
Introduction to React
A workshop for COMP 523

Aaron Smith
Monday, Feb. 10, 2020

What is React?

• React is a JavaScript framework

• Used for front end web development

• Think of jQuery, but more structured

• Created and used by Facebook

• Famous for implementing a virtual dom

Timeline of front-end JavaScript frameworks

jQuery*
(2006)

AngularJS
(2010)

React
(2013)

Vue
(2014)

Angular
(2014)

* jQuery is more often considered a library than a framework

Common tasks in front-end development

Data definition, organization, and storageApp state
Event handlers respond to user actionsUser actions
Design and render HTML templatesTemplates
Resolve URLsRouting
Interact with server(s) through APIs and AJAXData fetching

Fundamentals of React

1. JavaScript and HTML in the same file (JSX)

2. Embrace functional programming

3. Components everywhere

JavaScript and HTML in the same file

Traditional
approach

React
approach

HTML CSS JS JSX CSS or JSS

JSX: the React programming language

const first = "Aaron";
const last = "Smith";

const name = {first} {last};

const listWithTitle = (
<>
<h1>COMP 523</h1>

Dr. David Stotts
{name}

</>

);

const list = (

Dr. David Stotts
{name}

);

“React is just JavaScript”

Functional programming

1. Functions are “first class citizens”

2. Variables are immutable

3. Functions have no side effects

Functional programming

Functions are “first class citizens”

let add = function() {
console.log('Now adding numbers');
const five = 3 + 2;

};

function performTask(task) {
task();
console.log('Task performed!');

}

performTask(add);

function foo() {
return function() {
console.log('What gets printed?');

};
}

foo
foo();
foo()();

Functional programming

Variables are immutable

let a = 4;

a = 2; // Mutates `a`

let b = [1, 2, 3];

b.push(4); // Mutates `b`

let c = [...b, 4]; // Does not mutate `b`

Functional programming

Functions have no side effects

const b = [];

function hasSideEffects() {
b = [0];

}

Components

Components are functions for user interfaces

let y = f(x);
Input x Output number

let y = <FancyDiv value={x} />;
Input x Output HTML

Math function:

Component function:

Anatomy of a React component

export default function MyComponent(props) {
return <div>Hello, world! My name is {props.name}</div>;

}

const html = <MyComponent name="aaron" />;

Inputs are passed through a
single argument called “props”

The function is executed as if
it was an HTML tag

The function
outputs HTML

The component is just
a function

Parameters are passed in
as HTML attributes

Component rendering

• When a component function executes, we say it “renders”

• Assume components may re-render at any time

Our job is to ensure that
every time the component re-renders,

the correct output is produced

“In React, everything is a component”

Todo application
Title

TodoForm

TodoList

Todo

Big idea:
 A digital to-do list

First step:
 mockup / wireframe

Creating a new React app

Creating a new React app is simple!

1. Install Node.js

2. Run: npx create-react-app app-name

3. New app created in folder: ./app-name

Anatomy of a new React app

App is a boilerplate
starter component

public holds the initial html
document and other static assets

package.json configures
npm dependencies

index.js binds
React to the DOM

Component Hierarchy
Title

TodoForm

TodoList

Todo

Title TodoFormTodoList

Todo Todo Todo

App

Special list key property

• Situation: Display a dynamic array of elements

• Must specify a special “key” property for each element

• The key of an item uniquely identifies it

• Used by React internally for render optimization

• Can be any unique value (string or number)

What are hooks?

useState

useEffect

useReducer

useMemo

useRef

useCallback

We will cover
these today

We will not cover
these today

Built-in hooks:Hooks: Special functions that allow
developers to hook into state and
lifecycle of React components.

State: One or more data values
associated with a React component
instance.

Lifecycle: The events associated with a
React component instance (create,
render, destroy, etc).

First React hook: useState

Purpose:

1. Remember values internally when the component re-renders

2. Tell React to re-render the component when the value changes

Syntax:

const [val, setVal] = useState(100);

The current value A setter function to
change the value

The initial
value to use

Predicting component re-rendering

A component will only re-render when…

1. A value inside props changes

2. A useState setter is called

– or –

Second React hook: useEffect

Purpose:

Act as an observer, running code in response to value changes

Syntax:

useEffect(() => {
console.log(`myValue was changed! New value: ${myValue}`);

}, [myValue]);

A list of values such that changes
should trigger this code to run

The code to run when
values change

Building a React project

• When you’re ready to launch your app, run this command:

npm run build

• This bundles your app into CSS/JS/HTML files and puts them in the
/build folder

• These files can be served from an AWS S3 bucket

3rd party components and libraries

• React-Router

• Redux

• Material-UI

• Bootstrap

• Font-Awesome

• SWR

	Introduction to React
	What is React?
	Timeline of front-end JavaScript frameworks
	Common tasks in front-end development
	Fundamentals of React
	JavaScript and HTML in the same file
	JSX: the React programming language
	“React is just JavaScript”
	Functional programming
	Functional programming
	Functional programming
	Functional programming
	Components
	Anatomy of a React component
	Component rendering
	“In React, everything is a component”
	Todo application
	Creating a new React app
	Anatomy of a new React app
	Component Hierarchy
	Special list key property
	What are hooks?
	First React hook: useState
	Predicting component re-rendering
	Second React hook: useEffect
	Building a React project
	3rd party components and libraries

