
Along-standing problem in the field of visualization
is the ability to display many overlaid data sets.

Recently, researchers have developed successful tech-
niques that show multiple 3D fields by layering sparse
similar glyphs.

My colleagues and I at the University of North
Carolina have investigated this problem for a number
of years. Our driving application has been the display of
data sets from scanned-probe and scanned-electron
microscopes, which led us to concentrate on the display
of multiple scalar fields. Although several of our first
approaches were initially successful, they failed to scale
to more than three or four data sets. So that others won’t
be tempted to follow the same course, I begin by pre-
senting the argument for, preliminary successes with,
and reasons for the eventual downfall of our initial
approach. I then describe the key concept that enables
successful techniques.

Our initial approach
Our initial (incorrect) thesis was that the largest num-

ber of data sets could be displayed using the following
methods (which are obviously not orthogonal):

� map each data set to a different surface characteris-
tic (color, shape, albedo, and transparency),

� apply different visualization techniques for each data
set (color, contour lines, blending in textures, and so
on), and/or

� generate textures or glyphs whose different charac-
teristics (scale, feature shape, color, density, and so
on) depend on the data sets.

Because we had a height field from the scanned-probe
microscopy data to start with, we used apparent surface
height to show this measured height and investigated
techniques to display additional fields on this height
field. (More on this matter later.)

Promising signposts leading nowhere
We were encouraged to modify different surface char-

acteristics and use different techniques by our early suc-
cesses in combining small numbers of these techniques.

The discovery of Roger Crawfis’ beautiful visualiza-
tion of multiple data sets1 encouraged us to try layering
different techniques. This visualization (see Figure 1)
shows several scalar fields and a vector field displayed on
a single surface.

We were led to texture synthesis by the data-driven
synthesis of reaction-diffusion2 and
spot-noise textures.3 These tech-
niques enable the adjustment of tex-
ture scale, feature shapes, and colors
by coupling the parameters of the
generating functions to data sets.
We were further encouraged by the
perceptually based texture synthe-
sis techniques of Healey and
colleagues.4

In the end, we were disappointed
to find that the original thesis was
incorrect. No matter which sets of
techniques we tried, no matter which
sets of surface characteristics we var-
ied, no matter which group of texture
characteristics we used, we couldn’t
display more than three or four data
sets before it became impossible to
separate the effects of one technique
from the effects of the others.

Russell Taylor

University of
North Carolina
at Chapel Hill

0272-1716/02/$17.00 © 2002 IEEE

Visualizing Multiple Fields on the Same Surface ________

Visualization Viewpoints

Editor: Theresa-Marie Rhyne

6 May/June 2002

1 Visualization
showing several
scalar fields and
a vector field
displayed on a
single surface.

C
ou

rt
es

y
of

 R
og

er
 C

ra
w

fis

Wandering in the wilderness
We were tempted to display multiple data sets using a

different technique for each. Having access to the
University of North Carolina-designed PixelFlow graph-
ics computer let us rapidly explore per-pixel shading of
surfaces using Renderman-like shaders,5 including
online data-driven texture generation. We explored
many combinations of the following techniques:

� color,
� transparency (which failed for the reasons outlined

by Interrante and Rheingans6,7),
� contour lines,
� surface albedo (reflectance function variations),
� textures that appeared more pronounced where a

data set was higher,
� bump-mapped textures whose height was modulat-

ed by data sets,
� spot noise texture generation using kernels with data-

dependent characteristics,
� reaction-diffusion texture generation using data-

dependent parameters for their generating functions,
and

� apparent surface height (which we always mapped
to measured height).

Figure 2 shows images produced during our attempts
to combine multiple techniques. Along each line of
investigation, the initial results were positive. We could
combine two or three visualization techniques with
good effect (barring unfortunate choices of parameter
settings). Figure 2a shows the combination of height
field, hue, and contour lines to show surface height, fric-
tion, and areas of high adhesion. Figure 2b shows a
bump map and surface shininess to display the amount
of gold and copper present in each strand of a cable.

Figure 2c shows the beginnings of trouble: the two
bump-map textures start to obscure one another until
we add color to make it easy to distinguish between
them. Figure 2d is more problematic: color, the pres-
ence of a cross-hatch texture, and the presence of dim-
ples show three data sets. The presence of the dimples
makes it difficult to determine the texture’s strength.
Figure 2e also has trouble: hue, the presence of a
checkerboard texture, and the kernel orientation in a
spot-noise texture each display different fields. Where
the checkerboard pattern is prevalent, it’s difficult to
determine the orientation of the texture underlay.

We tried different parameter settings, different lay-
ering orders, different combinations of techniques, per-
ceptually linear mappings for the attributes, and
different couplings between data sets and techniques—
all to no avail. Each time, the visualizations failed to
work when more than a few techniques were applied at
once. In each case, the problem was masking between
the different techniques. High spatial frequencies in one
technique masked the values in other techniques.
Techniques that were layers on top either masked or
scrambled layers below.

A new approach
We achieved a comprehensible display of the largest

number of simultaneous scalar fields by using several
overlapping instances of the same technique. Two stu-
dents in the group came up with the most successful
techniques. Alexandra Bokinsky proposed using sets of
spots and bumps of different colors and scales to encode
different data sets. Chris Weigle proposed using sets of
slivers with different orientations to encode different
data sets (see Figure 3, next page). I was skeptical in
each case—the ideas didn’t fit the original thesis—but
each technique proved effective.

IEEE Computer Graphics and Applications 7

(a) (b) (c)

(d) (e)

2 Some of our
attempts to
visualize
multiple data
sets by applying
a different
technique to
each data set.
This worked
only up to three
or four data
sets.

Data-Driven Spots
Data-Driven Spots (DDS) uses the perceptual chan-

nels of color, scale, and motion (which could be used to
display data) to produce multiple visually separable tex-
ture layers. Each layer is composed of a single type of
sparse, distinct glyphs that display one scalar field—
spots by their intensity and bumps by their height. Figure
4 shows how we combined two data sets into a single
image. Figure 3a shows the display of several census
data sets overlaid on a map of the western United States.
The results of user studies showing the effectiveness of
this technique and a description of the power of com-
bining animation with DDS will be described in
Bokinsky’s dissertation (expected to be completed in
August 2002), so I won’t spoil the surprise here.

Oriented Slivers
Figure 5 shows the method of creation for each layer

of slivers in a multilayer presentation. The multiple lay-
ers are blended, producing an image displaying over-
lapped data sets (Figure 3b). Thin, well-separated
slivers let multiple orientations show through in each
area. The resulting image lets us estimate the value of
each data set at a given point on the surface. Weigle
describes this technique, as well as the results of user
studies to determine the number of orientations to use,
elsewhere.8 We can use hue either to label one or more
sliver orientations (to bring them to the viewer’s atten-
tion) or as in Figure 6 to display another data set in the
background at constant luminance (this also sharpens
the judgment of intensity levels for the mid-range and
dark regions of slivers).

The key idea
In traditional data visualization

techniques, we vary each attribute
(hue, intensity, orientation, texture,
and so on) across its range of values
to indicate variation in a data set.
Hue is used this way in Figure 6 and
both height and hue are used this
way in Figure 1. Sometimes, we can
vary more than one attribute to
show the same data set (height and
color may both be mapped from the
same scalar field, for example). Both
DDS and Oriented Slivers take a
new approach. Oriented Slivers uses
the orientation attribute not to
encode data but to differentiate
between sets of slivers. The intensi-

ty of each sliver encodes the value of a single field at its
location. DDS uses color and scale not to encode data
but to differentiate between sets of dots. The intensity
(for each dot) or apparent height (for each bump)
encodes the value of its associated data set at that loca-
tion. Here’s the general principle: one or more attribut-
es differentiate between layers of sparse, similar glyphs
and each layer displays a single field by varying other
attributes. There’s a switch from layering different tech-
niques to layering distinguishable instances of the same
or similar techniques. More formally, the algorithm is

1. Using one or more attributes, producing a nominal
code for a set of glyphs.

2. Sparsely placing glyphs within a layer so that it’s
possible to see through to other layers. Avoiding
regularity in placement to reduce aliasing.

3. Adjusting new attributes of each glyph in a layer
(attributes not used in the nominal code) to display
a single data field’s value at the glyph’s location.

Kirby and Laidlaw developed one of the most success-
ful visualizations of multiple fields on a surface that I’ve
seen.9 Figure 6 shows the image from their paper that dis-
plays the largest number of data sets. Their image follows
this algorithm (layered on top of a hue field). It uses what
are often data-encoding dimensions (basic figure shape
and saturation) to separate data display into layers of
glyphs and then uses other data-encoding dimensions
(anisotropic distortion and scale, orientation) to convey
the data values within each layer. Here, the sparseness of
top layers is violated in one layer—it’s difficult to see past
the black blocks near the left edges of the cylinder. This
is probably due to the decreased image resolution and
image size in this reprinting of the figure.

Figure 1 also follows this algorithm (layered on top
of a height field and a hue field): the dimensions of fig-
ure shape (a droplet and a ripple) separate layers while
orientation encodes the data values within each field.

Combining with other techniques
As I mentioned before, it’s possible to include a vary-

ing-hue backdrop layer to display another scalar field
behind the glyph layers. This isn’t possible when hue is

Visualization Viewpoints

8 May/June 2002

3 Data-Driven Spots (a) uses spots of a specific size and color for each data
type. Oriented Slivers (b) uses slivers of a certain orientation for each data
type. The spots or slivers showing each data set are distinguishable yet do
not obscure those showing other data sets.

(a) (b)

4 In Data-
Driven Spots,
each layer of
spots is modu-
lated by the
presence of a
data set and
then combined
with other
layers.

one of the attributes used to differentiate between glyph
layers. Care must be taken to avoid changing the appar-
ent contrast between the background layer and glyphs
if glyph intensity is a data-carrying attribute.

The display of height seems to combine well with many
techniques, forming the manifold upon which they’re dis-
played. This is true for the layering techniques advocat-
ed here. Of course, dangers exist. First, the diffuse and
specular reflections used to indicate surface shape cause
luminance changes that can completely hide or distort
the perception of the glyphs’ luminance. Second, if one
or more glyphs distort the surface (bumps, for instance),
the scale of the distortion due to glyphs must be kept far
from the scale of height changes due to data display to
avoid confusing the two. However, there’s an upside.
Adding a uniform texture to surface that’s otherwise
shown as a uniform-color height field can actually
improve the perception of the surface’s shape—adding
more data display to a surface might make it easier to see
the surface. Ware discusses this at some length in his book
Information Visualization: Perception for Design.10

Our experiences showed that the attributes of one
visualization technique become confounded with those
of other techniques that also have high spatial-frequen-
cy components. I strongly believe that attempts to com-
bine this technique with texture techniques, complex
glyph techniques, or other techniques that include high-
frequency components will fall prey to this. We must
take great care to select glyph sets that don’t confound
one another, enabling effective layering.

Closing thoughts
I’ve not mentioned the most obvious methods of pre-

sentation for multiple data sets: side-by-side display of
multiple images and sequential-in-time display of each
data set. Figure 2a gives the case for displaying the data
in the same image (rather than side by side images):
although the friction and adhesion maps are of a similar
shape, they’re somewhat distorted and offset with
respect to each other. In looking at side-by-side images,
this slight discrepancy might go unnoticed (and notic-
ing slight discrepancies in expected results has provoked
many a scientific insight). The case for layering versus
time-sequential display of multiple fields is harder to
make. Displaying nine scalar fields pairwise requires 36
transitions, so a user would have to watch the display for
up to a minute to see all comparisons using two-second
fades between data sets—the viewer of a layered image
can switch to the desired comparisons at will. Also, lay-
ering techniques can be used with time-varying data
(which we get from our microscopes as they scan). With
layers, but with neither spatially parallel nor time-
sequential display, all of the data sets are laid out at once
in the same image, causing areas where lots of data sets
are high or low to stand out. Of course, which of these is
better depends on the task at hand. We aim for explorato-
ry qualitative visualization of data sets to let users quick-
ly verify the expected and notice the unexpected.

There’s a spatial trade-off when using sparse glyphs—
they don’t cover the entire surface and so can miss fea-
tures of interest. Note that the data can cut off the glyphs
so that boundaries are visible (the Nevada state bound-

ary in Figure 3a shows this). We can address this under-
sampling in at least three ways. First, we can increase the
display resolution and size so that the glyphs are denser
with respect to the underlying data set. Second, users can
zoom into the data set while maintaining fixed glyph size
and spacing (looking at less of the data but at higher res-
olution). Finally, animating the glyphs by placing them all
in uniform linear motion across the surface causes each
area of the surface to be sampled over time by some glyph
in each layer (this would probably be confusing if vector
fields are displayed, but it’s effective for scalar fields).

Note that I judge tensor, vector, and scalar fields to be
incomparable. To visualize a vector field, you want an
integral pair of parameters that shows direction and
magnitude so that users can easily perceive the flow. To
visualize two independent scalar fields, you want a sep-
arable pair of parameters that lets users judge the value
of each field (and possibly compare the relative magni-
tudes of the two). Because of this qualitative difference,
I don’t count vector fields as equivalent to two scalar
fields or tensor fields as equivalent to more than two
scalar fields, nor do I count them the same as one scalar
field—they’re simply different.

Our efforts to develop techniques for displaying many
data sets on a surface have led me to the conclusion that
the key lies in producing layers of sparse, discrete glyphs
with each layer displaying one field. This was the break-
through realization that underlies the two successful
techniques developed by our group, and it matches suc-
cessful results shown by others. If the glyphs are similar
enough between layers, it seems easier to estimate the
relative magnitudes of different data sets (this is espe-
cially true of Oriented Slivers). If the glyphs in each layer
vary in the same manner (Oriented Slivers and DDS),

IEEE Computer Graphics and Applications 9

5 In Oriented Slivers, each layer of slivers is modulat-
ed by the presence of a data set before being com-
bined with other layers.

6 Kirby and
Laidlaw used
ideas gleaned
from studying
artists to devel-
op this visual-
ization showing
two scalar
fields, two
vector fields,
and a tensor
field in the
same image.

C
ou

rt
es

y
of

 D
av

id
 L

ai
dl

aw

users only have to learn one interpretation strategy to
decode all the data sets. If the glyphs in different layers
are sufficiently different (all techniques but Oriented
Slivers), it becomes easy to see the boundaries of regions
covered by each data set. If the data sets include vector
or tensor fields along with scalar fields, then more com-
plicated glyphs are required. In this case, we must care-
fully select glyphs for different layers that are
distinguishable from each other and yet are able to show
variation compared to glyphs in their own layer. �

Acknowledgments
The work described here was performed by graduate

students in computer science at the University of North
Carolina at Chapel Hill. In addition to Alexandra
Bokinsky and Chris Weigle, the team included Aron
Helser, Renee Maheshwari, Amy Henderson, Daniel
Rohrer, Thomas Hudson, Adam Seeger, and Jeffrey
Juliano. Chris Healey from NCSU and Mark Hollins
from UNC Psychology provided valuable guidance and
lively discussions. Herman Towles, Anselmo Lastra, and
John Thomas kept PixelFlow running until the work was
completed. The UNC nanoscale science team provided
data sets and driving problems for us to solve.

The work presented here was made possible by an
award by the National Science Foundation to support
High Performance Computing and Communication
(ASC-9527192) and by an award from the National
Institutes of Health National Center for Research
Resources (5-P41-RR02170).

Readers may contact Russell Taylor at the Department
of Computer Science, CB#3175, Sitterson Hall, Universi-
ty of North Carolina, Chapel Hill, NC, 27599-3175, email
taylorr@cs.unc.edu.

References
1. R.A. Crawfis and M.J. Allison, “A Scientific Visualization

Synthesizer,” Proc. IEEE Visualization 91, IEEE CS Press,
Los Alamitos, Calif., 1991.

2. A. Witkin and M. Kass, “Reaction-Diffusion Textures,” Proc.
Siggraph 91, ACM Press, New York, 1991, pp. 299-308.

3. J.J. van Wijk, “Spot Noise, Texture Synthesis for Data Visu-
alization,” Proc. Siggraph 91, ACM Press, New York, 1991,
pp. 309-318.

4. C.G. Healey and J.T. Enns, “Large Datasets at a Glance:
Combining Textures and Colors in Scientific Visualization,”
IEEE Trans. Visualization and Computer Graphics, vol. 5,
no. 2, Apr.–Jun. 1999, pp. 145-167.

5. M. Olano and A. Lastra, “A Shading Language on Graph-
ics Hardware: The PixelFlow Shading System,” Proc. Sig-
graph 98, ACM Press, New York, 1998, pp. 159-168.

6. V. Interrante, H. Fuchs, and S.M. Pizer, “Conveying the 3D
Shape of Smoothly Curving Transparent Surfaces via Tex-
ture,” IEEE Trans. Visualization and Computer Graphics, vol.
3, no. 2, Apr.–Jun. 1997, pp. 98-117.

7. P. Rheingans, “Opacity-Modulating Triangular Textures
for Irregular Surfaces,” Proc. IEEE Visualization 96, IEEE
CS Press, Los Alamitos, Calif., 1996, pp. 219-225.

8. C. Weigle et al., “Oriented Texture Slivers: A Technique for
Local Value Estimation of Multiple Scalar Fields,” Proc.
Graphics Interface 2000, 2000, pp. 163-170.

9. R.M. Kirby, H. Marmanis, and D.H. Laidlaw, “Visualizing
Multivalued Data from 2D Incompressible Flows Using
Concepts from Painting,” Proc. IEEE Visualization 99, IEEE
CS Press, Los Alamitos, Calif., 1999, pp. 333-340.

10. C. Ware, Information Visualization: Perception for Design,
Morgan Kaufmann, San Francisco, 2000.

Readers may contact department editor Theresa-Marie
Rhyne by email at tmrhyne@ncsu.edu.

Visualization Viewpoints

January–March: Advances in Multimedia
Multimedia means different things to different
communities. For researchers, it might be
databases, search engines, or indexing tools,
whereas content providers might be more
concerned with streaming audio and video,
compression techniques, and content
distribution methods.

April–June: Content-Based Multimedia
Indexing and Retrieval

Important research areas in multimedia
indexing include audio, video, image, textual,
and information retrieval. This special issue
will cover the state of the art in multimedia
indexing, especially image indexing, video
indexing, user access and annotation,
description of semantic content, and
applications.

July–September: Multimedia R&D
Multimedia systems and applications involve a
broad range of topics, including hardware and
software for media compression, media
storage/transport, and data modeling. Even
with this wide coverage, multimedia is still
spreading its influence to nontraditional
professional sections.

October–December: Multimedia Trends
Learn more about the latest trends in
multimedia and explore what researchers are
developing for the next generation of
multimedia applications. Find out what
practitioners have learned in the field and
what they plan to do next to improve the form
and function of tomorrow’s multimedia.

2002 Editorial Calendar

