCT vol-

umes were not oriented in a standard way (i.e., axial and

sagittal views were interchanged or axial view displayed

the front of patient facing down instead of up), all volumes

adjusted to the same orientation. Due to the variety of

CBCT scanners included in the dataset, a form of normali-

zation was necessary to adjust for varying brightness and

contrast across different CBCT scanners. In this study, nor-

malization was performed during the training process via

rescale intercept data augmentation to increase model tol-

erance to different pixel values. For rescale intercept data

augmentation, a random number from �1000 to 1000 was

added to slice values. Rescale intercept data augmentation

was not performed during either validation or testing.

Based on the pilot trial findings, two DL models were

trained and validated to assess and compare performance.

The following definitions are used to describe the data

sampled from each CBCT volume in the training process:
1) Positive: a slice or volume containing a manual

annotation mask.

2) Negative: a slice or volume without any manual

annotation mask.
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In the first model (2D), training was performed using

random positive and negative axial slices within each

positive case. Positive and negative slices were sam-

pled with a 1:1 proportion. For each slice, the 2 neigh-

boring slices were also included. Validation was

performed by passing all axial slices of each validation

volume sequentially through the neural network and

stacked to 3D tensor.

In the second model (3D), training was performed

using random positive and negative volumetric

crops with a size of 64 £ 64 £ 64. Positive and

negative crops were sampled with a 5:1 proportion.

Validation was performed by passing the full CBCT

volume as a 3-dimensional image through the

model.
Algorithm testing
The 3D model was selected for testing because it

showed better performance than the 2D model dur-

ing validation. This model used a 3D U-net archi-

tecture with a pretrained ResNet18 encoder. Testing

was performed using 80 volumes (40 positive, 40

control). The full distribution of the test set charac-

teristics is shown in Supplemental Tables SI and

SII.
arolina at Chapel Hill from ClinicalKey.com by Elsevier on 
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Performance metrics
Sensitivity, specificity, positive predictive value (PPV),

negative predictive value (NPV), and F1 score were

used to assess the performance of the DL model. F1

scorei is calculated as the harmonic mean of sensitivity

and PPV and provides an overall measure of model

performance while minimizing errors from both false-

positive and false-negative predictions. Therefore,

when either sensitivity or PPV is low, the F1 score will

be low even if the other metric is high. Practically

speaking, lesion detection software with a high F1

score will not miss many lesions and will not result in

many false positives, thereby reducing the amount of

time and effort required for clinician review of the AI

results.

Intersection over Union (IoU)ii is a measure of the

amount of overlap between two masks and was calcu-

lated to determine the voxel-matching accuracy of the

prediction masks. IoU values were calculated using the

volumetric sizes (number of voxels) of the 3-dimen-

sional manual segmentation and model prediction

masks. For validation, predictions were considered as

true positive (TP) when the manual segmentation mask

and the model prediction had an IoU > 0.5. All predic-

tions in the validation phase had a volumetric size

greater than 200 voxels. Therefore, a minimum volume

threshold of 200 voxels was selected, such that all pre-

dicted regions with a volumetric size less than 200 vox-

els were not visualized during the testing phase.

During testing, predictions were considered TP for

sensitivity and specificity calculations based on three

IoU minimum thresholds: 0.5, 0.3, and 0.1. In other

words, at an IoU threshold of 0.5, predictions are con-

sidered TP only if the IoU of the prediction volume

and manual segmentation is greater than 0.5. There-

fore, at lower IoU thresholds, a greater number of pre-

dictions are considered as “true positive” detections.

Metrics were assessed both by lesion (based on the

total number of lesions tested) and by volume (calcu-

lated per test CBCT volume and averaged across all

test volumes) where appropriate. For instance, any nor-

mal location where no prediction was made should be

considered TN and cannot be discretely counted. As

such, there are an infinite number of locations that

could be considered TN, so specificity cannot be mean-

ingfully calculated on a by-lesion basis. Sensitivity by

lesion was also calculated based on the following
iF1 score ranges between 0 and 1.0, where 1.0 signifies perfect

sensitivity and positive predictive values. A F1 score of 0 indi-

cates that either sensitivity or positive predictive value is zero.

iiIntersection over Union ranges between 0 and 1.0, where 1.0 signi-

fies perfect overlap of two masks. An IoU of 0 indicates that there is

no overlap between the manual segmentation and predicted segmen-

tation masks.
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subgroups: volume source, lesion location in the max-

illa or mandible, and in the anterior or posterior

regions.

Sensitivity ¼ TP
TP þ FN

PPV ¼ TP
TP þ FP

Specificity ¼ TN
TN þ FP

NPV ¼ TN
TN þ FN

F1 score ¼ 2 � TP
2 � TP þ FP þ FN

IoU ¼

�
�
�
�
Annotation\ Prediction

�
�
�
�

�
�
�
�
Annotation[ Prediction

�
�
�
�

(TP, true positive; TN, true negative; FP, false positive;

FN, false negative.)

RESULTS
Validation
In validation, the 3D model achieved a lesion sensitiv-

ity of 0.907, PPV of 0.625 and F1 score of 0.738. By

volume, the 3D model achieved a sensitivity of 0.936

and specificity of 0.768. Table III shows the perfor-

mance metrics of the 3D model by lesion and by vol-

ume after validation.

Testing
Figure 2 shows two examples of model prediction in

comparison to the manual annotation, visualized on a

single axial slice. Model performance analysis was per-

formed using Python. Use of a minimum IoU threshold

to define TP predictions resulted in potential underesti-

mation of PPV because some model predictions were

doubly counted as both FN and FP in the calculation.

Therefore, adjusted by-volume metrics were manually

calculated where a positive volume was considered

true positive if at least one lesion was correctly
Table III. Performance metrics of 3D model validation

30 controls, 30 positive volumes, 31 lesions

Sensitivity Specificity PPV F1

By lesion 0.907 0.625 0.738

By case 0.936 0.768

PPV, positive predictive value.
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Fig. 2. Visualization of model prediction compared to manual annotation on a single axial slice. A) Unicystic ameloblastoma,

IoU = 0.91. B) Inflamed dentigerous cyst, IoU = 0.746.
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detected and false negative if no lesions were detected

or no lesions met the IoU threshold. Table IV shows

the adjusted by-case metrics. Nonadjusted metrics can

be found in Supplemental Table SIII.

At an IoU minimum threshold of 0.1, model testing

achieved an adjusted by-volume sensitivity and speci-

ficity of 0.975 and 0.825, respectively. Sensitivity by

lesion and by volume showed minimal increases at

lower IoU thresholds in both nonadjusted and adjusted

calculations.

Table V shows the subgroup analysis by lesion loca-

tion in the jaws, anteroposterior position and volume

source. Sensitivity by lesion based on lesion shape and

margin characteristics were not included due to the

small and unbalanced sample sizes of each subgroup.

Statistical differences between subgroups were not

assessed due to the small sample sizes. The model

showed a higher by-lesion sensitivity for maxillary

lesions in comparison to mandibular lesions. The

model also showed increased sensitivity for lesions
Table IV. Adjusted lesion detection performance metrics

40 controls, 40 positive volumes, 47 lesions

>0.5

Positive Control

At least 1 lesion is correctly detected 36 7

No lesions are detected OR

No lesions meet the IoU threshold

4 33

Sensitivity by case 0.9

Specificity by case 0.825

PPV by case 0.837

NPV by case 0.892

TP, true positive; IoU, Intersection over Union; PPV, positive predictive val
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located anterior to the canine compared to those

located in posterior regions. Sensitivity was higher for

the lesions in volumes from Peking University than

those collected from the UNC database.

DISCUSSION
The findings demonstrated an overall successful devel-

opment of a DL algorithm for automatic detection and

segmentation of intraosseous radiolucent lesions in

CBCT volumes with a sensitivity ranging between 0.8

and 0.9. On the other hand, nonadjusted PPV values

ranged between 0.5 and 0.6 due to the relatively high

number of false-positive predictions. However, these

PPV values likely underestimate model performance

due to three reasons. First, several volumes demon-

strated multiple false-positive predictions, meaning

that false positives were highly prevalent in only a few

cases rather than throughout the entire test set. Second,

each continuous collection of voxels was considered a

separate prediction, even if the predictions were
A case is considered TP if IoU:

>0.3 >0.1

Positive Control Positive Control

37 7 39 7

3 33 1 33

0.925 0.975

0.825 0.825

0.841 0.848

0.917 0.971

ue; NPV, negative predictive value.
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Table V. Sensitivity by lesion based on subgroup

A predicted lesion is considered TP if IoU:

>0.5 >0.3 >0.1

Maxilla (n = 22) 0.818 0.864 0.909

Mandible (n = 25) 0.76 0.76 0.8

Anterior (n = 21) 0.857 0.857 0.905

Posterior (n = 26) 0.731 0.769 0.808

UNC (n = 27) 0.704 0.741 0.778

Peking (n = 20) 0.9 0.9 0.95

TP, true positive; IoU, Intersection over Union.
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visually located in the same area. For instance, in one

case, 3 false-positive predictions were made but all 3

were immediately surrounding an impacted tooth and

counted separately even though collectively they indi-

cated the same area of interest. In another case, a false-

positive prediction was caused by a small number of

voxels disconnected from the true positive prediction.

Third, the use of an IoU threshold to define TP detec-

tions meant that some model predictions were doubly

counted as both FN and FP in the calculation of nonad-

justed metrics. Although model predictions that did not

meet the specified IoU thresholds were considered FN,

these areas are still highlighted by the model and would

be visualized by a user (Figure 3A). In other words, the

number of FP used to calculate both specificity by case

and PPV was misleadingly high. Therefore, the nonad-

justed PPV by lesion values likely underestimated the

ability of the model to detect areas that truly represent

intraosseous radiolucent lesions and subsequently pro-

duced F1 scores ranging between 0.6 and 0.7. Although

nonadjusted F1 score values were only fair to moder-

ately good, these values most likely underestimate the

model performance due to the low nonadjusted PPV

values and double counting of detections as FN and

FP. This is supported by the increase in PPV by case in

the adjusted calculations.

Performance metrics showed minimal improvement

as the IoU threshold was lowered from 0.5 to 0.3 and

0.1. It is important to note that using an IoU threshold

to determine which predictions are considered true pos-

itive leads to some nuances in understanding the over-

all performance of the DL algorithm. At an IoU

threshold of 0.5, 10 predictions were labeled as “false

negative.” However, 3 of these predictions were actu-

ally located in the area of the manual annotation and

were considered “false negative” because they did not

meet the IoU criteria for the true positive label

(Figure 3A). Due to the nature of the IoU calculation,

these 3 predictions were either much smaller or

greater in volume when compared to size of the

manual annotation. At the 0.1 IoU threshold, these

3 predictions are labeled as true positive predic-

tions, thereby slightly increasing the by-lesion
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sensitivity. At the 0.1 threshold, there were no pre-

dictions that were considered false negatives due to

the selected threshold.

The minimum IoU thresholds applied in this study

have minimal significance when translated to the clini-

cal setting, where the healthcare professional is respon-

sible for verifying the results produced by AI software

prior to making a clinical decision. Lesion detection

software would present a prediction indicating a region

of interest that requires further review by the clinician

to confirm the presence or absence of a lesion. As such,

it would be unnecessary for the size and shape of the

prediction to exactly correspond with that of the actual

lesion in order to be correctly detected and identified

by a clinician. Given this perspective, there is flexibil-

ity in the degree of IoU required for a prediction to be

considered “true positive,” a lesion that has been cor-

rectly detected and identified in an accurate location. A

lower IoU threshold provides performance metrics that

better describe the algorithm’s ability to purely detect

lesions at the appropriate location while a higher IoU

threshold produces metrics that account for the ability

to predict an accurate lesion size and shape in addition

to location (Figure 3).

In this study, lowering the IoU minimum threshold

from 0.5 to 0.1 affected the classification of only the 3

predictions that were doubly counted as discussed

above, shifting them to TP. This accounted for all pre-

dictions that were made in the correct locations, and at

the IoU threshold of 0.1, all “false positive” detec-

tions truly represented predicted areas that did not

represent an intraosseous lesion. Furthermore,

excluding the 3 predictions whose classification

changed depending on the IoU, all other 37 true

positive predictions had an IoU ranging between

0.543 and 0.91. Of these, 30/37 (81.1%) predictions

had an IoU over 0.7. The minimal improvement in

performance metrics as IoU threshold was adjusted

and overall high IoU values indicates that the DL

algorithm already demonstrates moderate success at

not only lesion localization, but also in recognizing

lesion shape and extent as well.

At all IoU thresholds, the DL algorithm produced

false-positive predictions for the following findings:

areas of mucosal thickening within the maxillary

sinuses, follicular spaces around unerupted or impacted

teeth, areas of sparse trabecular pattern, and soft tissue

calcifications. Most of these false-positive findings

may not be clinically significant and may not require

further management. However, they may be considered

abnormalities or deviations from normal and can be

reported as incidental findings in an interpretation

report. Some systematic reviews have found that inci-

dental findings are found in 77%-92% of CBCT vol-

umes.24 It is suggested that as many as 30% of
arolina at Chapel Hill from ClinicalKey.com by Elsevier on 
ission. Copyright ©2025. Elsevier Inc. All rights reserved.



Fig. 3. Model prediction mask compared to annotation mask. Yellow = annotation. Blue = prediction. A) IoU = 0.253. Although

IoU is relatively low, the prediction is located in the correct location. In the nonadjusted metrics, this prediction was considered

both a FN and FP when the IoU threshold was set to >0.5 and 0.3, but was considered TP when IoU > 0.1. B) IoU = 0.859. IoU

is relatively high and the prediction is both located in the correct location and more closely approximates the shape and size of

the lesion.
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incidental findings are of clinical significance, requir-

ing further follow-up or referral for management.

Therefore, although the current study focused on detec-

tion of intraosseous lesions, it is clinically appropriate

for lesion detection software to identify all possible

areas of concern and not be limited to a particular type

of lesion presentation. Our study shows that the devel-

opment of such DL software is promising with further

training on a dataset containing lesions with a more

diverse set of presentations.
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Two false-positive predictions were located in areas

of normal anatomic structures, specifically the mental

foramen and the nasopalatine canal. Both of these

structures present as well-defined hypodense areas, typ-

ically with a corticated border and therefore may

mimic features of true radiolucent lesions, leading to a

false-positive prediction. The follicular spaces around

unerupted and impacted teeth that were detected as

false positives also present as well-defined, corticated

radiolucent regions. Similarly, bone marrow defects
arolina at Chapel Hill from ClinicalKey.com by Elsevier on 
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are areas of cancellous bone that show a sparse trabecu-

lar pattern and visually appear as moderately well-

defined radiolucent regions. This suggests that the DL

algorithm has been trained to recognize areas of rela-

tive hypodensity to the surrounding regions as abnor-

malities and that training with additional data may help

to further refine performance.

In the current study, almost all false-negative predic-

tions involved lesions with an approximate widest

dimension of 6 mm or less in both validation and test-

ing phases. Furthermore, during validation, all false-

negative predictions consisted of small inflammatory

lesions located in the maxilla. In testing, only 2 of the

7 false-negative predictions were measured greater

than 6 mm wide. These 2 lesions were located near the

maxillary sinus floor without a corticated border and in

the posterior mandible around an impacted tooth. The

training dataset contained 149 total lesions of various

sizes, with the approximate widest dimensions ranging

from 6 to 93 mm. The majority of lesions ranged

between 10 and 30 mm wide. However, only 7/149

(4.7%) lesions measured 10 mm or less in size.

Clinically, small lesions are the most likely to be

missed. Early detection of lesions, especially of

aggressive benign tumors or malignant neoplasms,

can greatly affect treatment outcomes. Further train-

ing with small lesions with a diameter less than

5 mm may help to improve the algorithm’s ability

to detect lesions of all sizes and thereby improve

patient care.

In the literature, few studies have investigated the

use of AI methods in automatic lesion detection and

segmentation on CBCT. One study demonstrated suc-

cessful detection of cystic lesions on CBCT using an

automatic segmentation system based on asymmetry

analysis instead of deep learning methods.25 However,

the symmetry detection system could not handle cysts

and lesions with large asymmetric variations, cysts

with poorly defined boundaries, and cases of bilateral

cystic lesions. In addition, this study focused only on

three types of cystic lesions, thus limiting the general

application of this system to detection of other lesions.

More recently, two studies have shown excellent

results with neural networks in the detection of periapi-

cal pathosis. One detected 92.8% of the periapical

lesions in 109 patients and found no statistically signifi-

cant difference in the size of the segmentation volumes

between the segmentations made by the radiologist and

those predicted by the deep CNN.18 The other study

demonstrated a 93% detection accuracy but included

only 20 CBCT scans with a total of 29 lesions in their

test set.19 Both studies used CBCT volumes acquired

from a single scanner using a single FOV, and there-

fore have limited generalizability. The present study

showed a detection rate of 40/47 (85.1%) lesions using
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volumes of varying FOV from 16 different CBCT

scanners at 2 different institutions.

The current study has several limitations. First, our

dataset consisted of volumes acquired from only two

institutions. Although these volumes were acquired

using at least 12 different CBCT scanner models, the

algorithm demonstrated higher performance metrics

for the Peking volumes as compared to the UNC vol-

umes. The Peking volumes included only four scanners

while the UNC volumes contained a greater variety of

scanners, leading to increased variability in image

quality. This suggests that the algorithm may have lim-

ited generalizability to CBCT volumes acquired using

other scanners at other institutions. However, it is inter-

esting to note that there were three control volumes in

the test set acquired using a CBCT machine (AT Pro-

Vecta) that were not included in the training set. No

false positives were detected in any of these three vol-

umes, which suggests that the model is moderately

generalizable. Testing with more volumes from unfa-

miliar scanners would be necessary to accurately eval-

uate the generalizability of the model.

Second, our dataset consisted almost entirely of

benign and only radiolucent lesions, most of which

were cystic in nature. These lesions are well-defined by

nature and allow for easier segmentation, whereas ill-

defined lesions such as malignancies would be difficult

to annotate with confidence regarding the extent of dis-

ease. Furthermore, there are a greater number of clini-

cally significant diseases that present as radiolucent

lesions in comparison to mixed density or radiopaque

lesions. Our dataset also focused only on lesions of the

maxilla and mandible. However, it is clinically relevant

for a lesion detection software to identify all possibly

significant abnormalities in all anatomic areas included

in the imaging volume, especially those that are aggres-

sive or malignant in behavior as this directly impacts a

patient’s well-being. Clinicians may also be less confi-

dent and experienced in detecting lesions outside of the

maxilla and mandible. A third possible limiting factor

related to our dataset was the inclusion of recurrent

lesions. In cases of recurrence, there is usually a history

of previous surgical intervention which may alter the

appearance of surrounding normal anatomy and there-

fore could have negatively affected model training and

performance. However, as with the volumes containing

small lesions, cases with recurrent lesions accounted

for a small proportion of the dataset and may have had

a minimal effect in our study. Further investigation is

needed to train and develop an algorithm capable of

detecting aggressive diseases and lesions of varying

internal density in the entire oral and maxillofacial

structures.

In addition, the positive volumes were manually

annotated by two individuals with varying levels of
arolina at Chapel Hill from ClinicalKey.com by Elsevier on 
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training, with most of the volumes being annotated by

the OMR resident. Algorithm performance relies on

the quality of input data and requires that the training

data is accurately segmented. The segmentation masks

identifying the size and shape of the lesions can vary

depending on the individual and their level of experi-

ence. Therefore, the use of manual segmentation may

not have provided the most ideal results. However, in

this study, a board-certified OMR annotated 25 of the

170 positive volumes used in training and validation

and 1 of 40 positive volumes used in testing. Because

the vast majority of positive cases were annotated by a

single individual and the same individual reviewed all

annotations for consistency prior to algorithm training,

it is unlikely that manual segmentation had any signifi-

cant impacts on the resulting performance metrics. Fur-

thermore, manual segmentation was highly time-

consuming, requiring 15 minutes to more than 1 hour

to annotate a single CBCT volume. For future studies,

it is recommended to investigate the use of an auto-

mated segmentation method to eliminate these uncer-

tainties and to reduce the time needed to prepare an

adequate dataset.

Finally, this study required both normalization of

brightness and contrast, as well as reorientation of the

CBCT volumes prior to presentation to the deep learn-

ing model. Normalization via rescale intercept aug-

mentation was performed during the training process

only, while all validation and test volumes were pre-

sented to the model at their original brightness and con-

trast levels. Therefore, the results of the deep learning

model represent the clinical setting in which CBCT

volumes are presented to the software without normali-

zation. Because the model was trained using volumes

in the same orientation, the model may be sensitive to

large changes in head position. However, in this study,

reorientation was performed because a few volumes

were oriented inappropriately. Minor head positioning

errors during acquisition of approximately 10-15

degrees were still present within the CBCT volumes

after reorientation and did not affect model perfor-

mance. If DICOM tags for the CBCT volumes are

properly indicated, orientation adjustments can be per-

formed automatically rather than manually by a human

operator.

CONCLUSION
This study demonstrates the successful initial develop-

ment of a DL algorithm in the automatic detection and

segmentation of intraosseous radiolucent lesions of the

jaws. Further training with a more diverse dataset con-

taining small lesions, mixed density and radiopaque

lesions, lesions in areas beyond the maxilla and mandi-

ble and from multiple institutions is needed to improve

performance and generalizability before such
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technology can be applied to clinical practice. In the

future, observer studies investigating how the use of

lesion detection software influences a clinician’s ability

to diagnose diseases with CBCT will help provide

insight into the potential benefits and drawbacks of DL

implementation in practice.
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