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1 General remarks

The optimization with the 1+1ES-method has the advantage of a automatic adjustment of the
step size. This adjustment is dependent on the value of the cgro-factor. For a big cgrow the
optimization is fast, but more likely to end in a local minimum compared to a little ¢4 But
the choice of a little cgro leads to rather slow optimization.

This report is about the examination of this adjustment factor cgro, on one hand, and
on the other hand about the general handling of the parameters of the bias correction with
14+1ES-optimization.

Normally a distorting bias field is not added, but multiplied to the original image. Therefore
the bias correction is computed normally with the “log”-flag on. When using the “log”-flag the
bias correction first transforms each pixel of the original image and all parameters concerning
pixel values by the natural logarithm-function. The bias correction is then computed as an
additive bias field to the log-transformed image. The corrected image is retransformed by
applying the exponential-function to each pixel.

All tests were performed with a cgpprink = c_,%éw, which proved to be a good value for cgppink-
A small evaluation of choosing cgprinr Other than this, showed just small improved efficiency in
the best cases. When c,ppinr was chosen to far away of c;ﬁw efficiency even heavily decreased.

2 2D-image of a step edge

2.1 General Method

A two dimensional image is created with a step edge function in z-direction. Then this image is
distorted by a bias field composed of the 2D Legendre polynoms of second degree. Gaussian and
uniform distributed noise of different amplitude is added to the distorted image (no “log”-flag).

The step edge function is constructed of two classes located at g1 = 100 and uo = 140. The
parameter ¢ of the valley-function of the energy function is chosen to the value 6.8.
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2.2 Detailed examination: Simple coefficients, no noise
2.2.1 Minima

Using the coefficients [0,0,0,0,100,0] for the 2D Legendre polynoms, we observed multiple
local minima, the local minimum at [9.0984,0,0,19.844, 100, 15.8584] was chosen to be further
examinated. The existence of a local minimum is the effect of choosing the value of the fifth
coefficient very high compared to the distance between the two classes of the step edge function.

Figure 1: (from right to left) (7): Image of a step edge function along z-axis (gray values 100,140),
(7): bias ﬁeld, (31): image 4 added to bias field 47, (7v): medium noise added to the distorted
image 74 (Gaussian distribution, level 10)

As an evaluation, we did a 3D visualization of the isosurfaces of energies around the minima,
when changing the first, the forth and the sixth coefficient of the Legendre polynoms (see figure
2.2.1). The evaluation showed that the area connecting local and global minimum has relatively
high energy values. Also is the distance from the local minimum to the points of lower energy
big.
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Figure 2: Plots of the energy function of the bias-distorted step edge image without any noise
around the coefficients [0,0,0,0,100,0]. axes: first coefficient ('0’), forth coefficient ('y’), and
fifth coefficient ("y?’) of the 2D Legendre polynoms (degree 2). Isosurfaces are drawn in the left
image at the energies 1000, 2000, 2800,3000, and 6000, in the right at the energies 1000, 2000,
and 2870.Clearly can the local minimum be seen.

We calculated also the Hessian matrix at the local minimum and plotted the values of the
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energy function along the eigenvectors of the Hessian matrix. The Hessian matrix at the local
minimum is regular and the plots along the eigenvectors showed no other minimum although
the global minimum is in the region spanned by the plotted range of the eigenvectors (see figure
3).

As comparison we also plotted the values of the energy function along the vector connecting
local and global minimum (see figure 4). In the zoomed plot around the local minimum it can
clearly be seen, that the energyfunction along the eigenvector of the smallest eigenvalue is less
steep than along the direct line from local to global minimum.

When adding noise to the stepedge image, the plots around the local minimum do not change,
that means the energyfunction stays smooth, just the position of the minimum is slightly shifted
! We can therefore conclude that the noise does not affect the smoothness of our energyfunction,
but it affects the position of the global minimum.

10000 10000 10000

8000 8000 8000

E E E
6000 6000 6000
4000 v 4000 4000

2000 2000 2000

60 -40 -20 0 20 40 60
d

10000 10000 10000

8000 8000 8000
6000 6000 6000

4000 4000 4000

m
m

< -
m

2000/

60 -40 -20 0 20 40 60 2000—60 -40  -20 0 20 40 60 2000—60 -40  -20 0 20 40 60
d d d

Figure 3: Plots of the energy function of a bias-distorted step edge image with Legendre poly-
noms coefficients [0,0,0,0,100,0]. Plots were obtained along the eigenvectors of the Hessian

matrix at the local minimum [9.0984,0,0,19.844,100,15.8584]. Plots are ascending sorted by
the eigenvalues of the corresponding eigenvector.
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Figure 4: Plots of energy function of a bias-distorted step edge image with Legendre polynoms
coefficients [0,0,0,0,100,0]. Left (¢): Plot along the line connecting local and global minimum;
null position is at the local minimum [9.0984, 0,0, 19.844, 100, 15.8584]. Middle (4i): Combined
plot of ¢ and energies along first eigenvector (smallest eigenvalue) of Hessians matrix. Right
(131): Zoomed plot of 44 around the local minimum.

Other local minima were observed at around [—16,0,0, 43,100, 23], [-8,0, 0,20, 100, —15],
[9,0,0,20,100,16], and [17,0,0, 43,100, —22]. All those minima possesed different energies, but
none of them has a energy as low as the local minimum discussed before.
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2.2.2 Optimization with 14+1ES

In table 1 it can be seen, that a good cgro-value is at 1.05, where we have an acceptable
computation time and a very good chance to find the global minimum. When ¢y is chosen
too high the calculation takes even more time than with a smaller c44,, and only little chances
exist to find the global minimum. The computation time was measured on a SUN-ultra 1, initial
step size was chosen at 100, which is the maximal value of a coefficient of this bias field.

‘ Cyrow H Elapsed time ‘ Optimum ‘

2.0 ~ 4 min <50 %
1.5 ~ 3 min 79 %
1.1 ~ 4 min 81 %
2x1.1 ~ 8 min 98 %
1.05 = 7 min 99 %
1.01 =~ 14 min 100 %

Table 1: Time/Optimum tradeoff: the first column shows the used cgyq,-factor, the second the
average elapsed time and the third column shows the percentage, where the optimization found
the global minimum. The average elapsed time belong to an optimization on a SUN-ultra 1.
In the second row the optimization was invoked twice, in the second attempt with the found
minimum as starting point. All other optimization used the null vector as starting point.
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2.3 Various coefficients, various noise

We added several bias fields to the step edge image and also uniform and Gaussian distributed
noise of different levels. The bias correction then run on the noisy images without further
preprocessing. The cy-o,, parameter was chosen at 1.05, the initial step size at 40.
The following different coefficients of the Legendre polynoms were used:
degree | coefficients

2 [0.0,0.0, 0.0, 0.0, 100.0, 0.0]

2 [10.0, 3.45,6.6,2.3,12.4, 25.1]

2 [1.0,2.0,3.0,4.0, 5.0, 6.0]

2 [16.734,8.2,0.4, —23.5, —12.3,10.342]

2 (log) | [0.3,1.4,0.123,—1.2, —0.3,0.65]
3 (log) | [0.2,—0.02,—0.34,—0.34,0.23,1.23,0.23,1.4, —1.053, 0.89]

The different noise levels were chosen as a fraction of the difference d of the mean values of
the two classes, which is in our step edge image 40. The following levels were therefore used:
d/8=5,d/4=10,3-d/8=15,5-d/8 =25,7-d/8 =35, and 5-d/4 = 50.

At the noise level 5 - d/8, the two classes start to overlap even without the bias field. The
images having a Gaussian distributed noise of level up to 7 -d/8 and those having a uniform
distributed noise level up to 5 - d/8 were all very well corrected with a probability of 0.99 (with
the given parameters). Whereas the bias field of images with higher noise was not computed
correctly. We observed in those images always a drift from left to right (orthogonal to the step
edge) (see figure 5). This bias field is a global minimum of our energyfunction! The energy at
the right solution is therefore lower than on the calculated wrong solution.

When doing an anisotropic filtering before the bias correction, then the problem of images
with a too high noise level does not occur (see also figure 5) and the correct bias field is computed.
The calculated bias field of the filtered image is then applied to the original image.

The calculation of the bias field took between 5 and 8 minutes, but generally it can be said
that the more noise an image had the more computation time it took, although the increase is
relatively small.

3 2D-image and 3D-image of a checkerboard

A checkerboard was generated, consisting of two classes (u1 = 100, pus = 140). Different bias
field and noise levels were added. Then the bias correction was applied to all those images. The
bias fields were all computed correctly up to a high level of noise. Even at the noise level 5-d/4,
with d as the difference of the mean class values, the bias field was computed correctly (!).

4 2D-Image of a head obtained by a surface coil

This section is about the bias correction of the image of a head obtained by a surface coil. The
sensibility of a surface coil decreases quadratic with distance, we choose therefore the bias field
to be composed of Legendre polynoms to the second degree. In figure 7 is the original image
shown. It can clearly be seen, that a computerized analysis of the image is extremely difficult
without a correction, since the pixel values of the classes of tissues strongly overlap.

The results of the bias correction are satisfying, as in figure 8 can be seen.

In the corrected head image we observed on regions that should consist of homogeneous
intensity a sawtooth function was added. This is caused by the addition of a continuous bias
field to the discrete original head image. In figure 9 this effect and in figure 10 the origin of the
sawtooth function is shown.



Figure 5: Correct and incorrect calculation of the bias field in the step edge image depending
on the noise level:

top row: noise level 3 - d/8 = 15 with correct bias field,

middle row: noise level 5 - d/4 = 50 with incorrect bias field,

bottom row: noise level 5 - d/4 = 50 and anisotropic filtering with correct bias field.

Right column: calculated bias field, left column: corrected image.
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Figure 6: bias field correction of a checkerboard (Gaussian noise, level 5 - d/8) : t.l.: original
image, t.r: distorted image, b.l.: corrected image, b.r: calculated bias field

Figure 7: Original image of a head obtained by a surface coil.



Figure 8: bias field correction of the head image: t.l.: mask, t.r: computed bias field, b.l.: energy
image, b.r: corrected image

Figure 9: On the original head image (left) large regions with the same pixel value are ob-
served due to the discreetness. Three such regions are highlighted by color. This discreetness
causes a sawtooth function (in red) in the regions of the corrected image (right) that should be
homogeneous.
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Figure 10: Origin of a sawtooth function (in 1D): (from left to right) (i) continuous bias field,
(13) discrete image, (i%i) corrected image (addition of i and 7).

5 2D-Image of a breast obtained by mammography

A breast image (see figure 11) is obtained by mammography and similar to a MRI image obtained
by a surface coil, we observe regions with heavy decreasing pixel values. This causes that the
range of pixel values of the breast tissue is large and intersects with values of other tissues or
blood vessels.

The results of the bias correction are satisfying, as in figure 12 can be seen. The calculated
bias field consists of Legendre polynoms up the third degree. Two classes were used with
M1 = 25,0’1 = 5,#2 = 120,0’2 = 17.

Figure 11: Original image of a breast obtained by mammography.

6 3D-image of onion like phantom

A onion like phantom was constructed that consists of layers/skins of different intensity. The
skins of the onion are ellipsoids. In this example, the onion consists of 3 skins with the intensities
p1 = 120, uo = 150, andps = 180 and a resolution of 64x64x64 voxels.

Since we're working in 3D, we use subsampling to calculate first approximately the bias field
on the subsampled volume and second calculate the exact bias field on the whole volume.
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Figure 12: bias field correction of the breast image: t.l.: mask, t.r: computed bias field, b.l.:
energy image, b.r: corrected image
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Here we observed that when choosing the subsampling factor too high (more than factor 2),
the optimization was sometimes trapped in a local minima. Without subsampling all applied
bias fields and noises were computed correctly! But subsampling reduced the computation time
by the factor 2. Mean computation time of this example without subsampling is between 1 and
1 hour on a SUN ultra 1 (Legendre polynoms up to second degree).

O L

Figure 13: bias field correction of an onion like phantom (slice in the middle of volume) without
any noise: from left to right: original image, distorted image, calculated bias field

OOl

Figure 14: bias field correction of an onion like phantom (slice in the middle of volume) without
noise of level g. from left to right: distorted image, corrected image, calculated bias ﬁeld

7 3D-image of the head of a MS-patient

This section is about the correction of an MRI-volume of a head of a patient with Multiple
Sclerosis (MS) (data Test01_-MS_PD_001 from the biomorph project). We found out that the
different slices of the volume each had a individual brightness. To correct this with our three
dimensional bias correction the degree of the Legendre polynoms needed would be at least
as much slices as we have. This would slow down the correction extremely to some days as
calculation time. Also the calculated bias field wouldn’t be correct, because we’d then no longer
have a smooth bias field and the bias field would accomodate too much to anatomical structures.
We therefore choose to use a multi-step approach:

1. The brightness of each slice is corrected using a bias correction with the Legendre polynom
of the zeroth degree.
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2. The corrected volume is smoothed by anisotropic filtering (small kappa and few iterations).
3. A three dimensional bias correction is calculated on the filtered volume (degree 2).

4. The calculated bias field is applied to the corrected, unfiltered volume.

The volume generated in step 2 by the anisotropic filtering process serves just to obtain
a denoised volume for the three dimensional bias correction. For the first, two dimensional
bias correction such a volume with much noise removed is not necessary, since we just use the
Legendre polynom of zeroth degree, so that the bias field can not adapt to the noise. But
when using Legendre polynoms up to the second or third degree, the calculated bias field could
adapt to the noise, which is not desired. That’s why we do such an anisotropic filtering. But
our resulting volume can not be an the corrected, denoised volume because on one hand the
anisotropic filtering filters not just the noise away, to some amount it also filters away anatomical
structures or edges, which is of course not desired when using the volume for diagnosis purpose.
On the other the filtering makes relatively big parts of the volume homogeneous, which leads
together with a continuous bias field to a sawtooth function in those homogeneous areas (see
also section 4 / figures 10, 9).

To simplify and speed up the correction we concentrated on two classes, the white matter and
the gray matter. Everything else was masked out. Masks were generated by a coarse statistical
classification (with PCI) based on a training set on one slice. The volume contains some slices
with a very small amount of voxels belonging to white or gray matter, these slices were masked
out fully. These slices all are positioned at the boundary of the volume (slices 0-7 at the bottom
and slice 23 at the top).
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Figure 15: Coeflicients of the calculated bias field with Legendre polynoms of zeroth degree.
Each coefficient belongs to a slice (shown slices 8-22) of the volume of the MS-patient. The
individual slice brightness can be seen clearly.

The calculated coefficients of the first bias correction correspond with the subjective im-
pression of the brightness of the slices: brighter slices have a lower coefficient that darker slices
(see figure 15). The difference between the lowest and the highest coefficient is 0.055. This
difference is measured in the log-scale, it means a difference of about 15-20 gray levels in our
volume (values 0-500).

The computation of the correction of the individual slice brightness was at half a minute
per slice, which summoned to 12 minutes per volume. In contrast the three dimensional bias
correction lasted around 6 hours (!) per volume with Legendre polynoms up to the third degree.
When using Legendre polynoms up to the second degree the dimension of the parameter space
decrease from 20 to 10, and the computation time goes down to 1 hour and 45 minutes.
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The results of the corrections with Legendre polynoms up to the third degree did only
slightly differ from those with Legendre polynoms up to the second degree. The difference of
the two solutions was just in those slices of significance that were masked out fully. The result
with the Legendre polynoms up to the second degree was smoother and and looked similar to
its succeeding slices, that were not masked out fully. Whereas the result with the Legendre
polynoms up to the third degree shaped the bias field in these slices not so smooth and diverged
in the slices at the bottom of the volume (see figure 16). Also the geometry of the head coil
used to scan the volume suggest to choose the Legendre polynoms up to the second degree and
not up to the third degree.

A%

Figure 16: Bias fields of a slice not masked out (slice 16, left side) and of a slice masked out
(slice 0, right side). On the left the bias fields of the correction with Legendre polynoms up to
the second degree is shown, on the right those up to the third degree.

The 2D-correction, which corrected the individual slice brightness, could be a problem of
exporting the data properly from the scanner-own format to a raw-data or GIPL format. The
calculated bias fields from the three dimensional correction look like the shape of the head coil,
which is circumcentral like a cylinder with decreasing intensity from the center to the boundary.
When viewing the uncorrected and the corrected volume there is no big difference noticeable
(see figure 18), because the detected bias field is too low.

Figure 17: Bias field (left), input mask (middle) and output mask (right) of slice 17. The output
mask masks out all background voxels, the input mask all voxels that surely do not belong to
white matter or gray matter.

The effect of the correction is good viewable in figure 19, where the values of the voxels are
plotted along a line in the white matter area in the uncorrected and in the corrected volume.
The direction of the line is chosen approximately orthogonal to the isosurface of the bias field.
On one hand the shift by the first, two dimensional correction can be seen, on the other hand
the bias along the plotted line.

To demonstrate the effect of the bias correction, we also did a simple thresholding on the
volumes to segment the white matter. For both volumes (uncorrected and corrected) the same
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Figure 18: Slice 17 of uncorrected volume (left) and corrected volume (right). A slight shift of
intensity can be observed between uncorrected and corrected image, result of the two dimensional
bias correction of zeroth degree . But the three dimensional bias correction can hardly be seen
by eye.
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Figure 19: Plots of the voxel values along a radial line in slice 18. Left: Slice of the uncorrected
volume with plot line. Right: plot of the values along the plot line, top: in the uncorrected
volume, bottom: in the corrected volume.
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width of range for the thresholding as applied. The threshold values were adapted manually to
the best result (see figures 20 and 21). The segmentation of the uncorrected volume seemed to be
more noisy and we were not able (even by increasing the width of range) to find a thresholding
that delimited well the boundary of the white matter. Also showed the segmentation of the
uncorrected volume empty parts (parts with no white matter) that should contain white matter.
The segmentation of the corrected volume was much nicer: better boundaries, not so noisy
appearance, no bigger missing parts.

Figure 20: Segmentation of white matter by simple thresholding (manually adapted to the best
solution) in slice 17 (left). In the middle the segmentation of the uncorrected volume and in the
right the segmentation of the corrected volume is shown. Clearly the much nicer segmentation
of the corrected volume can be seen.

Figure 21: Segmentation of white matter by simple thresholding (manually adapted to the best
solution) in slice 17 (left) after applying a three dimensional anisotropic filter to the volume.
In the middle the segmentation of the uncorrected volume and in the right the segmentation of
the corrected volume is shown. Again the much nicer segmentation of the corrected volume can
clearly be seen.

Also a segmentation of the gray matter on slice 18 was performed the same way as the
segmentation of the white matter. In the uncorrected image there are some heavy misclassi-
fied region in the center of the image, where the bias field reaches its maximal value. The
cerebrospinal fluid for example is classified there as gray matter and the gray matter (nucleus
caudatus) near the cerebrospinal fluid is not classified as gray matter (see figure 22).
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Figure 22: Segmentation of gray matter by simple thresholding (manually adapted to the best
solution) in slice 18 (left) after applying a three dimensional anisotropic filter to the volume. In
the middle the segmentation of the uncorrected volume and in the right the segmentation of the
corrected volume is shown. The classification of the nucleus caudatus changes from incorrect to
correct.

8 Anisotropic filtering as a preprocessing step

Sometimes images are very noisy and the position of the global minimum of the energyfunction
is moved to a wrong position. The calculated bias field is then therefore wrong as well. We
recommend therefore to insert a preprocessing step before the bias correction that reduces the
noise in the image. Best results were observed with the anisotropic filter using a relatively low
kappa (smaller than the half of the distance of two neighbouring classes) and a low number of
iterations. In the simulated tests the bias fields were always computed correctly when using this
filter as preprocessing step.

The calculated bias field of the filtered image is then applied to the original image. This pre-
serves all details of the image and does not introduce a saw-tooth function in bigger homogenous
areas (see subsection 4 and figures 10 and 9).

9 Choice of the parameters of the Legendre polynoms

9.1 Multiplicative/Additive bias fields

Usually the observed bias field is a multiplicative field. Therefore normally the bias correction is
invoked with ’log’-flag on to calculate an additive bias field to the log-transformed image. This
the calculation of the additive bias field of a log-transformed image equals the calculation of the
multiplicative bias field.

9.2 Class mean values and deviation

This subject is a very important one, choosing these values not appropriately leads often to the
calculation of a wrong bias field.
There are some thumbrules to obtain good values for the class parameters:

e Don’t use too much classes. Too much classes on one hand drastically slow down the
calculation of the bias field on the other hand the calculated field is more likely to be
wrong. The amount of classes should be around 2 or 3 classes. Choose those classes that
are widespread (in different parts of the image) and occupy a lot of area in the image.
Mask the other classes out as good as you can.



18 9 CHOICE OF THE PARAMETERS OF THE LEGENDRE POLYNOMS

e There are two ways to determine the class mean values:

1. Assign a set of points (as much as possible) to every class, and compute the mean
value over each set (with PCI for example).

2. Choose a part of the image, where the different classes come together on a small area
and pick out the pixel values of the different classes in this area. Use those pixel
values as mean values.

e A good approximative value for the class standard deviation is ¢ = d/6, where d means
the difference of class mean value between two neighbouring classes in the histogram. The
values of the deviation should be controlled by watching the energy function. There each
energy pot of a class should occupy the same amount of area. Also should the value of
the energy function exceeds 0.5 between two classes to distinct well the two corresponding
energy pots (see subsection 9.2.1).

9.2.1 Visualization of the energy function to control the class values

The actual version of the bias correction uses the formula :

E = ﬁ valley(a: — 'ui) (1)

i=1 gi

valley(z) =1 — H—;Qﬁ

You can visualize this function for example with Mathematica, Maple, or Matlab. The code
for the visualization in Mathematica is printed below (output shown in figure 23):

valleyO[d_] := 1-1/(1+d"2/3);
my = {70,140};

sigma = {7,14};

maxval = 255;

energy[x_] := Product[valleyO[(x-my[[i]])/sigmal[i]1]],{i,1,Length[my]}];
energyplotA = Plot[energy[x],{x,1,maxval+1},PlotRange->{0,1},
PlotLabel->"Additive bias"];

sigmalog = Logl[i+sigma / (my + 1.0)];

mylog = N[Log[1+my]]

energy[x_] := Product[valleyO[(x-mylogl[[il])/sigmalogl[[i]]1],{i,1,Length[my]}];

energyplotM = Plot[energyl[x],{x,1,Log[maxval+1]},PlotRange->{0,1},
PlotLabel->"Multiplicative bias"];

9.3 Subsampling

To calculate an approximate solution of the bias field in a short time, subsampling is useful
instrument. But when using subsampling it is more likely to end in a local minimum (Caution!).
Therefore the subsampling factor should not be chosen more than 4, a good choice is a factor
2. The calculation with a subsampling factor z is speeded up by a factor of z? in 2D and z3 in
3D compared to the calculation with no subsampling factor.
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Figure 23: Energy function used by the bias correction. pu; = 70, g = 140, 01 = 7, 01 = 14.
The values for the standard deviation are chosen for a multiplicative bias field. As it can be
seen, they would not be appropriate for an additive bias field.

9.4 Masks

There are two different masks for different purposes in this bias correction. There is the input
mask and the output mask. The input mask serves to mask out all voxels not belonging to the
classes on which the bias correction runs. The output mask masks out the background when
applying the calculated bias field to generate the corrected volume/image. This is necessary
since there is no bias on the background, just noise.

Input masks are an effective instrument to improve on one hand the calculation time and
on the other the quality of the calculated bias field. Well designed masks should input mask
out all area not belonging to the defined classes, so the efficiency of a mask strongly depends
on the choice of the classes. Input masks should cover as much parts of the image as possible,
otherwise the calculated bias field may be incorrect in uncovered parts (if those are big enough).

9.5 Degree of polynoms

Choosing the degree of the Legendre polynoms too high results in high computation time and
in inconstant coefficients for the bias field, although each of the calculated bias fields represent
a good correction. If not chosen more than one degree too high, this should be no critical
parameter.

Try first computing an approximate bias field (by subsampling) with a degree of relatively
high order, usually this is either third degree or forth degree. Seldom a higher degree than forth
is needed. Then look at the computed bias field and compare it with the table shown in figure
24. If the impression rises, that a bias field of a lower degree (or a combination of the bias fields
of lower degree) look the same as the calculated bias field, then the bias correction should be
run again with a lower degree.

10 How to choose the parameters for the 14+1ES-optimization

10.1  cyrow and Cyprink

Several tests revealed that the best values for cgppini is chosen around c_,%éw. Since cgprink has
this by default, when invoking the bias correction, there is normally no need to type it in as a
command line argument.

The tests done in this report with changing cg;o,y showed, that it should not be chosen to
high. A value between 1.01 and 1.1 is a good choice. The higher the degree of the Legendre
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Figure 24: Table of Legendre polynoms for two dimensions (0.th to 4.th degree): polynoms are
ordered the same way as coefficients of bias correction (from left to right increasing y-degree,
from top to bottom increasing x-degree).
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polynoms the more coefficients exists and therefore the higher dimensional is our search space.
This leads to the obvious conclusion, which was also observed in our tests, that the higher the
degree of our Legendre polynoms the lower cgro, should be.

10.2 Initial step size

A good choice for the initial step size is the maximal distance of two neighbouring classes in
the histogram. When choosing a smaller step size, the calculation time is speed up, but is more
likely to end in a local minimum.

10.3 Maximal number of iterations

The maximal number of iterations should not be chosen too high, since the calculated bias field is
always an approximation and there is no need to have an approximative bias field calculated to a
very high precision. When using subsampling a value between 2000 and 5000 should be enough.
If the parameter space is high dimensional, that means when Legendre polynoms of high order
or when a three dimensional bias field should be computed, then this value is too low. There
you should choose a value between 10000 and 20000. Normally there is no need to choose the
maximal number of iterations higher than 20000. Most tests in this paper used 10000 maximal
iterations for two dimensional and 20000 maximal iterations for three dimensional fields.

11 Computation time after speeding up the bias correction

The bias correction application was speeded up by precalculating energies in tables instead of
calculating them each time again. Also some slight corrections were made that increased the
efficiency of the application. The amount of gain of speed is around a factor of two.

For example the calcuation of the bias field for the 3D-images of the head of a MS-patient
was reduced from around 1:45 hours to around 45 minutes when using Legendre Polynoms up
to the second degree.



