
In crafting today’s visualizations, we often design and
evaluate methods by presenting results informally to

potential users. No matter how efficient a visualization
technique may be, or how well motivated from theory, if
it doesn’t convey information effectively, it’s of little use.

Why conduct user studies?
User studies offer a scientifically sound method to

measure a visualization’s performance. The reasons
abound to pursue user studies, particularly when eval-
uating the strengths and weaknesses of different visu-
alization techniques. For example, in Figure 1 Laidlaw
compared six methods for visualizing 2D vector fields.1

His experiments measured user performance on three
flow-related tasks for each of the six methods. He used
the results to identify what makes a 2D vector field visu-
alization effective.

Studies can show that a new visualization technique
is useful in a practical sense, according to some objec-
tive criteria, for a specific task. Even more exciting are
studies (like Laidlaw’s) that show that a new technique
is more effective than an existing technique for an
important task. User studies can objectively establish
which method is most appropriate for a given situation.

A more fundamental goal of conducting user studies
is to seek insight into why a particular technique is effec-
tive. This can guide future efforts to improve existing
techniques. We want to understand what types of tasks
and conditions yield high-quality results for a particu-
lar method. This knowledge is critical because different
analysis tasks require different visualization techniques.

A final use for studies in visualization is to show that
an abstract theory applies under certain practical con-
ditions. For example, results from psychophysics or com-

puter vision may not extend to a visualization environ-
ment. We can run user studies to test this hypothesis.
Results can show when the theories hold and how they
need to be modified to function correctly for real-world
data and tasks.

A good starting point in any study is the scientific or
visual design question to be examined. This drives the
process of experimental design. A poorly designed
experiment will yield results of only limited value.
Although a comprehensive discussion of experimental
design is beyond the scope of this article, we offer some
suggestions and lessons learned in the “Basics of User
Study Design” sidebar. We also describe in the sidebar
how we designed experiments to answer important
questions from our own research.

Color sequences
One reason for conducting studies is to determine if

we can apply theoretical principles derived from other
disciplines (such as psychophysics) to visualization
design. Researchers have studied human color vision
theory for more than a century. Results from this work
provide a solid foundation for using color in visualiza-
tion. However, choosing colors for a particular visual-
ization problem is normally very different from the
extremely simple displays used by experimental psy-
chologists. We need to experiment to bridge this gap
between theory and practice.

Consider the problem of designing pseudocolor
sequences for scientific images. We have a continuous
data field over a plane (for example, an energy or densi-
ty distribution), and we want to use color to illustrate fea-
tures in the data. Human vision theory dictates that
neural signals from the rods and cones in the retina are
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visualization
methods1 com-
pared with a
user study. Each
method shows
the same vector
field. User
performance on
different tasks
provides quanti-
tative compar-
isons of the
methods.



transformed by neural connections in the visual cortex
into three opponent color channels: a luminance chan-
nel (black–white) and two chromatic channels
(red–green and yellow–blue). The luminance channel
conveys the most information, letting us see form, shape,
and detailed patterns to a much greater extent than the
chromatic channels. Perception in the chromatic chan-
nels tends to be categorical. That is, we tend to place col-
ors into categories like red, green, yellow, and blue.
However, we see hues such as turquoise or lime green
more ambiguously. Another relevant theoretical point is

that simultaneous contrast (the phenomenon by which
perceived color is affected by surrounding colors) occurs
in all three opponent channels. This can cause large errors
when viewers try to read values in the data based on color.

We can use these theories to draw some conclusions
regarding the design of color sequences:

� If we want our color sequence to reveal form (such as
local maxima, minima, and ridges), or if we need to
display detailed patterns, then we should use a
sequence with a substantial luminance component.
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While a complete tutorial on user studies is
beyond the scope of a short article, we hope to
share some useful lessons we’ve learned.

The approach we advocate is a form of applied
perception research. Proper use of this technique
requires an understanding of how to build
experiments that include human participants. It’s
challenging to design an experiment that will give
robust answers to the questions of interest. A
typical study might ask, Which prospective method
is most promising? Do any of these methods
perform better than the best available alternative?
Unfortunately, many problems can compromise a
study’s validity or make it difficult to draw useful
insights from the results. Is the task appropriate? Is
it possible that participants were using cues other
than the ones being examined to perform the task?
Is there a control condition to provide a baseline
for comparison between different methods? Do all
participants have a correct and equivalent
understanding of the task? Are all participants
sufficiently willing and able to perform the task? Is
there a learning effect, wherein the participant
performs the task better because he or she has
already solved a similar task before?

We can address these problems by

� testing participants for adequate spatial acuity,
stereo ability, and absence of color blindness;

� randomizing the presentation order of the tri-
als, by using written instructions;

� letting participants rest during the experiment
to avoid becoming fatigued;

� devising robust methods to identify when par-
ticipants are giving garbage answers; and

� asking participants to successfully complete a
training task before proceeding to the record-
ed trials.

Because of the significant costs associated with
running an experiment, it’s often valuable to
conduct a pilot study with one or two viewers.
This allows testing and refining the experimental
design before starting a full-fledged study with
numerous participants.

A wide range of experimental methods may be

appropriate. At one end of the spectrum is the
rigorous application of signal detection methods.1

We can use these to assess the detectability of a
target structure from a background of noise. A
more common experiment type is the evaluation
of a number of different visual features. For
example, a study might address the question of
how well motion parallax, stereoscopic depth, and
surface texture contribute to the perception of
surface shape. Such an experiment calls for a
factorial design with analysis of variance (ANOVA)
to evaluate the results.

Another concern is how many participants to
use. The answer depends on what’s being studied.
For psychophysical experiments that measure low-
level visual phenomena, it’s acceptable to use only
a few participants. This is because there’s little
variation in viewer’s reactions. These experiments
contain numerous repeated measures (that is,
multiple trials with the same experimental
conditions) to ensure a sufficient total number of
trials. If cognitive (as opposed to purely perceptual)
processes are involved, more participants are
normally required. Counterbalancing participants
based on characteristics like gender, age, or
experience may also be necessary. A detailed
description of both participants and methods is an
essential component for any publication involving
user studies.

Finally, researchers at US universities should be
aware that they may be required to obtain prior
approval (or exemption) from the Institutional
Review Board at their institution before
conducting any work involving human subjects. In
other countries, similar requirements may apply.

In all cases, consulting with an expert on
experiments can be invaluable. This will help with
design and in applying appropriate statistical
analyses to study the experimental results.
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� If we want to display categories of information—for
example, the classification of a terrain into regions of
different geological type—then we should use a chro-
matic sequence.

� If we want to minimize errors from contrast effects,
then we should arrange a sequence to cycle through
many colors.

We can also construct a general solution that cycles
through many colors (to allow categorization) while
continuously increasing luminance.

Figure 2 illustrates three different color sequences
selected to emphasize a different aspect of the underly-
ing data. Experimental studies have verified that these
theoretical predictions apply in the case of color
sequences.2 This demonstrates the use of well-
established theories to build design guidelines, togeth-
er with experiments that validate the guidelines in an
applied setting.

Shape from texture
Numerous applications in scien-

tific visualization involve the com-
putation and display of arbitrarily
shaped, smoothly curving surfaces.
A common case is level surfaces in
volume data. By default, the stan-
dard practice is to render these sur-
faces with a smooth, Phong-shaded
finish. One important question that
arises is, Can we better convey the
3D shape by rendering the surface
as if it were made from a subtly tex-
tured material, rather than polished
plastic? Ample evidence from psy-
chophysics3 suggests that certain
kinds of surface texture can facili-
tate shape perception (see Figure
3).4 Unfortunately, the exact mech-
anisms by which surface texture
affects shape perception—and
hence the specific characteristics of
texture patterns that best show
shape—remain unknown. Compli-
cating any naive attempt to use tex-
ture to enhance shape appearance is
the complementary evidence that

under many conditions texture can camouflage surface
shape features.5

Through carefully designed experiments, it’s possi-
ble to gain concrete insights into how we might use tex-
ture most effectively to support accurate shape
perception. More specifically, we can start to answer the
question, If we want to design the ideal texture that best
conveys the shape of a smoothly curving surface, what
should the characteristics be? Visualization researchers’
user studies are essential in this endeavor for several
reasons. 

First, traditional vision researchers are primarily con-
cerned with elucidating the neural processes involved
in the perception of shape from texture, and their inves-
tigations don’t fully encompass the scope of questions
that we’d like to ask. 

Second, there’s a limit to the depth of understanding
we can derive purely from introspection and informal
empirical comparison. In the absence of a clear task, view-
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2 Three color sequences: (a) a chromatic sequence, good for representing categories; (b) a luminance sequence,
good for representing form; and (c) a combined chromatic-luminance sequence, good for representing both cate-
gories and form.
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3 Four exam-
ples from a
study testing
different meth-
ods to enhance
shape percep-
tion: (a) Phong
shading, 
(b) one princi-
pal direction,
(c) two princi-
pal directions,
and (d) a line
integral 
convolution.



ers may adopt differing opinions about which textures
are most effective. Without concrete experimental evi-
dence, it may be impossible to sort out these differences.

Furthermore, complex problems rarely yield simple
answers. If texturing can help, it’s unlikely that any
method we initially attempt will turn out to be the best
in all cases. We expect to discover complicated interac-
tions between surface texture and shading, between tex-
ture orientation and surface geometry, and between
aesthetics and convention. We may also find numerous
task dependencies. This suggests that we’ll need to iter-
ate to achieve progressively more effective methods for
different purposes. These goals are best achieved
through carefully controlled, quantitative user studies
that objectively assess the impact of particular texture
pattern characteristics on the accuracy of performance
on specific tasks.

Perceptual textures
One key issue we must address when we design an

experiment is which conditions to study. As the number
of conditions (and the interaction between conditions)
grows, so does the number of trials needed to test each
condition properly. Therefore, we often restrict experi-
ments to the most important conditions.

Understanding how we see the basic properties of an
image lets us create representations that take advantage
of the human visual system. An important discovery in
psychophysics from the past 25 years is that human
vision doesn’t resemble the largely passive process of
modern photography. A much better metaphor is a
dynamic and ongoing construction project, in which the
products are short-lived models of the external world
specifically designed for the viewer’s current visual
tasks. Harnessing human vision for visualization there-
fore requires that we construct images that draw atten-
tion to their important parts.

Previous work in computer vision and psychophysics
decomposed texture patterns into a number of basic tex-
ture dimensions like size, contrast, regularity, and direc-
tionality. Based on this, we wondered whether we could
use individual texture dimensions to display multiple
attribute values. Controlled experiments offer a way to
answer this question.

We showed viewers regularly spaced 20 × 15 arrays of
perceptual texture elements (or pexels) that look like
upright paper strips. The pexels allow multiple texture
dimension variations including height, density, and reg-
ularity of placement. Viewers saw the pexel grid for a
short duration. We then asked whether a group of pex-
els with a particular target value was present or absent.
Our experiment tested five different conditions selected
from models of human vision and from texture segmen-
tation and classification experiments in computer vision.

We varied

� target type (target pexels were defined by height, den-
sity, or spatial regularity),

� target–background pairing (different types of tar-
gets—for example, both medium and tall targets),

� display duration (the amount of time the viewer saw
the pexel array),

� target patch size (the number of pexels used as tar-
gets), and

� background texture pattern (whether nontarget tex-
ture properties were held constant or varied ran-
domly).

Each condition served a specific function. Target type
let us test three different texture dimensions.
Target–background pairing searched for differences in
performance based on the target dimension’s value.
Display duration measured the time needed to perform
a target detection task. Target patch size asked whether
smaller texture patches were harder to identify. Finally,
background texture pattern tested for visual interfer-
ence when secondary texture dimensions varied ran-
domly across the display. Even these basic conditions
produced 108 different display types (three target types
by two target–background pairings by three display
durations by two patch sizes by three background pat-
terns). Each viewer who participated during the exper-
iment observed 576 trials from one target type (16
repetitions of a target’s 36 different display types). We
randomly selected eight trials (from the 16 repetitions)
in each display type to contain a target patch; the
remaining eight did not.

Results from the experiment showed a preference for
target type (taller targets were easier to identify than
shorter, denser, and sparser targets, which were them-
selves easier to identify than irregular or regular tar-
gets). High accuracy was possible for many target types,
even for display durations of 150 ms or less. Finally, vari-
ations in regularity interfered with the identification of
shorter, sparser, and denser targets (but not taller ones).
A complete description of the experiment’s results is
available in Healey and Enns.6 We applied these results
as guidelines for using texture in multidimensional visu-
alizations. Figure 4 shows an example of using pexels to
visualize typhoon activity in southeast Asia.

Usability testing
We designed much of the work presented in this arti-

cle to test basic perceptual features or visualization tech-
niques. We’ve found, however, that visualization
applications have important aspects that we should
study within the application’s context.

The approach to this type of study is quite different
from basic perception experiments. Participants must
solve a relatively complex task, where there’s a greater
freedom of actions and a higher potential for mistakes.
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4 Perceptual texture elements
(pexels) used to visualize a typhoon
striking the island of Taiwan: pexel
height represents wind speed
(taller for stronger winds), density
represents pressure (denser for
lower pressure), and color repre-
sents precipitation (blue and green
for light rainfall to purple and red
for heavy rainfall; yellow indicates
an unknown rainfall amount).



Studying a technique in an application setting (as
opposed to an artificially simple environment) is criti-
cal because we can’t assume that low-level results auto-
matically apply to more complex displays. 

Comments from participants are often more impor-
tant than the other data we collect because they provide
valuable hints about what’s happening during the exper-
iment. Close observation of the participants can also
offer information about experiment details that possibly
weren’t part of the original hypotheses.

An example of this type of study is the evaluation of
semantic depth of field (SDOF),7 a technique for guid-
ing a viewer to specific information in an image. SDOF
is based on the depth-of-field effect from photography,
where different parts of a picture are in or out of focus
based on their distance from the focal point of the lens.
SDOF generalizes this concept. An object’s sharpness
depends not on its physical position, but on its relevance.
Viewers are immediately drawn to the sharp (that is,
highly relevant) parts of the image, but they can still
choose to look at other, out-of-focus objects (see Figure
5). We designed an experiment that contained both
basic perception and application components. The per-
ception studies produced significant results, which were
close to what we expected to find. The application find-
ings, however, were much less conclusive.

One application was a map viewer that presented
users with a map containing nine layers of information
(for example, roads, elevations, and cities). We asked
them to position a project (for example, a factory) based
on three very important and three somewhat important
factors. Users could reorder the layers by selecting which
layer was on top. The layers were displayed in three dif-
ferent ways: opaque, semitransparent, and SDOF (the
top layer was sharp and underlying layers were increas-
ingly blurred). The hypothesis was that SDOF would
make it easier to stack the layers in order of importance,
and thus to answer more quickly and correctly.

While some useful results were identified during the
application study, we didn’t find statistically significant
results in either response time or correctness. We con-

cluded there were two problems with the study. First,
the maps we used were visually too simple. Second, the
number of tasks was too small; more examples per user
might lead to significant results. We plan to consider
these ideas in future work on SDOF.

When do user studies help?
While user studies are an important tool for visual-

ization design, they aren’t the proper choice in every sit-
uation. Experiments don’t always work as expected and
other techniques are available.

Other techniques
It’s important to consider other options before design-

ing and running a user study. Studies are time consum-
ing to design, implement, run, and analyze. Typically,
we can only use them to answer small questions, and
any larger conclusions rely on generalizations that might
not be valid. Often, measures that are less precise, quan-
titative, and objective may provide sufficient insight
about a visualization question to let us move forward.

In our investigation of virtual reality tools for archae-
ological analysis,8 we labored long and hard to design
a good user study to test the system we developed.
However, the experimental design eluded us. In the end,
we videotaped a pair of archaeologists using the system
to evaluate some of their scientific hypotheses. They also
generated several new ideas, some of which would have
been difficult to generate with other analysis methods.
This approach was sufficient to demonstrate the visual-
ization application’s use.

In another context, we can also transcend the tradi-
tional user study. Artists and designers have been cre-
ating visualizations for centuries and have invented
effective methods. User studies come from science—in
fact, they embody the scientific method of posing
hypotheses, taking measurements, analyzing them, and
iterating to gain insight. For the scientific study of low-
level vision, the methodology works, but as we rise up
to the level of a scientific visualization application, it
might not be possible to use these techniques to answer
important questions.

Can we replace some parts of user testing with expert
visual designers? This is a conjecture we can likely test
(not surprisingly) with a user study, comparing results
of a standard user study with expert visual designer
input. Preliminary results suggest that visual designers
can replicate some user study results more quickly and
with more insight about why differences occur.
However, we still have much to learn about the space
between perceptual psychology and visual design.

When things go wrong
In some studies, experimental design may lead to

results that aren’t statistically significant. For example,
in a recent study we hypothesized that users would per-
form differently for a visual search task in virtual reali-
ty if the virtual environment were different. In fact, we
found that statistically there was no significant differ-
ence. Perhaps our conjecture was wrong, but it’s also
possible that our choice of task or other parts of the
experimental design misled us. The virtual environment
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5 An image
from the
semantic depth
of field study.
The image was
displayed for
200 ms, after
which partici-
pants were
asked to point
at the quadrant
with the sharp
object.



may really matter in some cases. We continue to think
about how the virtual environment might make a dif-
ference, particularly since visual context is important in
2D visual search tasks. Some studies aren’t published
because of null results, or because the results are incon-
clusive or uncompelling. 

Null results are completely natural because they show
that the original hypothesis wasn’t supported by the
data. This can be because the difference is too small for
the amount of data collected, but most often it’s because
the hypothesized difference is insignificant. This is why
the study was done in the first place and it should there-
fore not be considered a failure. In visualization, we can’t
publish null results (at least not on their own) easily.
Nevertheless, the results can provide insight about
which directions of research to pursue and which to
abandon.

Inconclusive results are a much more serious prob-
lem. They usually mean that there was a design error in
the study and that it must be run again. Usually, how-
ever, this affects only one part of a study, so the effort is
considerably smaller the second time. Also, we can test
additional hypotheses emerging from the successful
parts of the study.

Uncompelling results can result from choosing the
wrong task or measuring the wrong performance quan-
tity. For example, in “The Great Potato Search,”9 we
chose a 3D visual search task. Unfortunately, it was a
task that involved looking inward at a relatively small
model. We believe a task that involved searching more
broadly around the user might have shown important
performance differences correlated with changes in the
virtual context. While we can (and will) go on to test
that new hypothesis, if we had chosen a different task
in the first place, we would have been better off. There’s
always a tension between executing an experiment
quickly and spending time on design. Practice can help
reduce or alleviate these types of mistakes.

Conclusions
In this article we tried to advance the current state of

the art in two ways:

� Promote evaluating visualization methods with user
studies. This is being done in certain cases, but it’s still
far from standard practice in our field.

� Ask where user studies might be useful and where
other techniques might be more appropriate (such as
ideas from the visual arts).

User studies can improve the quality of our research.
Although it’s difficult to design a good experiment and
the relevant skills require substantial study tempered
with experience, a well-conducted study is usually
worth the effort. The results can ultimately have a con-
siderable impact and potentially contribute to the dis-
cipline’s scientific foundations.

Even though we advocate more user studies, we rec-
ognize that other methods may be more appropriate in
certain situations. Designers should be aware of these

methods to select the best tool for the problem at hand.
One reason visualization is such a fascinating part of
computer science is because so many other fields (such
as psychology and the visual arts) overlap with our
research. �
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