
An Orthogonal Taxonomy for Hyperlink Anchor
Generation in Video Streams Using OvalTine

Jason McC. Smith, David Stotts, Sang-Uok Kum
Department of Computer Science

University of North Carolina at Chapel Hill
Chapel Hill, NC 27599-3175, USA

Tel: 1-919-962-1833
E-mail: {smithja,stotts,kumsu}@cs.unc.edu

ABSTRACT
As dynamically linked content follows the progression of
statically linked media into the realm of video, new
opportunities for link creation become apparent.  In this
paper we describe a real-time video hypermedia system with
user-definable linkage areas, in a distributed collaborative
environment.  We also investigate the extension of such a
system to automated link creation in video streams.  In the
process, we identify and describe orthogonal issues of
hypervideo anchor creation.  An example system, OvalTine,
has been produced to illustrate several potential uses
through configuration of an extended video conferencing
application on the SGI O2 platform.

KEYWORDS: Hypervideo, collaboration, automated anchor
generation, digital video, streaming video

TRENDS TOWARD DYNAMIC CONTENT
We use the term hypervideo to refer to a displayed video
stream that contains embedded user-clickable anchors.
These anchors are logically attached to objects within the
video environment, independent of location within the field
of view [18].  For instance, a person's face in a video
conferencing system may be designated as a hyperlink.  As
the person moves within the image, the clickable area
which activates that hyperlink will move with the image of
the face, so that the face itself defines the active region.

We do not specify to what the anchor may refer, nor do we
limit the type of objects which may be designated as a link

anchor.   The goal of our work is to explore the creation and
maintenance of hyperlinks in video streams, and to
automate these procedures as much as possible.  Before any
technical discussions, we look at previous work in
hypervideo.

Multimedia has shown a definite trend in computing from
text to static images to video.  On a parallel path,
hyperlinking systems, most notably the World Wide Web,
have evolved from the use of pure text such as in Lynx [10],
to the incorporation of static images with embedded anchors
(image maps), and now to video streams with active regions
[1, 16].

All of these systems, however, are examples of manual
anchor creation on a server only, and are, in addition, pre-
defined for preset text, images, or video.  This severely
restricts the usefulness of linkages in a collaborative
environment.

Every current popular method for adding active regions to
video requires manual selection of video objects, on a frame
by frame basis.  By contrast, an automatable object tracking
system is much more desirable, both for real-time
applications, and for the automated addition of hyperlinks to
the vast amount of archived video currently in existence.

Automation of content in hypertext is a well-researched area
[2, 3, 9]. While much work has been done in the realm of
context-assisted anchor creation in video, particularly in
news coverage videos, these rely on a blend of modal data,
including much which is manually entered by human
operators [5, 14, 22, 23].  Instead, we are more interested in
identifying issues related to nearly context-free object
tracking within image streams.  The image analysis engine
selected for use on the video, or the user manually creating
links, supplies the context.  A facial recognition system
designed to attribute a link to a database record consists of
an entirely different inherent context than an engine which



identifies and tracks types of automobiles on a roadway, but
they both can operate equally well on the same raw video
stream.  This is a complementary concept to content-
oriented navigation [12], where the context is provided
during modal analysis.  Since the context of the link data has
been removed from the dimensions we define, the resultant
contextual link generation engines are also close analogues
to Sprocs as defined by Nürnberg, et al [17].

Text is almost exclusively an archived data source, authored
once and stored, and then presented as pre-established data
to the user.  Research into dynamic text systems is
established [3, 15, 21], but it is our opinion that text will not
reach the temporally and spatially dynamic properties of
video in the near future.  Video allows for, and generally
requires, different approaches to anchor generation than
does text.

Given these trends and issues, we have identified three
independent axes of interest in anchor creation for
hypervideo: manual vs. automatic; server-side vs. client-side
anchor creation; and real-time vs. archived video (Fig. 1).

Server-side manual anchor generation is the standard
approach for authoring most hypermedia, whether video or
text.  We define server-side to mean any anchor creation
which occurs prior to delivery of the media to a client
machine, and client-side to mean any anchor generation
which occurs after transmission to the client machine.  Text
based client-side anchor generation, more notably in
automated systems, can suffer from the problem of relevant
context [8, 9].  We feel that the selection of objects that are
visually presented provides a cleaner approach, allowing the
use of established image analysis algorithms.

These issues became apparent during the production of a
video conferencing tool designed initially to research
automated anchor creation in a collaborative environment.
The tool was designated OvalTine (oval-tine) due to its use
of oval tracking for face identification and the flexibility of
video streaming capabilities, resulting in networking maps
with many tines, as are found on a fork.

LINKS AND ANCHORS IN VIDEO STREAMS
Our work on OvalTine began with the desire to create a
hypermedia system in which video streams could be first-
class data, that is, data in which link anchors could be
embedded and links followed.  The goal was to allow a
viewer of a video stream to establish a link anchor on an
object in the video frame, and as the object moved around
the frame, the link anchor moved as well, tracking the object
that represents it.  The viewer could, at any time after
creation of the link, click on the anchor and retrieve the
linked information.  In this way, an object in a video stream
could be linked to text, to sound, even to another video
stream or to an object in a video stream.

Our initial plan was to use video anchors and automated
tracking to allow links to be created in video
teleconferencing.  This goal required us to find and employ
efficient image analysis algorithms so that link anchors

could be tracked in real-time, at frame rates of at least
several per second. As the work progressed, it became
apparent that the automated tracking methods we employed
were useful for stored video streams as well as real-time
streams (these applications are discussed later in the paper).

THE OVALTINE SYSTEM
OvalTine is a dynamic, anchor-creating video-conferencing
application based on the mediaConf example application
from Silicon Graphics for their O2 workstations [19].
mediaConf is based on SGI's dmedia libraries, which
provide the basic framework for a server/client video
conferencing system.  This system is highly configurable,
with forking of a video stream possible at any node,
regardless of whether it is a video source, receiver, or relay.
mediaConf includes a simple collaborative drawing
environment which has drawing primitives such as lines,
boxes, ovals, and a freeform pen.  To implement tracking of
video collaborators’ heads, we added a real-time video
analysis engine from Stan Birchfield at Stanford University
which uses a mixed-mode analysis algorithm to search for
ovals, such as human faces, in a video field [4].  The found
faces are denoted by ovals sent across the network as
drawing elements of mediaConf.  These elements are further
extended with the addition of hyperlink data.  In our case,
we chose simple ASCII URLs as the base case.  When the
user activates a hypervideo anchor, the corresponding URL
information is merely displayed in a text box within the UI.

OvalTine was developed on a pair of Silicon Graphics O2
workstations, running IRIX 6.3 OS, connected with 10bT
Ethernet over the standard network within the Computer
Science Dept at the University of North Carolina at Chapel
Hill.  No special configuring of the network was done, in
order to simulate more closely a natural user environment.
The video input was supplied from the standard O2 video
camera through the integrated ICE video hardware grabbing
board.  The mediaConf software was modified to accept the
addition of the HeadTrackerLib library.  HeadTrackerLib
was a substantial rewrite of the headtracker application
provided by Birchfield et al. on the Windows platform.  All
Win32 specific code was removed and replaced, resulting in
a cross-platform image tracking library [20].  The multip
C++ threading package from UNC's Graphics Lab division

Figure 1: Dimensions of anchor generation in
hypervideo

Server Client

Automatic

Manual

Archived

Real-time



was used to implement our image tracking and analysis
computations in a separate thread.

A standard video conferencing session in OvalTine proceeds
as follows.  The same application binary is started on both
machines.  Each user registers his or her machine with the
other through the UI, which simply asks for a TCP/IP
accessible machine name.  Each user then selects the other
machine to be its video server, so each machine is seeing the
other’s camera view.

In order to generate anchors, each user selects the image of
the other user using an enhanced variant of the supplied
drawing tools, shown in Fig 2.  This triggers the building of
an internal model of the image coming from the server.
That model is then used to track the other person’s image.
The anchor region can be made visible, or not, depending on
the user’s preference.  If it is visible, it appears as an oval
overlaying the video image.

Each machine can also act as a server of anchors, by the user
selecting his or her own camera’s video stream, and
operating on it.  Only one video stream at a time can
actively be seen and have anchors generated.  Thus in the
current OvalTine system, a machine can act as a server-side
anchor generator, or a client-side anchor generator, but not
both simultaneously.

Once an anchor is established in the video frame, a link to
other data can be made (to text annotations, images, web
pages, other video streams).  Clicking on an anchor at any
time that its video object is visible in the video frame,
regardless of how it has moved since anchor creation, will
retrieve the linked information as one expects in a
hypermedia system.

The OvalTine application was designed to exercise several
key points in real-time hypervideo: 1) server-side vs. client-
side anchor definition, 2) anchor propagation across a
network, 3) acceptable performance for, at a minimum, near
real-time execution, 4) flexibility in linked materials, 5)
manual and automated anchor creation.

During development, however, it was apparent that
OvalTine and its design issues were more extensible than
was first thought.  It also became obvious that we lacked a
sufficient set of definitions for adequately discussing the
research directions we wished to pursue.  Subsequent
background research unveiled nothing that met our needs.
Because of this, we developed the taxonomy to provide us
with not only a vocabulary for OvalTine, but also a well-
formed set of directions for future research projects.
OvalTine has provided the first step towards a rich research
tool investigating the three axes of hypervideo anchor
generation described earlier.

As such, we chose five example systems from current and
future research directions, culminating in a business-
environment oriented video-conferencing system.  This
provided an atmosphere that demanded all of the above
requirements, as well as creating an example whose benefits
can be immediately recognized by the users. These scenarios
present our directions for continuing research in hypervideo
linking.

EXTENDED HYPERVIDEO CONFIGURATIONS
The three axes we defined back in Fig. 1 provide a rich
space in which to frame our example configurations.  We
specify five such cases here, ranging across the breadth of
server/client and manual/automatic, with each selecting a
position along the real-time/archived axis as appropriate.
We are less concerned with this third axis for the moment,
as the distinction between real-time or archived data is
primarily one of the run-time characteristics of the image
analysis required for a particular application.  Our system
and initial research direction lent themselves well to a real-
time approach, but are, in theory, equally capable of using
archived data.

Four of these models are each well defined within a single
octant of our problem space, while the fifth is an interesting
example of a real-time hybrid approach that is very
applicable to current use. The range for each example will
be illustrated with a continuous span on each of the three
axes in parallel.  We chose continuous ranges instead of
binary positions to accommodate applications that span
various styles.  This will become apparent in the fifth
example.

Server-side, Manual Anchors
Peter is teaching a distance learning class over the Web.
Each class is broadcast by live streaming, and is also
archived for later retrieval and review by students.  Peter
uses the whiteboard extensively for diagramming, but wants
to be able to link this directly to the online texts which he
has prepared.  The lectures tend to be free-flowing based on
feedback from the class members, so pre-selected diagrams

Figure 2: Selecting an area to track a face



with preset bibliographic data will not do.  Also, as Peter
walks around the lecture area, the camera follows him for
best effect.  The diagram on the whiteboard moves around
the video image, so statically defined video regions are not
appropriate.

Instead, Peter diagrams on the board, then adds active
anchors to the corresponding objects on the video while
lecturing.  (A small laptop showing the outgoing video feed
has been placed on the lectern for this reason.)  The diagram
regions with anchors attached to them are tracked as they
move in the video frame.  Every student can click at any
time on a diagram object and be presented with the relevant
linked document.  In this way the students are kept up to
date on the necessary accompanying texts, but can refer
back to any previously referenced text in an intuitive way.

The advantages of this scenario include single-source
control of anchor creation, single-point image analysis load,
and minimized total cost of analysis resources over a large
and wide network.  Disadvantages include limited anchor
creation, which may not match the needs of the client user,
and a large overhead for the creation of a richly linked
environment.

When multiple servers are involved, each one acting as a
client to the others, a peer-to-peer system is created.  This
would be analogous to a traditional video conferencing
system, where each node acts as both producer and
consumer of video streams.  During the video production
process, however, we add the ability to include hyperlinks as
noted above.

Fig. 4 illustrates this type of architecture.  OvalTine was
configured for this type of system, if not this exact situation,
by registering the Server machine from the Client machines.
The Client machines then received the anchor embedded
video stream solely from Server.  The Server displayed only
its own source video.

The video stream was analyzed on Server to find human
faces, and the anchor information along with the region data
was passed to Client1 and Client2 as an extension to the
supplied collaborative drawing layer included in mediaConf.
A user sitting at either Client1, Client2 or Server had access
to the linked data (in this case, simple URL support for the
user's home page).  Performance was measured on Server as
10-15 FPS after tracking was initiated for one face, and

performance on the client machines was nominal as
compared to when no image tracking was being performed,
as one would expect.

Server-side, Automated Anchors
FOX Television decides to augment their NHL hockey
broadcasts with a new feature for Web deployment: players'
statistics on demand.  A viewer will be able to click on any
player currently in the video stream, and have instant access
to their career statistics, game statistics, and any other
information relevant to the current situation.

Because FOX already has experience with tracking the puck
in real-time and highlighting it on-screen through their
FoxTrax system [13], they decide to extend a similar system
to the players.  Each player will wear a radio transmitter that
uniquely identifies them, and a series of radio receivers
stationed around the rink will pick up and triangulate the
signals.  The video cameras are also registered in the rink
space, so that a properly calibrated system will know to a
fair degree of accuracy where each player is on-screen.  An
image analysis system will then refine the player's position
within the current frame by searching for edges, jersey
numbers, etc.  Now that the image regions are specified,
URL data can be tagged to each, and the user's browser
handles the user events to display the requested data and
video via standard mechanisms such as JavaScript.

Fully automated anchor generation is similar to a server-side
system, where a single analysis engine is used to inject
anchors into the video stream.  An automated system,
however, has the added benefit of being a repeatable
behavior without the need of a human operator.  Only
particular situations will properly be addressed with this
setup, but for those requiring it, it is a powerful tool.

Server Client

Manual Automatic

Archived Real-time

Figure 3: Tracked whiteboard in taxonomic space

Link Generation

Client1Server

Hypervideo

Client2

Camera

Figure 4: Server-side real-time manual



Note that we do not specify the automated system linking
content to video objects.  Much work has already been done
in this area [6, 11, 22, 23], we are simply investigating the
ramifications of various types of anchor creation
environments.  Automated systems are but one of the
possibilities.

In our example, we address only automated anchor
generation in a real-time system, but this approach also has
merit in other areas. In-depth analysis of archived data in
such areas as law enforcement, for example, where a crowd
at a suspicious blaze could be scanned using facial
recognition algorithms and a database of known arsonists.
Multiple individuals could be tracked through the event as
needed.

Fig. 6 illustrates this architecture. OvalTine's application
design already performs much of the functionality of a fully
automatic system.  Fully automated image analysis engines
under will be used in further research.

Client-side, Manual Anchors
Jane is an anthropologist on a team studying urban walking
patterns in downtown Seattle.  A series of cameras have
been placed at various points throughout downtown and are
broadcasting over the Web, allowing her a real-time view of
pedestrian flow.  The camera placement was carefully
designed to create a large area of coverage with minimal
stitching at the borders of the fields of view.  This facilitates
tracking one individual or group of pedestrians through the
larger region, since the software knows where one image
view's edge is registered with respect to its neighbors.

The system allows Jane and the other researchers each to
select a person to track from either the real-time view or
previously archived video, and tag them with data such as
date, time, weather conditions, or whether they exited a
parked car or bus.   The team can then let the image analysis
software compile the information and data for them.  The
accumulated data from all researchers will be analyzed at a
later date.  Once the data has been collected, the video is no
longer needed, and can be disposed of.

A client-side anchor creation system resembles a dynamic
pre-recognized search for information on the part of the
user.  This approach offers immense flexibility at the
expense of requiring the user manually to add anchor
information.

It has long been recognized, however, that user-defined
anchors are often a superior approach to content linking [9,
2], and provide a natural complementary approach to a fully
automated system.

Fig. 8 illustrates this architecture. Registering the machine
Server as in the first configuration set up OvalTine’s client-
side linking system, but now the user at machine Client1
performed the anchor creation. Client1 performed the image
analysis to track heads designated by the user and the user
then attached the anchor data relevant to him or her.

At no time can one client of the video stream access another
client’s locally created links.  Each client has a private and
inviolate database of links particular to that client’s desires
or needs.

Server Client

Manual Automatic

Archived Real-time

Figure 5: FoxTrax for players in taxonomic space

Server Client

Manual Automatic

Archived Real-time

Figure 7: Urban walking patterns in taxonomic space

Link Generation

Client1Server

Hypervideo

Client2

Real-time
Video

Figure 6: Server-side real-time automated



Client-side, Automated Anchors
A series of suspicious fires have plagued suburban Chicago,
and the FBI is certain that they are the work of one or two
arsonists.  In an effort to reduce the number of possible
suspects, they have acquired video footage of the crowds
surrounding each fire, and are in the midst of cross-
referencing them.  This is a massive task, however, and is
beyond the capabilities of one machine.

In an effort to reduce the cost required by a single server
capable of such a job, they have designated multiple client
machines, each addressed with the task of finding and
identifying only a few persons within a small area of the
initial image.  Once people are acquired and identified,
tracking is a relatively low-cost task that can be done over
the entire frame region by each machine.

In this way, the investigators are able to automatically cross-
reference hours of video footage from many crime scenes
and produce a concise and relevant suspect list.

As an alternate illustration, consider another scenario from
broadcast news.  In an effort to make their newscasts more
appropriate for Web broadcast, CNN has decided to create
anchor-rich context within the video.  While an off-line
analysis engine is appropriate for archived video, it is
unlikely that a sufficiently powerful platform will be found
to produce all the content needed on one single machine.

Instead, live video will be fed from a single server to
multiple client machines, each acting within a particular
context to analyze the audio and video.  One may be
translating the audio into closed captioning text, another
may be identifying persons shown, paying special attention
to those in close-ups, while another may be performing
database searches based on the results of the other two
engines to create the appropriate links on the anchors
identified.

We have now taken the idea of client and server and pushed
into the realm of distributed computing, a natural
progression.  The Server is providing the same video stream
to multiple Clients, but is now allowing each Client to
perform the desired context analysis.

Fig. 10 illustrates this architecture. A future extension to
OvalTine would allow it to be configured for this situation
by setting up a multiple Client system as in the previous
model, but as the context of the surrounding video changed,
the URL associated with the person might change.

This scenario requires image analysis algorithms more
powerful than those with which we are currently
experimenting.  In particular, it requires automated image
recognition and image comparison/matching capabilities.
As researchers in this area develop them, however, we can
incorporate them.

Hybrid Scenario
Joe is in an important video conference with a prospective
client.  The software on his workstation is tracking Joe’s
face, and transmitting an associated URL to request his
personal biographical data from his website.  During the
course of the conference, a new team member walks into the
view at the remote site.  Joe is positive he should remember
her name, and she greets him as if they have met.  Without
panicking, Joe calmly clicks on her face and looks quickly at
the data that comes up, transmitted from the client
company's personnel database.  He promptly says hello to

Client2Persistent Store

Figure 8: Client-side archived manual

Client1Server

Raw video

Server Client

Manual Automatic

Archived Real-time

Figure 9: Video scanning in taxonomic space

Client2Persistent Store

Figure 10: Client-side archived automated

Client1Server

Raw video



Sally, never realizing that she also performed the same
action to remember his name.

As the conference continues, Joe wishes to make notations
on each new team member, and have them always available
for future video conferences.  Joe begins an annotation
session, where the notes are directly linked to the
individual's face, much as the original URL was.  Joe's
workstation software is creating a hybrid pool of data,
taking the video region selection and URL sent by the peer
server at Sally's end, and adding a URL to Joe's own notes.
This chained data will be saved to disk.  During a future
session, Joe's software will, upon a click on Sally, dutifully
send a request through the URL supplied by Sally's
workstation, and in addition will look up the relationship
between Sally's URL and the URL to the local annotation
data, displaying both.

This is perhaps one of the most interesting uses of
hypervideo, a blend of pre-selected data anchors and user
defined anchors of personal interest.  In the above case, Joe
has previously chosen his own biographical data to
accompany his video to the various sites, and in addition,
Joe has been adding information to the links received from
the peers.  Both Joe and Sally were recognized by the
software on their respective servers, identified as to who
they were, and the bibliographic information was
automatically linked to their faces in the video stream.  This
is a one-time detailed analysis, as simpler object tracking
algorithms can be used as each participant stays within the
image.

Note that this is not just a multiple peer server configuration,
where every node is a server to the others, but no client data
is being added.  That is more properly a subset of the server-
side system described above, with the natural extension of
multiple servers.

Fig. 12 illustrates this architecture. OvalTine could, in the
future, support this scenario by merging the server-side and
client-side systems as described above.  A multiple server
system would be instantiated by registering each of the
nodes with each other, such that every node is a potential
source for any other node.  Currently only one source can be
viewed at any time, but the selection can be changed to any
of the registered servers.  (A picture-in-picture mode is
available, but only the main image is capable of carrying
hyperlinks.)

By selecting the local video source as the display, the user
could choose the data to be transmitted with his or her
tracked face.  By selecting a remote video source from the
server list, the user could attach additional data to the
incoming link.  A single UI button 'Add URL' would
accomplish both tasks, intercepting the video stream
internally.

CONCLUSIONS
In the process of implementing a video collaboration system
involving anchor creation, we identified three key
orthogonal issues in anchor creation for hypervideo.  These
issues are particularly relevant to the attributes of
hypervideo as opposed to other more static media such as
text.

The three dimensions of server/client anchor creation,
manual/automated anchor creation, and real-time/archived
raw data provide a rich definition space in which to address
future work.

While most current hypermedia falls into a small subspace
of the region defined by these axes (static + manual +
archived), hypervideo has the capability of spanning the
entire spectrum.  With new capabilities come new
requirements, approaches and restrictions.  It is our intent to
continue investigating those boundaries.

OvalTine is our primary tool for such research, currently
providing exclusively server-side or client-side manual
anchor generation, but was designed to accept fully
automatic image analysis engines now under development.
OvalTine is implemented primarily as a real-time
experimental platform.  Adding the capability to work with
archived data is a fairly trivial change, and is currently
underway.

ACKNOWLEDGEMENTS
Thanks to Hans Weber for use of his multip thread package
in the production of OvalTine, and to Matt Cutts for critical
reading.

Automatic and Manual
Link Generation

Figure 12: Hybrid real-time

Served
Hypervideo

Peer Peer

Peer

Server Client

Manual Automatic

Archived Real-time

Figure 11: Business video conferencing in taxonomic
space



REFERENCES
1. Apple Computer, Introduction to Wired Movies,

Sprites, and the Sprite Toolbox,
http://developer.apple.com/techpubs/quicktime/qtdevdoc
s/REF/refWiredIntro.htm

2. Bernstein, M., An apprentice that discovers hypertext
links, Hypertext: Concepts, systems and applications:
Proceedings of the European conference on Hypertext,
INRIA, France, 1990, pp. 212-223.

3. Bernstein, M., J. D. Bolter, M. Joyce, E. Mylonas,
Architectures for Volatile Hypertext, Hypertext ‘91
Proceedings, ACM, San Antonio, TX, 1991, pp. 243-
260.

4. Birchfield, S., Elliptical Head Tracking Using Intensity
Gradients and Color Histograms, IEEE Conf on
Computer Vision and Pattern Recognition, Santa
Barbara, CA, June 1998.

5. Boissière, G., Automatic creation of hypervideo news
libraries for the World Wide Web, Hypertext ’98
Proceedings, ACM, Pittsburgh. PA, 1998.

6. Burril, V., T. Kirste, et al, Time-varying sensitive
regions in dynamic multimedia objects: a pragmatic
approach to content-based retrieval from video,
Information and Software Technology Journal Special
Issue on Multimedia, Vol. 36, No 4, Jul 1994, pp. 213-
224.

7. Elliot, E. and G. Davenport, Video Streamer, CHI ’94
Proceedings, ACM, 1994, pp. 65-66.

8. Engebretsen, M., Hyper-news: revolution or
contradiction?, Hypertext ‘97 Proceedings, ACM,
Southhampton, UK, 1997, pp. 222-223.

9. Glushko, R.J., Design issues for multi-document
hypertexts, Hypertext ’89 Proceedings, ACM,
Pittsburgh, PA, 1989, pp. 51-60.

10. Grobe, M. An Early History of Lynx: Multidimensional
Collaboration, http://www.cc.ukans.edu/~grobe/early-
lynx.html

11. Hampapur, A., et al, Digital Video Segmentation,
Multimedia ’94 Proceedings, ACM, 1994, pp. 357-364.

12. Hirata, K., Y. Hara, H. Takano, S. Kawasaki, Content-
oriented Integration in Hypermedia Systems, Hypertext
’96 Proceedings, ACM, Bethesda, MD, 1996, pp. 11-21.

13. IEEE Computer Graphics and Applications Vol. 17, No
2. March - April 1997, Applications: The FoxTrax
Hockey Puck Tracking System

14. Ip, H. H., S. Chan, Hypertext-Assisted Video Indexing
and Content-based Retrieval, Hypertext ‘97 Proceedings,
ACM, Southhampton, UK, 1997, pp. 232-233.

15. Kendall, R. Hypertext dynamics in A Life Set for Two,
Hypertext ’96 Proceedings, ACM, Bethesda, MD, 1996,
pp. 74-84.

16. Liestøl, Gunnar, Aesthetic and Rhetorical Aspects of
Linking Video in Hypermedia, Hypertext ’94
Proceedings, ACM, 1994, pp. 217-223.

17. Nürnberg, P. J., J. J. Leggett, E. R. Schneider, As We
Should Have Thought, Hypertext ’97 Proceedings,
ACM, Southhampton, UK, 1997.

18. Sawhney, N., D. Balcom, I. Smith, HyperCafe: Narrative
and Aesthetic Properties of Hypervideo, Hypertext ‘96
Proceedings, ACM, Washington, D.C., 1996, pp. 1-10.

19. Silicon Graphics, Inc., mediaConf videoconferencing,
https://toolbox.sgi.com/src/demos/O2/mediaConf/, July
1997. Note: Requires a free registered login and
password for SGI’s developer program.

20. Smith, J. McC., HeadTrackerLib: Generalized head
tracker,
http:://www.cs.unc.edu/~smithja/HeadTrackerLib/, Oct
1999.

21.Stotts, P. D., R. Furuta, Dynamic adaptation of
hypertext structure, Hypertext ’91 Proceedings, ACM,
San Antonio TX, 1991, pp. 219-232.

22.Zhang, H.J. et al., Automatic Parsing and Indexing of
News Video, Multimedia Systems, 2 (6), pp. 256-266,
1995.

23. Zhang, H.J., C.Y. Low, S.W. Smoliar, J.H. Wu, Video
Parsing, Retrival and Browsing: An Integrated and
Content-Based Solution, Multimedia ’95 Proceedings,
ACM, 1995, pp. 15-24.


