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Volumetric depth peeling for virtual
arthroscopy
David Borland, John P. Clarke*, and Russell M. Taylor II, Department of Computer Science, *Department of
Radiology, University of North Carolina at Chapel Hill

Three dimensional (3D)
display of medical data
sets is an increasingly
useful tool. Viewing 3D
reconstructions of ob-
jects from magnetic
resonance imaging
(MRI) and computer-
ized tomography (CT)
data is more natural and
intuitive than mentally
reconstructing these ob-
jects from orthogonal
slices of the data, especially with the in-
crease in size of datasets due to improv-
ing scanner resolutions. When displaying
such data sets using volume rendering, ap-
propriate selection of the transfer function
is critical for determining which features
of the data will be displayed. For virtual
arthroscopy, however, no transfer func-
tion can enable views like that of a socket
from within the ball of a joint because the ball it-
self blocks the view.

Volumetric depth peeling (VDP) was developed
to enable the rapid survey of joints for pathology
by automatically culling occluding voxels, thus en-
abling textbook-like illustrations of joint surfaces
that are not possible even with clinical arthroscopy
(see Figure 1). VDP borrows conceptually from
previous work,1 but is extended to the more gen-
eral case of ray-based volume rendering, retaining
full transfer-function control.

Arthroscopy
Arthroscopy is the process of inserting an
arthroscope (a small camera) into a joint through
an incision in the skin and so providing views of
the interior of the joint. The technique is useful for
diagnosing derangements within the joint and for
performing surgery to treat them. However,
arthroscopy is an expensive, invasive procedure that
requires skilful manipulation of arthroscopic tools
confined to the cramped spaces within joints. For
pre- and post-operative diagnosis of joint derange-
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Figure 1. Textbook cut-away of a shoulder
socket compared with volumetric depth peeling.

Figure 3. Standard
virtual arthroscopy
versus volumetric
depth peeling.

Figure 2. Three orthogonal MRI
slices.
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Multiscale contrast enhancement for medical images
A. Monica Trifas, John M. Tyler, and Oleg S. Pianykh*, Department of Computer Science, Louisiana State University (LSU) at Baton Rouge, LA; *Department
of Radiology, LSU Health Sciences Center at New Orleans, LA

Here we present a method of image
enhancement that uses multiscale
methods for contrast manipulation.
The method is based on the
Laplacian pyramid and 2D wavelets.
The basic idea in multiscale en-
hancement is to decompose the im-
age into components that represent
individual details, and to improve
the contrast by operating on these
components rather than on the origi-
nal image. In our research, the im-
age is decomposed according to the
Laplacian pyramid transform.

A pyramid is a multiscale repre-
sentation built through a recursive
method that leads naturally to self-
similarity. To build a Gaussian pyra-
mid, the original image is convolved
with a lowpass filter and subsampled
with a factor of two; the filter-
subsample operation is repeated re-
cursively to produce a sequence of
images. To obtain a Laplacian pyramid of the
same image, a bandpass filter is used rather than
a lowpass filter. A Laplacian pyramid is a com-
plete representation of an image in the sense
that one can perfectly reconstruct the original
given the coefficients in the pyramid. The re-
construction process is straightforward: we sim-
ply expand each image up to the full size of the
original image using an interpolation filter, and
then sum all of the interpolated images.

A Gaussian-like weighting function is used
to compute the predicted value for each pixel.
This function is centered on the pixel itself. The
weighting function is convolved with the im-
age and he predicted values of all pixels are
obtained as a result of the convolution opera-
tion. Then, the lowpass filtered image is sub-
tracted from the original.

Contrast improvement is achieved by modi-
fying the coefficients of the Laplacian pyra-
mid. Small coefficients represent subtle details.
These are amplified to improve the visibility
of the corresponding details. The strong den-
sity variations have a major contribution to the
overall dynamic range, and these are repre-

sented by large coefficient values. They can be
reduced without risk of information loss, and
by compressing the dynamic range, overall con-
trast resolution will improve.

The human visual system is sensitive to the
different spatial frequencies in an image. In par-
ticular, the plots for human visual frequency
indicate that some frequencies are more vis-
ible than the others, and some are not impor-
tant at all. Removing certain frequencies can
help emphasize the others (keeping the total
image ‘energy’ the same), and improving the
quality of the image.

To optimize the method, we have used a set
of medical images with visible details. Based
on these, we have constructed and quantified
an ideal image-frequency profile, i.e. a one that
corresponds to the most ‘balanced, natural’
image.

We have studied the effects of the most com-
mon artifacts (such as blurring and noise) on
the frequency content of each image. First we
compared (using statistical parameters) the
multiscale decomposition corresponding to a

blurred or sharp medical image with
that corresponding to an ‘ideal’ im-
age. Based on this comparison, we
computed the values of the coeffi-
cients to be applied to the compo-
nents of the blurred or extremely
sharp image in different frequency
bands. For each image, we built a
Laplacian pyramid decomposition,
then multiplied each level of the
pyramid with pre-selected coeffi-
cients. Finally, we  reconstructed the
image using the new levels stored
in the Laplacian pyramid. An ex-
ample of the typical improvement
is shown in Figure 1. Thus, we dem-
onstrated that a Laplacian pyramid
can be used to produce distinguish-
able image frequency profiles, and
have applied these to the contrast en-
hancement of medical images.

Figure 1. Example of the contrast enhancement of a medical image
using a technique incorporating the Laplace pyramid.

A. Monica Trifas, John M. Tyler,
and Oleg S. Pianykh*
Department of Computer Science, Louisiana
State University (LSU) at Baton Rouge, LA
*Department of Radiology, LSU Health
Sciences Center at New Orleans, LA
E-mail: mtrifas@hotmail.com
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Demosaicking techniques for multispectral cameras
using mosaic focal-plane-array technology
Gaurav Baone and Hairong Qi, Advanced Imaging and Collaborative Information Processing (AICIP), Department of Electrical and Computer Engineering

The advent of the digital camera has put an end
to the laborious processes required for tradi-
tional film-based photography. Instantaneous
results and simple post-processing options have
made digital cameras popular and irreplaceable.
However, the final image that we perceive as
the photograph is rather different than what the
device actually captures. The camera consists
of an array of photo-sensors arranged system-
atically in a specific pattern. This pattern,
known as the color filter array (CFA) pattern,
controls the placement of various wavelength-
specific sensors throughout the image plane.

To form a color image, three types of sen-
sors, each sensitive to one of the primary col-
ors of the visible spectrum (red, green and blue),
are used. Instead of piling up all the three sen-
sors at each pixel location in the image plane,
the color filter array allows controlled place-
ment of only one sensor of each type at each
pixel. That is, at each pixel location we have
only one band value is sensed and two are miss-
ing. This problem is solved by using a tech-
nique called demosaicking, which uses neigh-
borhood information to estimate the missing
pixel values and thus forms the required three-
band color image (see Figure 1). This color
camera technology is often referred to as
mosaicked technology.

The success of this technology in color cam-
eras motivated us to apply it to multispectral
image-acquisition systems. Existing multispec-
tral cameras use expensive and mechanically
delicate equipment like image spectrometers to
capture images. The extension of this technol-
ogy to multispectral cameras would require a
new filter array that can accommodate more
than three spectral bands. This problem has
been solved by Miao et al.,1 who have devel-
oped a generic method to generate mosaic fil-
ter array patterns for any given number of spec-
tral bands in an image (see Figure 2). How-
ever, having given the solution to this prob-
lem, the primary problem of recreating the
multispectral image from the registered band
values still remains.

Color cameras use interpolation-based strat-
egies to recreate the final color image from the
sparsely-distributed three-band values,  and we
have successfully extended these to the multi-
spectral case. However, the problem with in-
terpolation-based methods in multispectral
images is that, due to the increased number of
spectral bands, the distribution of the missing
band values in the mosaicked image becomes

even more sparse and complicated. This affects
the correlation between neighboring pixels,
which in turn affects the final output.

Another problem with the interpolation-
based methods is that they have no provision
for removing external noise and degradation.
To tackle these problems we have developed a
novel demosaicking approach that treats the
demosaicking problem as a classic case of the
image restoration problem. In our case, the
original image is the actual scene that has to be
captured by the camera. This means that we do
not know anything about the original image,
which goes through external noise and degra-
dations and is then captured in the form of the
mosaicked image by the filter array. This is then
treated as degraded, and our goal is to restore
it to form a degradation-free multispectral im-
age. Missing pixels are considered to be part
of the image degradation.

As there is no prior information about the
original image, we adopt the maximum a-pos-
teriori probability (MP) method to solve this
problem. The technique assumes that the origi-
nal image is from an ensemble whose distribu-
tion is assumed to be a multivariate Gaussian.2

The problem then focuses on maximizing the
a-posteriori probability: the conditional prob-
ability of the original image given the observed
image. Maximizing this will give us the maxi-
mum likelihood of the image chosen being the
original for the given degraded image. The op-
timization problem is solved using the well-
known gradient-descent method.

We have tested our algorithm on seven-band
synthetic multispectral images, corrupting the
images with noise and other types of degrada-
tion. These corrupted images were used as in-

Figure 1. Block diagram of the mosaicked technology.

Figure 2. Mosaic filter array patterns for different number of spectral bands: (a) three band CFA (Bayer),
(b) seven band filter array.

(a) (b)

Continues on page 10.
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Automatic conversion technique from data
dependent triangulation to SVG B-splines
G. Messina, E. Ingrà,* S. Battiato* and G. Di Blasi*, STMicroelectronics, AST- Imaging Group, Catania, Italy; *Department of Computer and Mathematic
Sciences, IPLAB Group, University of Catania, Italy

The conversion of raster images into vectorial
shapes is a challenging branch of computer
graphics. Here we present a technique to con-
vert surfaces, obtained through a data-depen-
dent triangulation (DDT), into Bezier curves
by using a Scalable Vector Graphics (SVG) file
format. The method takes as input a data-de-
pendent triangulation obtained from a raster
image. Characteristics of the triangles are taken
into account to trace a map of the boundaries,
and the estimated triangle barycenters are con-
nected together. Thus the conversion of the re-
sulting polylines into curves is performed. Af-
ter the curves have been simplified and closed,
the final representation is obtained by sorting
the surfaces in a decreasing order.

SVG language and vectorization
The SVG standard allows the representation of
complex graphical scenes via a collection of
graphic vectorial-based primitives. These have
several advantages over classical raster images,
including scalability, resolution independence,
and so forth. SVG format could find useful
application in the world of mobile imaging
devices, where cameras must be matched to
displays of limited color, size, and resolution.

The DDT has been used to approximate lo-
cal pixel neighborhoods using triangles.1 The
triangulation replaces the input raster image
with a set of triangles according to a specific
cost function that is able to implicitly detect
the edge details. The overall perceptual error
is then minimized by choosing a suitable trian-
gulation. On the other hand, the DDT is strictly
connected to the original pixel positions: as a
result, the number of triangles is larger than

the number of pixels. This triangulation could
be directly managed by SVG primitives. How-
ever, although the quality achieved in this way
is rather good,  the size of the resulting files
may be very large. For example, if we consider
a 1600×1200 RGB raster image, the
uncompressed size of the file is about 5Mb and
the resulting DDT (in SVG format) is about
255Mb.

Proposed technique
Once the triangulation has been performed, the
algorithm extracts from the DDT only those
triangles that are not equilateral and those equi-
lateral triangles with nearest neighbours in a
different colour. In this way, only the bound-
aries have been considered: the triangles have
been synthesized as single points using their
estimated barycenters. The construction of the
adjacent lists of barycenters is fundamental to
permit the correct interconnection of these
points. The lists have been created taking into
consideration the (x,y) position of each point
and by sorting first along the rows and then
down the columns. The barycenters have then
been connected together by following the
boundaries along the wind rose directions: the
outer boundaries are connected together, and
then the inner boundaries are processed, until
the whole triangle set has been elaborated.

After these areas have been created, the con-
version to Bezier curves is performed. The
points found in the previous step are used as
control points and new ones are created as con-
tour points. A simplification of the curves is
then applied by removing useless intermediate
points. Finally the resulting surfaces are sorted

using an approximation of the area and saved
in SVG format. This operation is necessary
because the SVG viewer shows the last layer
in foreground, thus the bigger areas must be
put in background. In Figure 1 some illustra-
tions of the pipeline steps are shown.

Results
The technique has been compared with other
raster-to-vector conversion methods2,3 and the
software performs well in terms of both per-
ceptual and measured quality. Details of the
experiments can be found on the SVG UniCT
group page.4

G. Messina, E. Ingrà,* S. Battiato*,
and G. Di Blasi*
STMicroelectronics
AST- Imaging Group, Catania, Italy
E-mail: giuseppe.messina@st.com
*Department of Computer and Mathematic
Sciences
IPLAB Group, University of Catania, Italy
E-mail: elisaingra@gmail.com, {battiato,
gdiblasi}@dmi.unict.it
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Figure 1. (a) Input raster image. (b) Data-dependent triangulation obtained from the input image.
(c) Extraction of a region of interest from triangle boundaries (to show the effectiveness of the
approach). (d) Final Bezier curves.
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Resolution and light sensitivity tradeoff with pixel size
Joyce Farrell and Feng Xiao*, Stanford University, Stanford, CA; *Agilent Technologies, Santa Clara, CA

Digital cameras are
now a standard feature
in cellular phones, driv-
ing the market for com-
plimentary metal oxide
s e m i c o n d u c t o r
(CMOS) imagers that
can fit within a small
form factor. Given that
the size of a CMOS im-
aging sensor array is
fixed, the only way to
increase sampling den-
sity and spatial resolu-
tion is to reduce pixel
size. But reducing pixel
size reduces the light
sensitivity. Hence, un-
der these constraints,
there is a tradeoff be-
tween spatial resolution
and light sensitivity.

We define two metrics to characterize the
tradeoff between spatial resolution and light
sensitivity as a function of pixel size.1,2 First,
we characterize spatial resolution by the
Nyquist sampling frequency of an imaging sen-
sor. Second, we characterize photometric sen-
sitivity by the minimum scene illuminance (lux)
required to reach a signal-to-noise ratio (SNR)
of 30dB at an exposure of a thirtieth of a sec-
ond. Our human experimental measurements3

show that sensor SNR must be 30dB in order
to render photon noise invisible.

We use the Image Systems Evaluation
Toolbox (ISET) to calculate these metrics for
imaging sensors with the same dye size but with

Figure 1. (a) Nyquist sampling frequency increases with shrinking pixel size. (b) Minimum scene illuminance needed to reach 30dB
SNR at exposure duration of 1/30s increases with shrinking pixel size.

era simulation software (Figure 2). We simu-
lated images captured with monochrome sen-
sors containing various pixel sizes. The mean
scene luminance was set to 20cd/m2, simulat-
ing indoor tungsten illumination. The simulated
exposure duration was 100ms. This figure il-
lustrates the visibility of photon noise in the
2µm-pixel image and the visibility of spatial
aliasing in the 6µm-pixel image.

We plan to use these types of simulated im-
ages in psychophysical experiments. We will
use pairwise preference judgments to generate
iso-preference curves for camera images with

Figure 2: Simulated camera images that illustrate the tradeoff between resolution and light sensitivity for a 512×512 imaging array with different pixel sizes and
fixed exposure duration. The images are scaled to have an equal maximum display value.

(a) 2µm pixel (b) 4µm pixel (c) 6µm pixel

Continues on page 11.

different pixel sizes.5 Table 1 lists the optics
and sensor parameters used to simulate the ef-
fects of pixel size on an imaging array with
fixed dye size.

Tradeoffs
Figure 1a shows how the sensor resolution,
estimated by the Nyquist sampling frequency
(ISO 12233 standard)6 depends on pixel size.
Figure 1(b) shows that the minimum scene il-
luminance (lux) required to reach a pixel SNR
of 30dB at an exposure duration of 1/30s de-
pends on pixel size.

The consequences of these tradeoffs are il-
lustrated visually using the ISET digital cam-
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Halftoning via Perona-Malik diffusion
and stochastic flipping
Jianhong (Jackie) Shen, School of Mathematics, University of Minnesota

Halftoning is the key process gov-
erning most binary or ternary print-
ing devices. The major task involved
is easy to describe: to convey faith-
fully a multitude of shades or col-
ors using only a few elementary
ones, e.g., black ink dots. In some
sense, halftoning simulates quantum
physics. The latter reveals that the
continuum of the material world we
observe actually emerges from the
discrete, or quantum, building
blocks of basic particles and their
discrete states. Halftoning attempts
to reverse Mother Nature’s engi-
neering by designing models and
algorithms to express smoothly
varying tones via only a few discrete
colors.

For maximal clarity, we focus
here only on the halftone process of express-
ing continuous-tone (or contone) grey shades
by simply turning black dots on or off, as in
most black and white inkjet printers. We de-
scribe here a novel method for halftoning an
image using a new error-diffusion algorithm.
For a given contone image u in [0,1], the
method shows how to design its halftone ver-
sion, b, which is binary from {0,1} at each
pixel. In case of printing, one may for conve-
nience assume that b=0 deposits an ink dot,
while b=1 leaves the spot blank.

Error diffusion
Suppose at a pixel α, the contone value
u(α)=0.75, while the halftoned value b(α)=0
or 1. The error e(α)=u(α)-b(α)=0.75 or -0.25,
which in either case is non-negligible. This typi-
cal scenario differentiates halftoning from other
design tasks in computer graphics or computer
aided design (CAD), for which pointwise ap-
proximation errors often diminish when one
employs high-order Fourier modes, polynomi-
als, splines, or wavelets. In contrast, pointwise
error evaluation appears pointless for
halftoning. As for the human vision system
(HVS), the errors must be blurred to prevent
them being detectable by the naked eye.

This understanding inspired one of the great-
est halftoning methods: invented by Floyd and
Steinberg,1 it is called error diffusion (ED). At
a current pixel α, the halftone error e(α)=u(α)-

b(α) is distributed to its neighboring pixels’ βs
in such a manner that the errors cancel out each
other locally. Thus, a typical ED algorithm of-
ten relies upon four entities: a path visiting all
the pixels, a pixelwise decision rule for con-
verting u(α) to b(α), local windows into which
halftone errors are diffused, and their distribu-
tion weights.

Novel two-step progressive algorithm
The new halftoning algorithm2 is iterative, with
two steps at each iteration. Suppose at step n,
the current halftone image is bn with error field
en. First one diffuses the error field
ediff=PM(en), where PM stands for the Perona-
Malik diffusion process to be explained later.
Next, the diffused error field ediff induces a
stochastic flipping (SF) strategy that can fur-
ther polish the halftone image:

bn+1=SF(bn | ediff)

So the iteration continues until it converges.
The characteristics of the new algorithm are:

independence from particular choices of visit-
ing paths, local diffusion windows, or diffu-
sion weights; being progressive instead of aim-
ing at single-pass completion; and allowing
straightforward parallel implementation.

Perona-Malik diffusion (PM)
Diffusion is ubiquitous—e.g. heat diffusion and
Brownian motion3—and is often homogeneous

∆ ∆ ∆

and isotropic: i.e., the same every-
where and in every direction, as quan-
tified by the celebrated heat equation:
u

t
=D ∆u. For intelligent image en-

hancement, Perona and Malik4 devised
an image-adapted anisotropic diffu-
sion mechanism in the form of:

where the diffusivity D(•) depends
upon the input image u so that diffu-
sion across edges is discouraged, cru-
cial for not messing up different ob-
jects in images.

The current algorithm employs a
revised version of the PM diffusion for
error diffusion: ediff=PM(en) at each
step n, so that error flows are confined
within each object, as the HVS does.
Moreover, the PM diffusion is a par-

allel process in contrast to most, which are se-
quential.

Stochastic flipping (SF)
The diffused error field ediff contains valuable
information about the performance of the cur-
rent halftone version bn. At any pixel α, a
smaller ediff(α) signifies good performance of
the current halftone, while a larger one flags
deficiency. This key qualitative observation
leads to the quantitative strategy of stochastic
flipping bn+1=SF(bn | ediff), which constitutes
the other important half of the algorithm.

The flowchart of this progressive two-step
halftone algorithm is depicted in Figure 1.

Jianhong (Jackie) Shen
School of Mathematics
University of Minnesota, MN
E-mail: jhshen@math.umn.edu
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Figure 1. Flowchart of the progressive two-step halftone algorithm.
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ISO dynamic range interpretation: risky business
Don Williams and Peter D. Burns, Kodak Research Laboratories, Eastman Kodak Company

The term dynamic range is as
old as signal analysis itself.
Ask anyone actively involved
in the optical or imaging sci-
ences to define it for image
capture and you are sure to
get an opinion. While many
will include words like mini-
mum, maximum, tonal range,
accurately detect, or reliably
detect, others will offer the
ubiquitous 20 times log

10
 of

the maximum signal to dark
noise ratio (...or is it 10
times?). Others, citing bit
depth, may confuse signal en-
coding with detector perfor-
mance. It is truly a cluttered
landscape, and evokes an ob-
servation that this is science
in action, at its messy best.

Two ISO electronic imag-
ing standards for capture de-
vice dynamic range metrol-
ogy have been issued. Both
ISO 15739 (digital still cam-
era noise) and ISO 21550 (film scanner
dynamic range) adopt signal-to-noise ra-
tio (SNR) threshold criteria for determin-
ing dynamic range endpoints. There is
little doubt that SNR is an appropriate
specification metric. Beyond this, though,
these standards provide an opportunity for
understanding alternative meanings for
‘signal’ and ‘noise’ measurement in terms
of their spatial, and possibly temporal,
components.1

Intended for digital image capture, the
concepts are easily extendable to signal
types other than those in the optical sci-
ences. These standards are not perfect but,
by drawing upon them, the reader is chal-
lenged to think of a statistical interpreta-
tion of dynamic range, vis-à-vis SNR. One
can adopt a signal-detection perspective and in-
terpret the dynamic range evaluation in terms
of various levels of risk. This can be general-
ized for various signal-specific spatial fre-
quency bands, and noise correlation statistics.

To start, consider the following definition
of dynamic range:
Dynamic Range: The extent of energy over
which a digital capture device can reliably
detect signals, reported as either a normalized
ratio (xxx:1) or in equivalent log optical-den-
sity units.

The operative words in this definition are
reliably detect. The reliability (think probabil-

ity) of detecting any given signal is a function
of not only the signal strength, but also the
ambiguity that noise introduces. Adopting the
ISO 21550 criterion, the density levels where
the incremental SNR is equal to 1.0 define the
dynamic range endpoints. Because it adopts an
incremental signal criterion, its utility lies in
quantifying how well a given object intensity,
I

o
 can be distinguished from another intensity

of an arbitrarily small difference, ∆I. In the
context of a noise source, it will answer ques-
tions like, “How well can this capture device
distinguish between an optical density of say
3.00 and 3.10?” The Gaussian distributions of

Figure 1 help to convey this con-
cept. For simplicity, the abscissa
numerical values represent digi-
tal count value.

The distributions of Figure 1
are consistent with the limiting
SNR of 1.0 for dynamic range: a
mean incremental signal of 0.10
along with an RMS noise level
of 0.10. If a single or average
pixel value falls within the alpha
risk region, one may accept that
the value is not part of the 3.10
density population. What is more
pronounced with this example is
the large beta risk region associ-
ated with the SNR of 1.0. That
is, the risk in deciding that a
single pixel value (think high fre-
quency) belongs to the 3.10
population when in fact it be-
longs to the 3.00 density popu-
lation. Indeed, it is this risk that
some may find unacceptable
with respect to incremental sig-
nal detection reliability. Two ap-

proaches to this problem are to either set
a higher SNR criterion for the dynamic
range threshold or to reconsider what is
meant by signal for a digital image.

The previous discussion, and the above
standards, adopt a pixel-centric view of
both signal and noise characteristics. The
signal to be detected is a small difference
in a single image sample, pixel value. The
rms noise is calculated for distributions
of individual pixel values.

Consider instead the image intensity
distribution and physical extent of impor-
tant ‘signals’ in images. Important sig-
nals (objects) will span more than a sig-
nal pixel. This can be interpreted in terms
of an input signal spatial frequency spec-
trum. Correspondingly, image noise is not

completely described by its pixel-by-pixel vari-
ance of rms error, as it is in the current stan-
dards. The spatial correlation for noise sources
in image capture systems also implies spatial
frequency content. It is this spatial frequency
aspect to dynamic range evaluation that may
well influence future standards. Figure 2 dem-
onstrates how images with differing signal fre-
quency content, but identical low-frequency
signal-to-total noise values can appear dramati-
cally different.

It is likely that future standards for imaging

Figure1. Two signal distributions.

Figure 2. Signal and noise of varying bandwidth.

Continues on page 10.
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Image noise reduction and sharpening filter
Milivoje Aleksic, Maxim Smirnov, and Sergio Goma, ATI Technolgies

One of the major trends in wireless communi-
cations is the incorporation of digital cameras
into cellular phones. Typical resolution has in-
creased from VGA (720×480) to 2Mpixel last
year, and is likely to increase to 6Mpixel. Mar-
ket analysts expect that sales of CMOS sen-
sors in cellular phones will surpass the sales of
CMOS sensors in digital still cameras (DSC)
this year. The cell phone consumer expects to
enjoy similar image quality to a DSC, despite
cell phone camera limitations (like low lens
quality and high noise). The key problem is how
to display and capture this type of image with
reasonable quality, and also how to compress
them to minimize the storage space and prod-
uct cost.

In general image processing there are a lot
of different types of filters for improving vi-
sual image quality, but these do not typically
consider compression size. Our solution is
based on the bilateral filter, the original ver-
sion of which combines two kernels: the spa-
tial, which processes the pixels based on their
geometrical distance, and photometric, which
takes into account the perceptual similarity
between the currently processed pixel and the
pixels in its vicinity.1,2 This filter was intro-
duced to reduce noise while preserving the edge
structure.

Our approach to bilateral filtering enhances
this basic concept in order to allow the filter to
sharpen the image while at the same time re-
ducing its noise level. We use two spatial ker-
nels: one low-pass, and one high-pass.  As a
rule, though this is not a strict requirement, the
two kernels are selected to be complementary.

Here W
P
 [n, m] is a photometric kernel cal-

culated adaptively as a function of Euclidian
distance D2 between the current pixel  and
its neighbors:

Bilateral filtering combines the special and
photometric kernels in one:

N and M represent vertical and horizontal
sizes of the special kernel correspondingly, and
are assumed to be odd numbers. Note that 
and  are scalars for grey-scale images and
multi-component (usually three-component)

vectors for color images. The scaling denomi-
nator in the equation reflects the requirement
for the filter to preserve the DC component of
the input signal.

Please note that the scaling denominator in
this equation is now a function of the input sig-
nal and, therefore, must be calculated for each
pixel of the input image.

Traditional bilateral filter implementation
assumes that both spatial and photometric ker-
nels have Gaussian shape, and, the Euclidean
distances between pixel values are calculated
in CIE-lab perceptual color space although dif-
ferent kernel shapes and different methods of
calculating the Euclidean distances are not pre-
cluded.

The adaptive noise removal/sharpening ker-
nel is calculated as sum of low-pass (noise re-

duction) and high-pass (sharpening) compo-
nents as:

Here,  and  are low- and
high-pass photometric kernels respectively, b

HP
and K

LP
 are filter normalizing coefficients, and

U is kernel of a pass-through 2D filter.

The low-pass photometric kernel is also cal-
culated in a simplified way: it uses a flat win-
dow with a threshold parameter instead of regu-
larly used Gaussian function. Normalizing the
low-pass coefficient ensures that the low-pass
part of the resulting kernel passes the DC com-
ponent unchanged and it is consistent with the
classical bilateral filtering equation:

The high-pass photometric kernel exploits
an equation similar to its low-pass counterpart.
The coefficient normalization procedure, how-
ever, is different: i.e. the middle element of the
high-pass kernel is shifted so that the kernel’s
frequency response would be zero for the DC
signal components:

The adaptation process uses three param-
eters: the noise removal threshold, which is
used to classify variations in the input image
as noise or as edges; the sharpening threshold,
which determines variation levels qualifying for
edge sharpening; and the sharpening coeffi-
cient, which sets the desired amount of sharp-
ening.

The results of applying this modified bilat-
eral filter are simultaneous noise reduction and
sharpening, with JPEG compression improved
by a factor of 1.5 to 2.

Milivoje Aleksic, Maxim Smirnov,
and Sergio Goma
ATI Technolgies
Toronto, Ontario, Canada
E-mail: maleksic@ati.com
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Figure 1. ISO400 detail, before use of the new
filter.

Figure 2. ISO400 detail, after use of the new filter.
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Gray tracking for LC displays
Gabriel Marcu, Apple Computer, Inc.

TFTLCD (thin-film transistors liquid crystal
display) devices have proliferated in recent
years: this is mostly due to their having high
brightness, contrast, and sharpness; being al-
most entirely free of geometric image distor-
tion; compact, and light; exhibiting no flicker;
and consuming little power. In these transmis-
sive displays, color is produced by an additive
mixture of light passing through the triplets of
red, green, and blue filters that form each pixel.
The color produced by the display depends on
the backlight source, the LC light modulator
element, and the color filters.

One of the colors that is most difficult to re-
produce using LC displays is gray. This is due
to both the asymmetry of the transfer function
of the R, G, and B channels and the higher sen-
sitivity of the human visual system to color dif-
ferences in grays rather than in saturated col-
ors. Correct gray reproduction requires a very
precise control of the balance between the color
channels. In particular, on the twisted nematic
(TN) displays with a significant asymmetric
RGB native response (the most common type
of LC found in the portable devices today), the
grays tend to be bluish, an effect that is more
noticeable for middle and darker grays.1,2 A
typical color shift measured in differences of
correlated color temperature can reach more
than 3000K across the entire dynamic range of
these displays. For displays where color repro-
duction is critical, correcting this color shift is
important. This article presents a method of
doing this.

The idea is to perform the gamma and gray-
tracking correction in a single process using
both the luminance and chrominance informa-
tion of the individual RGB input channels. This
method represents a further refinement of the
method introduced in Reference 3. For a target
gamma and white point, this technique involves
computing the RGB values input to the display
such that the resulting gray has the minimum
color difference to the target color. The method
ensures that the solution is optimal, in the sense
that no other set of RGB values will be closer
to the desired color.

The algorithm runs as follows. First a target
gamma correction is specified in luminance
steps, Yj , j = 1, ..., N. A target white point (or
gray point along the gray levels) is specified as
a set of chromaticity coordinates (x, y)

j
 , j = 1,

..., N. With this, the gray tracking target is com-
pletely specified as a set of target grays, (x

j
, y

j
,

Y
j
), j = 1, ..., N. Then the native response of the

panel is measured in luminance and chroma-
ticity for each channel, (x

r
, y

r
, Y

r
)

k
, (x

g
,y

g
,Y

g
)

k
,

(x
b
,y

b
,Y

b
)

k
, k = 1, ..., M. Then, the algorithm

runs a searching procedure to find—from all
combinations of red, green, and blue values—
the one that minimizes the chromatic color dif-
ference to the target gray.

The algorithm can be described in pseudo
code in the following steps:

1. Select the target white, W[j] = (Y
j
, x

j
, y

j
), to

which the panel is corrected. The gamma cor-
rection is done here, the number of values on
which gamma correction is specified depends
on the panel.

2. For each input W
[ j ]

, j = 1 to N {
Set current minimum color difference, D, to

a large value for r = 1 to M, g = 1 to M, b = 1 to
M

Compute color C = AdditiveMixture
( r+g+b );
∆E = C - W
if( ∆E ≤ D ) {

R
[i]

 = r , G
[i]

 = g , B
[i]

 = b;
D = ∆E;
}

}

The method works fine for most LCD pan-
els, even for most with moderate crosstalk cor-
relation between the R, G, B channels. For pan-
els with severe crosstalk, the additive mixing
formula may lead to inaccurate results and a
replacement of this formula with an accurate
prediction function may be required.4

Figure 1. The correlated color temperatures of  panels with and without gray tracking compensation. The
target white point (set to 5700K) of the panel with compensation is much more stable across its dynamic
range than that without.

Continues on page 10.



SPIE International Technical Group Newsletter10

ELECTRONIC IMAGING 16.2 NOVEMBER 2005

The gamma and gray tracking corrections for
several TFT-LCD panels were computed and
evaluated. A typical result, presented in the
form of dependency of the correlated color tem-
perature on the input level, is shown in Figure
1. It can be observed that the bluish color shift
is corrected and the white point is stable across
almost the entire dynamic range. The fluctua-
tion of the correlated color temperature at low
gray levels is caused by the instrument used to
measure the color.

It was found that the panels with corrected
gray tracking render the images more naturally
than those using independent R, G, B gamma
correction for the same target gamma. In par-
ticular, the grays and flesh tones benefit from
this correction. The images’ bluish cast was
removed and the naturalness of the images was
restored.

It was found that the gray-tracking compen-
sation was effective in removing even the color
banding for adjacent gray levels (caused by the
time-frame modulation). This was possible
because the gray-tracking correction was done
for each individual gray level and was inde-
pendent of the color correction of adjacent lev-
els. The only constraint was on the monotony
of each of the resulted R, G, and B correction
curves. However, due to the limited number of
bits for coding the input R, G, and B values,
not all color banding can be removed: in some
high-brightness displays color banding may still
be visible in the dark grays. To completely cor-
rect for these artifacts, the R, G, and B input
values should be coded with more than 8bits/
channel (the number of input entries may re-
main unchanged).

puts to the MAP-based demosaicking block,
and the results demonstrated that the method
successfully performs demosaicking, while at
the same time reducing noise and degradation.
Comparisons have shown that the MAP method
performs better with traditional interpolation-
based methods. We have also tested the
demosaicked multispectral images for real-
world multispectral applications like target rec-
ognition. We have shown that the mosaicked
technology does not negatively affect classifi-
cation accuracy. In fact, in some cases, accu-
racy can be improved because of degradation
removal.

Gaurav Baone and Hairong Qi
Advanced Imaging and Collaborative
Information Processing (AICIP)
Department of Electrical and Computer
Engineering
University of Tennessee, Knoxville TN
E-mail: gaurav_baone@yahoo.com
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Demosaicking techniques
for multispectral cameras
Continued from page 3.

performance evaluation will be based on a more
complete interpretation of SNR. For dynamic
range, this would requires an approach that
accounts for not only different risk levels but
also spatial, and perhaps temporal, character-
istics of signal and noise. This would be con-
sistent with a spatial frequency view of infor-
mation content.2 This approach could include
the modulation transfer function for describ-
ing signal capture, and the noise power spec-
trum for image noise evaluation.

Don Williams and Peter D. Burns
Kodak Research Laboratories
Eastman Kodak Company
Rochester, NY
E-mail: {don.williams,
peter.burns}@kodak.com
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ISO dynamic range inter-
pretation: risky business
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Gray tracking for LC displays
Continued from page 9.

It is important to note that the gray-tracking
individual RGB gamma corrections may some-
times conflict, with each correction imposing
a set of curves different from the set imposed
by the other. In our experience, precise gray
tracking is far more important than exact
gamma correction, so we sacrifice the correct-
ness of RGB individual-channel gamma cor-
rection for perfect gray tracking and perfect
gamma correction for grays.

This method can accommodate the color
shift from various sources such as time modu-
lation, flare, wavelength dependency, and chro-
maticity variation with the input level. This
means the method is applicable to other dis-
play technologies, and is not limited to LC dis-
plays.

Gabriel Marcu
Apple Computer, Inc.
Cupertino, CA
E-mail: marcu@apple.com
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ated at the head and foot of the figure. The fi-
nal resulting image, captured after 175τ, shows
the trajectory of the solitons as the figure moved
across the image.

Numerical simulations for this optoelec-
tronic model show that a soliton pattern can be
generated for moving objects within images
with stationary backgrounds, thus establishing
a trajectory indicating the movement of the
objects within the scene. Target-tracking infor-
mation can therefore be obtained from the re-
sulting image.

Target tracking using soliton patterns
in a large-array optoelectronic system
Continued from page 12.

Adrienne Raglin
Army Research Laboratory
Adelphi, MD
E-mail: raglin@arl.army.mil

References
1. M. A. Vorontsov and B. A. Samson, Parallel

nonlinear optoelectronic image processing for
real-time motion detection, Optical Engineering
38 (3), pp. 558-563, 1999.

2. W. Lu, S. L. Lachinova, and R. G. Harrison,
Detection and tracking of small moving objects in
image sequences by use of nonlinear spatiotempo-
ral optical systems, Optics Lett. 29 (8), 2004.

3. A. J. Raglin and M. Chouikha, Competitive
Dynamics and Pattern Formation in a Large Array
of Opto-electronic Feedback Circuit System, Proc.
SPIE 5298, pp. 349-361, 2004.



11

ELECTRONIC IMAGING 16.2 NOVEMBER 2005

SPIE International Technical Group Newsletter

ments, it is less invasive to view MRI images.
By viewing slices of MRI data along the

three orthogonal axes (see Figure 2), clinicians
can diagnose joint pathologies without the use
of invasive arthroscopic procedures. Although
joint pathologies can be determined from these
images, diagnosis requires tedious manual se-
lection of slices and a difficult mental re-con-
struction of 3D structures from slices along one
axis, correlated with features along the other
two axes.

Virtual arthroscopy enables real-time evalu-
ation of joint surfaces in 3D, removing this te-
dious slice manipulation and difficult 3D men-
tal reconstruction. However, due to the close
proximity of surfaces in a joint, radiologists find
existing methods lacking for obtaining desired
views of features of interest.

Volumetric depth peeling
VDP was developed to enable radiologists to
obtain views external to the space between the
bone and cartilage surfaces (‘joint space’) for
viewing entire areas of interest. Such views are
impossible using standard volume rendering
because the surfaces occlude each other from
viewpoints outside the joint space.

VDP extends standard volume rendering by

Volumetric depth peeling for virtual arthroscopy

automatically culling occluding voxels between
the viewpoint and the features of interest, en-
abling unobstructed views of entire regions
within the structure being examined. VDP
decouples occlusion calculation from the vol-
ume rendering transfer function, enabling in-
dependent optimization of settings for render-
ing and occlusion. No pre-segmentation of the
dataset is required, and VDP handles multiple
layers of occluding material, as well as self-
occlusion.

A comparison of virtual arthroscopy using
both standard volume rendering and virtual
arthroscopy using VDP is shown in Figure 3.
On the left is an image from within the joint
space, with the humeral head on the left and
the shoulder socket and related structures on
the right. Images such as this demonstrate the
restricted choice of views when using standard
volume rendering. The physician would like
to be able to see the entire surface of the socket,
a view only available from a position within
the humeral head. However, the material within
the humeral head will occlude such a view.

On the right is an image created using VDP.
The viewpoint is moved to a position within
the humeral head, and the occluding voxels of
the humeral head are automatically culled, en-

Continued from cover.

Resolution and light sensitivity tradeoff with pixel size
Continued from page 5.

different pixel size, scene luminance, and ex-
posure duration.

Joyce Farrell and Feng Xiao*
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Table 1: Optics and Sensor Parameters
Optics and Sensor Parameter Settings

Pixel Sizes (µm) 1.7 2.2 2.8 3.3 5.2 7.4

Read noise (e-) 10 15 25 30 35 43

Dark noise (e-/sec) 80 100 120 150 200 240

Conversion gain (µV/e-) 60 40 30 25 18 13

Voltage swing (V) 0.7 0.8 0.9 1.0 1.1 1.2

Fill factor 50%

Peak QE (550nm) 0.65

Dye size (mm) 0.512

Imaging lens F# 2.8

Integration time (sec) 0.033

Scene illumination D65 light
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abling a view of the entire upper portion of the
socket. Note the clearly visible torn ligament
circled in white. VDP also enables flying
through the socket, turning around, and view-
ing the surface of the humeral head.

Full studies of VDP for virtual arthroscopy
and virtual urography are currently underway.
VDP has also been used for displaying CTs of
bone fractures, brain aneurysms, and non-medi-
cal datasets such as CTs of engine blocks. A
more in-depth discussion of the technique will
be presented in a forthcoming publication.

David Borland, John P. Clarke*, and
Russell M. Taylor II
Department of Computer Science
*Department of Radiology
University of North Carolina at Chapel Hill
Chapel Hill, NC
E-mail: borland@cs.unc.edu
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Exciting changes coming
for SPIE publications
Beginning in January 2006, two new publi-
cations will take the place of oemagazine
as well as our Technical Group newsletters.
SPIE Newsroom, a dynamic news website
integrated with spie.org, will cover the lat-
est technical developments in optics and
photonics. SPIE Professional, a quarterly
print magazine published exclusively for
Society members, will emphasize career
trends and industry insights associated with
the optics and photonics profession, as well
as important Society news and information.
This is the final issue of the Electronic Im-
aging Technical Group newsletter.

The website will provide a steady stream
of technical and industry news articles or-
ganized around technical communities that
match SPIE members’ areas of expertise and
interest, including electronic imaging, bio-
medical optics, industrial sensing, defense
and security, nanotechnology, and others.
Readers can subscribe to monthly e-alerts
to be directed to the latest technical articles
in their field. SPIE Professional will offer
members a new perspective on their indus-
try and their diverse roles in it.
Both of these new efforts will launch in
January 2006 - keep an eye on spie.org
for the latest updates.
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Target tracking using soliton patterns in a large-array
optoelectronic system
Adrienne Raglin, Army Research Laboratory

Target tracking is a major re-
quirement for surveillance,
security, and obstacle avoid-
ance. Previous systems have
used differencing between
frames or registration of an
object’s optic flow to perform
target tracking. Recent re-
search in spatiotemporal non-
linear dynamics has provided
an additional approach that
uses optoelectronic systems
that combine the parallel na-
ture of optics and the compu-
tational strength of electronics.
With the use of application-
specific hardware these sys-
tems can potentially exploit
their parallel-processing capability for high-
resolution image processing including edge en-
hancement and motion tracking.1,2

We presented in Reference 3 a large array
of optoelectronic feedback circuit systems that
produce a variety of patterns including the
soliton. A soliton can be considered as a local-
ized state visualized as a bright circular spot.
The soliton behaves in a similar way to a neu-
ral-network node: the stronger the stimulus is
above a threshold value, the stronger the re-
sponse of the soliton. The soliton pattern of an
object can provide a different representation of
the target of interest within an image, indicat-
ing the location of the target and marking its
trajectory as it moves within the scene.

In the model for this system (see Figure 1)
an initial image is applied to the system at t=0τ,
and an injected image is applied to the system
for a set time interval. This mimics the real-

time capture of an image from a
camera that has a set update rate.
The laser acts as a light source and
the image is transformed from an
electrical to an optical signal
through interaction with a phase-
only spatial light modulator (SLM)
that modulates the wavefront
phase. After transmission through
the SLM the wave is diffracted. It
is then transmitted through a Fou-
rier filter that consists of two con-
focal lenses with a Gaussian-
shaped mask at the joint focal
plane. The optical field from this
filter is registered onto a
photoarray, the intensity distribu-
tion of which is used as the input

to the electronic processing unit that applies a
nonlinear map to obtain a feedback signal. This
feedback signal is applied to the SLM closing
the loop.

The change in the phase (which represents
the changes to the image) due to the feedback
signal is described by the following equation:

where t is the system response time, D is the
diffusion coefficient,

is the transverse Laplacian in the x-y plane, and
K is the feedback gain coefficient.

In the simulation, an infrared image of a
single figure walking through a wooded area
was used (see Figure 2). Solitons are gener-

Figure 1. Schematic model for a large-array optoelectronic feedback circuit that
generates a series of spatial patterns.

Figure 2. Simulation results: two resulting images,
captured at t1=17.5τ and t2=175τ, show solitons at
the top and bottom of the figure as it moves
across the image.

Continues on page10.


