
VRPN: A Device-Independent, Network-Transparent VR
Peripheral System

Russell M. Taylor II, Thomas C. Hudson, Adam Seeger, Hans Weber, Jeffrey Juliano, Aron T. Helser
University of North Carolina at Chapel Hill

Department of Computer Science
CB #3175, Sitterson Hall, Chapel Hill, NC 27599-3175

919-962-1700

taylorr@cs.unc.edu

ABSTRACT
The Virtual-Reality Peripheral Network (VRPN) system provides
a device-independent and network-transparent interface to virtual-
reality peripherals. VRPN’s application of factoring by function
and of layering in the context of devices produces an interface that
is novel and powerful. VRPN also integrates a wide range of
known advanced techniques into a publicly-available system.
These techniques benefit both direct VRPN users and those who
implement other applications that make use of VR peripherals.

Categories and Subject Descriptors
C.2.4 [Distributed Systems]: Distributed applications.

General Terms
Algorithms, Performance, Design.

Keywords
Interactive graphics, virtual environments, virtual worlds, input
devices, library, peripherals.

1. INTRODUCTION
VRPN is a set of classes within a library and a set of servers that
implement a device-independent, network-transparent interface
between application programs and the set of physical devices
(trackers, buttons, etc.) used in a virtual reality (VR) system [1].
VRPN provides:

• Access to a variety of VR peripheral devices through a com-
mon, extensible interface,

• Network-transparent interface to devices,
• Time stamps for all messages to and from devices,
• Clock synchronization between clients and servers on differ-

ent machines,
• Multiple simultaneous connections to devices,
• Automatic reconnection to failed remote servers, and
• Storage and replay of interactive sessions.

VRPN was developed to address the following concerns:
• Laboratories with multiple graphics display stations require

access to VR peripherals from a variety of machines. It is of-
ten inconvenient to co-locate the machines with the devices,
or to run interface cables from each device to each host.

• Some VR devices (especially trackers) perform more reliably
when left on continuously, and require lengthy reset proce-
dures when closed and re-opened.

• Different devices may have radically different interfaces, yet
perform essentially the same function; some require special-
ized connections (PC joysticks) or have drivers only for cer-
tain operating systems.

• VR applications require minimum latency, and need to know
at what time events occur in the system.

These criteria led us to an architecture where input/output devices
at each display station are connected to one or more local device
servers. These servers communicate with graphics engines
through a switched Ethernet.

This paper describes VRPN version 06.00. Device factoring is
described in detail, since it is the novel contribution. The other
features are mostly drawn from existing systems: their combina-
tion in a publicly available system is the second contribution.
These features are presented in the following categories: establish-
ing VRPN connections, dealing with distributed objects, VRPN
message characterstics, separate client and server, storage and
replay, and performance. Implementation details for these fea-
tures are often omitted (they are in the publicly-available code).

2. RELATED WORK
Many prior and existing toolkits provide complete distributed
virtual world interfaces, concentrating on flexibility and general-
ity. There are both commercial systems (including CAVELib [2],
Division’s dVS [3], Sense8’s WorldToolKit [4], and Panda3D
[5]) and research systems (including the MR toolkit [6],
GIVEN++ [7], DIVE [8], BrickNet [9], Alice/DIVER [10],
AVIARY [11], Maverik/DEVA [12], VR Juggler [13], Bamboo
[14], and Dragon [15]). There is also recentunpublished work by
the DIVERSE [16] group.

VRPN does not aim to provide an overall VR API. It focuses on
the sub-problems of providing a uniform interface to a wide range
of devices and providing low-latency, robust, and network-
transparent access to devices.

VRPN is complementary to VR toolkits, as indicated by the fact
that several users of existing toolkits have integrated VRPN as a

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
VRST ’01, November 15-17, 2001, Banff, Alberta, Canada.
Copyright 2001 ACM 1-58113-427-4/01/0011…$5.00.

device-interface layer. Users at Brown have developed a VRPN
server that works with WorldToolkit, the Maverik system is being
extended to use VRPN devices, NCSA uses VRPN within several
of its CAVE™ applications, the Naval Research Laboratory has
integrated VRPN into Dragon applications, VRPN is being ex-
tended to be a dynamically-loadable Bamboo module, the devel-
opers of Panda3D are using VRPN to communicate with several
VR devices, and the DIVERSE group is developing a VRPN
layer.

3. DEVICE TYPES AND FACTORING
It has been very fruitful to think of VRPN not as providing drivers
for a set of devices, but rather as providing interfaces to a set of
functions. Particular devices are of one or morecanonical device
types. Each type specifies a consistent interface and semantics
across devices implementing that function [17]. Common device
types are listed below. Other device types are provided; new
types can be created.

• Tracker reports poses (position plus orientation), pose ve-
locities, and/or pose accelerations.

• Button reports press and release events for one or more but-
tons;

• Analogreports one or more analog values.
• Dial reports incremental rotations.
• ForceDeviceenables clients to specify surfaces and force

fields in 3-space.

Mapping a set of devices into one canonical type requires map-
ping the different capabilities of each device onto one interface.
There is a tension between providing a very simple interface
(which does not enable access to particular advanced features) and
providing a feature-rich interface (where many devices do not
implement many of the features, forcing application code to deal
with many cases). VRPN deals with these issues by:

• factoring devices based on their functions,
• mapping devices to connections within VRPN,
• enabling devices to export multiple interfaces,
• silently ignoring unsupported message types, and
• providing application-level access to all messages.

Factoring based on function: A particular device’s special fea-
tures often amount to implementing more than one function (such
as a tracker sensor with a built-in button). A VRPN driver for the
device will export interfaces for multiple device types. The server
for the SensAble™ Technologies Phantom™ haptic display illus-
trates this: it exports Tracker, Button, and ForceDevice interfaces
under the same device name. The client deals with a Phantom™
as if it were three separate devices, one for each of its functions.

Factoring makes it easy to move an application to different sets of
input/output devices. No client-side code change is needed to
move an application from an Intersense IS-900 tracker with an
integrated button and analog controller to a Fastrak sensor at-
tached to a Wanda device, then to a Phantom™ haptic display.
An application designed to use a Phantom™ haptic display can be
tested on either of the other setups, although no forces will be
generated.

Mapping devices to connections:Although the Tracker, Button
and ForceDevice devices for a Phantom™ are logically separate
they are all internally mapped to the same network connection for
communication efficiency.

Exporting multiple interfaces: In some cases, the same physical
device may behave as different device types at different times.
For example, a freely rotating dial might be used to either specify
an orientation (the Dial interface) or to specify a value (the Ana-
log interface). A VRPN driver can export both interfaces for the
same device under different names and the client can use either.

A special case of multiple interfaces is thelayered device. In this
case, higher-level behavior is built on top of an existing device.
An instance is theAnalogFly server, designed to enable flying
using joysticks: the joystick driver reports analog values for each
of its axes and the AnalogFly integrates these values into Tracker
messages. Clients can connect both to the low-level analog de-
vice (to read the buttons on a joystick, for example) and to the
higher-level tracker device (see figure 1).

Another special case of multiple interfaces is themultiple-
behavior device. Within our department, there are several groups
that use joystick devices to fly the user. Each group has a favorite
mapping of joystick axes to transformations that depends on ap-
plication requirements and user preferences. Using multiple in-
stances of AnalogFly servers, each with a unique name, joystick
servers can export all interfaces at once. Each client connects to
the interface with the desired mapping (see figure 1).

Silently ignoring unknown messages:Functions applicable to
several devices of a type that can be ignored by other devices can
be implemented in the base device type. An example is the mes-
sage that sets the report rate for tracker servers. Servers with vari-
able update rates (like the Phantom™ and the 3rdTech HiBall™
tracker) adjust their rates to match that requested, while other
servers silently ignore these messages. For messages that can be
safely ignored, this extends the common interface and enables
access to special functions on some devices while not requiring all
functions to be implemented on all devices.

Application-level access to messages:Some devices may have
idiosyncratic functions captured neither by existing device types
nor generally applicable to other devices of the same class. Cali-

Tracker0 Tracker1

Analog
Button

Figure 1: Devices can be layered, so that the outputs from one
device driver can become inputs to another. Application code
can attach to either or both devices. The vrpn_AnalogFly
driver exports multiple vrpn_Tracker interfacesunder different
names (Tracker0 and Tracker1). Client 1 reads both trackers.
Client 2 reads one of the trackers, the analogs, and buttons.

vrpn_Joystick

Client app 2Client app 1

vrpn_AnalogFly

bration is an example; a calibration application for a particular
device can directly send and receive new message types, giving
access to the extended functions on the device server without
requiring changes to the library classes. The server would provide
handlers for the new message types, and use them to communicate
with the calibration application at the same time it exported its
standard interface. Such a specialized calibration application
could be run at the same time as standard applications.

Example new device:An example is helpful to show how these
features work together. Let’s plan a driver for MeasurandSHAPE
TAPE[18]. This tape consists of a linear chain of links embedded
in flexible tape. Two orientation components ofeach link relative
to the previous one are measured (twist andnose-dive). The most
basic interface to this tape would be as an Analog device, report-
ing two angular values for each link.

Whereas the Analog interface gives all the information needed to
derive information about the tape, it is probably not the most ap-
propriate interface for many applications. The basic function of
the tape is to describe a curve in space. Although this might be
shoehorned into the Tracker interface, it is more properly a new
device type. To define a general class for this, we might think of
oriented splines. Thus, a layered interface would be provided,
possibly by implementing a general server that reads in analog
orientations and exports splines.

In practice, this tape might be used to track a user’s arm relative to
the torso. For this purpose, three poses are desired at known dis-
tances along the tape (where it attaches to shoulder, elbow and
wrist). Thus, another layered interface would be written that takes
the spline as input and reports Tracker poses at some number of
locations specified along the length of the spline. A client appli-
cation would attach to the device using its Tracker interface,
which reports the poses, while a calibration application would
attach using the Analog interface. Either application, or another
one entirely, could attach to the spline interface and render the
curve of the tape itself.

4. ESTABLISHING VRPN CONNECTIONS
The application side (client) and server-side portions of each de-
vice driver communicate with each other over aConnectionob-
ject. This section describes the algorithms used to establish
VRPN connections between the client and server, and how recon-
nection works after a server shutdown.

Connection initialization: The connection initialization design
meets the following requirements:

• rapid start-up when connecting to a running server,
• rapid return to client code during connection set-up and re-

connection even when no server is running,
• no dependence on opening a particular TCP port on the

server (a port that has been used by a recently-exited server
can remain unavailable for several minutes on some operat-
ing systems),

• no dependence on opening particular ports on the client
(same reason, plus the fact that multiple clients would re-
quire the same port number),

• ability to attempt reconnection without causing long pauses
in the client, and

• ability to connect or reconnect to a starting server relatively
quickly (to enable restarting a failed server without restarting
the client application).

The following connection algorithm was developed to address
these needs. Although complicated, this algorithm runs only at
connection startup – messages flowing during a session are sent
directly.

Establish reliable channel: Each server opens a well-known
UDP port for connection requests from clients (TCP connection
requests from the client to the server cannot be used because they
can hang indefinitely for ports in certain states). A client opens
any available TCP port and sends the server a UDP request asking
it to connect to that TCP port. The client then enters a state in
which it polls its TCP port to see if the server has called back,
returning control to the application immediately if not; it sends
another request packet once per second until it gets a response
from the server (the client devices will not be connected to their
server counterparts, see “Client/server object verification”).
When the server receives the connection request, it calls the client
back at its specified TCP port.

Finish connection setup:Once the reliable TCP channel is estab-
lished, it is used to perform version checking between the end-
points, perform clock synchronization between the hosts, and
establish a separate unreliable UDP channel between the hosts.

To support connections from clients that are behind firewalls or
which are using network address translation (NAT), the server
also listens for TCP connection requests at the same well-known
port and routes all packets through TCP for a connection estab-
lished this way. No changes to the application are required in this
case; the client just connects using a different URL.

Dropped connections and reconnect:When a connection is
dropped by the other side, a message is sent to any interested ob-
jects or user code indicating the drop, to trigger any needed clean-
up. (A similar message is sent whenever a new connection is
established to trigger required set-up.) A client connection will
attempt to re-establish the link, using the same algorithm it used
for the initial connection. This enables the application to be ro-
bust in the presence of server failure and re-start, and is very use-
ful in cases where the application has a long start-up time (due to
database loading, for example).

5. DISTRIBUTED OBJECTS
When an application uses servers on remote machines and there is
an error condition, there is the question of how to indicate this to
the user (who may not even be logged into the machine). Early
versions of VRPN did not provide support for this. VRPN now
handles this by enabling each object to send text messages. These
messages have associated severity (normal, warning, or error), and
they propagate across connections. VRPN includes a static text-
printing object that prints these messages on the client. By de-
fault, it prints warnings and errors to standard output. This
mechanism enables device drivers and servers anywhere in the
system to send human-readable warning and error reports. This
has proven to beveryuseful when debugging system behavior.

In the presence of remote servers that can exit and restart, a
mechanism is needed to inform the application and/or user that a
device server is no longer operating. When a client object is cre-

ated, it sends a verification message to its associated server to
verify that it is running. After three seconds without response, the
client object begins to emit warning text messages; after 10 sec-
onds, it begins to emit error messages. In addition to using these
messages to alert the user, a client or server object can provide
callback handlers for the verification messages and use them to
trigger initialization code whenever a connection to its counterpart
is established.

6. VRPN MESSAGE CHARACTERISTICS
Once a connection has been established and each client object is
connected to its server, message flow begins. For each message,
VRPN provides a selectableclass of serviceand asynchronized
time stamp.

Class of service:Different device types have quite different re-
quirements for message delivery, ranging from button presses
(which must not be lost, but have relatively low sensitivity to
latency) to tracker reports (which have stringent latency require-
ments but if one is lost another will be coming soon). Systems
willing to devote an extra thread on each host to message delivery
have been able to provide a wide range of delivery semantics [19].
VRPN neither requires nor provides a separate thread for delivery,
and so only provides two classes of delivery: reliable (via TCP)
and unreliable (via UDP). The class of delivery can be selected
on a message-by-message basis.

Synchronized time stamps:Each message in VRPN has an asso-
ciated time stamp, which is generated by the server-level or appli-
cation-level code sending the message. This time is intended to
match the time at which the data for the message became available
(may be in the past), or the time at which an action should be
taken by the receiver (may be in the future). For example, the
time attached to messages sent by the serial tracker servers is the
time at which the first character for that message was read from
the serial port. In order to make timestamps from devices running
on different host computers comparable, VRPN provides clock
synchronization between the hosts on either side of a connection.
As messages are passed between hosts, the time on each is ad-
justed by an offset that makes it comparable to values returned by
the system functiongettimeofday()on the local host. Time
stamps, along with clock synchronization, give a global ordering
to events within a VRPN system and enable predictions based on
local time information.

7. SEPARATE CLIENT AND SERVER
The ability to run different parts of a VR application in different
processes is of widely recognized importance [6-8, 20-22]. For
the case of VR devices, client and server should be run as separate
process when:

• they have very different update rates,
• server initialization takes a long time,
• message timing is critical, or
• the server requires frequent access to a device.

Stark examples of different update rates include running a haptic
server (1kHz update rate) with a graphics application (30 Hz up-
date rate), [22] or an interactive graphics application with a simu-
lation. [21] When server device initialization takes a long time, it

can be more efficient to leave a device server running and connect
to it when access is needed; in this way, the application can start
immediately. When accurate measurement of the timing for each
device message (such as tracker position reports) is required, hav-
ing a separate server allows frequent (1kHz) checks, independent
of application update rate. A separate server process also pro-
vides frequent servicing of devices even in the presence of long
pauses in the application, which can be important to avoid losing
reports (serial trackers) or missing important events (rapid button
press/release).

Local client and server: Whereas VRPN is designed to separate
client and server over network connections, it is also possible to
run either in separate processes on the same machine, or within
the same process. When running within the same process, mes-
sages are handed directly to the callback routines without passing
through the network.

8. STORAGE AND REPLAY
VRPN provides a log file mechanism, by which all messages
passed over a client/server connection session can be stored to
file, and then the session replayed or analyzed. This capability
has been used to:

• record user motion during human-factors studies,
• provide an electronic lab notebook recording actions and re-

sponses during materials science experiments,
• store interactions between collaborating users to enable com-

parisons between different sharing strategies, and
• capture a series of user motions and button presses to enable

debugging of new interaction techniques without repeatedly
donning the VR equipment.

Logging can be done at either the client side or the server side.
When client-side logging is performed, logging continues across
server crashes and restarts.

A client application “connects” to a stored log file and reads from
its devices by specifying a file URL as the location of the device.
Replay does not require any extra code to replay the original ses-
sion at its normal rate.

9. PERFORMANCE
One criterion for evaluating VR device libraries and architectures
is comparison of their performance with a dedicated, locally-
connected device using device-specific drivers. Milliseconds of
latency are the critical currency in VR systems; Holloway reports
about 1mm offset foreach 1ms of latency in a VR system [23].
The value of different features is measured against their cost in
time. On this scale, VRPN measures up well; for some configura-
tions the time to read a message using a remote VRPN server can
be significantlyless than that of a locally-connected device with
manufacturer-supplied drivers. To explain how, we describe tim-
ing information and latency-reducing optimizations within VRPN.
Developers of other libraries or stand-alone applications can use
these same techniques (which are applicable to specific current
hardware and software).

Overhead added by VRPN:Network latency tests were run be-
tween an SGI and a Linux box within a switched Ethernet envi-
ronment. Ping tests between the machines showed an average
one-way time of 0.51ms. Application-level VRPN messages
(from the client to the server, then a response message being re-
ceived by the client callback handler) had average one-way times
of 3.3ms. This includes all overheads from the operating system
network layers, as well as from VRPN. Slightly lower times have
been found from a Linux client to a Windows 98 server, and an
average of 1.7ms one way is found from an SGI client to a Win-
dows 98 server.

Three serial port accelerations:While developing the drivers for
trackers that communicate over serial ports (Polhemus Fastrak,
Ascension Flock of Birds, Origin DynaSight), we discovered three
ways to significantly decrease latency: 1) decreasing buffering in
the UARTS by changing operating-system parameters (3ms), 2)
decreasing latency within the operating system by setting the
scheduler to run at 1kHz rather than 100Hz (5ms), and 3) provid-
ing multiple serial connections to the device (one per sensor for a
Flock of Birds) (3ms). Since the VRPN overhead is below the
latency reductions provided by these techniques, it can actually be
faster to read from a device connected to a remote, well-
configured VRPN server than from a device connected to the
local machine.

Optimized, time-aware drivers: The driver that ships with a
product is not always optimized for minimum latency, and seldom
deals explicitly with time. Some wait a pessimistic amount of
time before reading; VRPN drivers continually read the available
characters and send a report as soon as available. Within VRPN,
a report’s time is based on when the first character is received,
rather than when the whole report has been collected. Since a
separate VRPN server process usually polls devices at 1kHz, this
provides much more accurate timing than is available using a
locally-connected device within a 60-Hz application loop.

This paper does not present the end-to-end timing (user motion to
screen update) for trackers and other devices within VRPN, but
rather the incremental latency due to VRPN. VRPN messages are
sent between hosts using a single UDP or TCP packet, so network
latency should be minimal compared to other network-capable
toolkits. As described before, it is also possible to run both the
client and server in the same thread; in this case, the communica-
tions overhead reduces to that of a few function calls.

Faster initialization: Because the VRPN server keeps the at-
tached devices running continuously, clients avoid waiting for the
initialization/reset procedure that is lengthy for many devices.
This reduces what can be a several-second procedure to a several-
millisecond procedure. Clients that use VRPN in the single-
process mode do not get this benefit, of course.

How far can you go?We use VRPN to communicate between a
graphic and haptic interface on one end of a network and an
Atomic Force Microscope teleoperated on the other end. We find
that the system has round-trip latency requirements of about 40ms
for acceptable performance. The system has been operated
successfully on:

• local, switched Ethernet,
• Internet connection to a local high school,
• Internet2 from Washington, D.C. to UNC-CH (via Atlanta),
• Internet2 from Columbus, Ohio to UNC-CS.

The system is not able to operate on a shared Ethernet segment
with a large number of machines, nor over the standard Internet to
California or Louisiana from UNC.

10. USING VRPN: APPLICATION LAYER
VRPN is designed to be as easy to use as possible for a client
program. A complete example client program that reads and
prints positions from all of the sensors on a tracker is shown in
figure 2.

This program constructs a tracker client object
(vrpn_Tracker_Remote), giving a string that includes the name of
the server object (Tracker0) and the location of the server program
(@myhost). The information after the @ sign is a Universal Re-
source Locator (URL), whose default type is a VRPN connection
at the host whose name is specified. Real applications would read
the device name from the command line or an environment vari-
able.

The program next registers a callback handler to receive pose
reports from the tracker. This handler is called whenever tracker
pose messages are received. The callback parametert holds the
data passed by the server; for trackers, this is the time associated
with the message by the server, the sensor number, its position,
and its orientation.

Themainloop()method must be called periodically for each client
object. This method causes VRPN to send all pending messages

#include “vrpn_Tracker.h”

void handle_pos(void *, const vrpn_TRACKERCB t) {

printf("Pos, sensor %d = %5.3f, %5.3f, %5.3f\n",

t.sensor, t.pos[0], t.pos[1], t.pos[2]);

}

main() {

vrpn_Tracker_Remote *tkr = new vrpn_Tracker_Remote(“Tracker0@myhost”);

tkr->register_change_handler(NULL, handle_pos);

while (1) { tkr->mainloop(); }

}

Figure 2: Complete program to open a tracker and print its position updates.

and read all incoming messages for the connection associated with
the device. (When there are multiple devices sharing the same
connection, themainloop()call on one device will in fact deliver
the pending messages to all of them.)

Callback handlers and flow of control: The application sets up
handlers for each message type. The handlers may potentially be
called in three circumstances: whenmainloop() is called on the
object they are registered with; whenmainloop()is called on an-
other object sharing the same connection; and when an appropri-
ate-type message is sent by an object that shares the same connec-
tion. Because the mapping of objects to connections is flexible
and the effects of object methods vary, the application should
operate under the assumption that the callback handlers may be
invoked whenever a call is made to any VRPN object, but at no
other time.

The controlled ambiguityof when callbacks can be invoked is an
important part of the semantics of VRPN or any library that al-
lows both local and remote servers. The ambiguity is due to the
possibility of multiple devices mapping to same connection, and
to the optimization of local message delivery. The ambiguity is
controlled because the handlers are not called at arbitrary times,
but only when a VRPN method is invoked.

11. USING VRPN: SERVERS
There is a server program,vrpn_server, that is able to run most
devices supported by VRPN: Origin Dynasight, Polhemus Fas-
trak, Intersense IS-600 and IS-900, Ascension Flock of Birds,
Tracker example server, AnalogFly, SGI dial & button box,
Pinchglove, BG Systems CerealBox, Logitech Magellan,
Radamec SPI, ImmersionBox, Wanda, Dial example server, UNC
joystick, and UNC buttons. The server determines which devices
to start and the parameters for each by reading a configuration file
(vrpn.cfg by default). The VRPN distribution includes instruc-
tions and example entries for each of these devices in the file
vprn.cfg.SAMPLE, in the server_src directory. This file can be
copied over the vrpn.cfg and the user can uncomment and custom-
ize the lines for the devices to be used. As new device servers are
implemented, they are usually added to this file, and vrpn_server
updated to be able to launch them.

Some servers really only work on one architecture or require link-
ing with other outside libraries, so they have their own executa-
bles. Currently, the Phantom server, a Sierra video router server,
a National Instruments D/A server, and the sound servers are this
way. These servers are distributed with VRPN. They can be
compiled separately from vrpn_server.

Also included in the server_src directory is aclient_and_server
example server that shows how to run an application that has both
client objects and server objects within the same executable.

12. CONCLUSIONS AND AVAILABILITY
VRPN provides a network-transparent interface to virtual-reality
peripherals. Due to its flexibility and performance, it is a widely
used platform, even by users of other general-purpose VR frame-
works. This document describes the features of VRPN that are
critical to its success, in particular its novel method of factoring a
device into separate and independent functions. This separation
enables each function to be handled in a suitable way, without the
complexities of combinations. VRPN handles the mapping of

functions to communications channels and device drivers trans-
parently and efficiently. The bundling back into device groupings
is (1) higher-level and (2) handled almost without the user think-
ing about it.

VRPN also integrates a number of more well-known features.
Having these features combined into a single system is valuable
both to those who use VRPN directly and as an example to those
who implement libraries or applications that make use of VR pe-
ripherals.

VRPN is public-domain, open-source software with a user com-
munity in academia, industry and the national labs. There is a
mailing list for the community of people using VRPN; pointers to
this plus the code are available from the project web page at
www.cs.unc.edu/Research/vrpn.

Supported platforms: The VRPN application-side library runs
on PC/Win32, SGI/Irix, PC/Linux, Sparc/Solaris, HP700/Hpux,
and PowerPC/AIX. The server-side library is fully functional
under SGI/Irix, PC/Win32, PC/Linux, and Sparc/Solaris (it is
functional except for serial-port code on the other systems).

Supported Devices:There are drivers for:Trackers: Ascension
Flock of birds (single or multiple serial lines), Polhemus Fastrak,
Intersense IS-600 and IS-900 (including wands and styli), Origin
Systems DynaSight, Phantom™, 3rdTech HiBall 3000, Logitech
Magellan, and Radamec Serial Position Interface (video/movie
camera tracker).Other devices:Logitech Magellan (analog values
and buttons), B&G systems CerealBox (buttons, dials, sliders),
NRL ImmersionBox serial driver (buttons), Wanda (analog, but-
tons), National Instruments A/D cards, Win32 sound server based
on the Miles SDK, SGI button and dial boxes, the “Totally Neat
Gadget” (TNG3) from Mindtel, and the UNC hand-held Python
controller (buttons).

13. ACKNOWLEDGMENTS
VRPN was developed under funding from the National Institutes
of Health National Center for Research Resources at the Research
Resource on Molecular Graphics and Microscopy.

Commercial support for driver development and new features has
come from Walt Disney VR Studios, Schlumberger Cambridge
Research, and 3rdTech.

Many people other than those listed as authors on this paper have
contributed device drivers and other code to the development of
VRPN. They include several members of the UNC-CH depart-
ment of computer science: Phillip Winston wrote the UNC ceil-
ing-tracker driver and helped with the Windows port. Jun Chen
helped with the PHANToM driver. Arthur Gregory added meshes
to the PHANToM code and worked to speed up collision detec-
tion. Lin Cui implemented the vrpn_Text class. Jason Clark
wrote the Miles-based sound server. Zak Kohn added more sound
support.

Contributions have also come from individuals and groups at
other institutions: Randy Heiland (NCSA) ported a version of the
PHANToM driver from NT to SGI. John Stone (Beckman Insti-
tute, UIUC) cleaned the code up so that it compiles on multiple
architectures, and in particular so that it will compile outside of
UNC. Rob King from the Navy Research Labs write the Immer-
sionBox driver, the serial-port mouse-button driver, the TNG

driver, and submitted several bug fixes. The AIX and Solaris
patches that allow compilation on these systems come from Lor-
ing Holden and Bob Zeleznik at Brown University. The Wanda
driver comes from Brown University; they also helped with the
Pinchglove driver. The driver for the 5DT is provided by Phil-
ippe DAVID and Yves GAUVIN from Direction de la Recherche.
The Linux Joystick drivers (Joylin) were written by Harald Barth.

14. REFERENCES
1. Taylor II, R.M., The Virtual Reality Peripheral Network

(VRPN), . 1998: http://www.cs.unc.edu/Research/vrpn.

2. VRco, CAVELib, . 2001,
http://www.vrco.com/CAVE_USER/.

3. Staff, dVS Technical Overview. 1993, Bristol, UK:
DIVISION Limited.

4. Corporation, S.,WorldToolkit Technical Overview, . 1998.

5. Panda3D,http://www.panda3d.com/, .

6. Shaw, C.,et al. The decoupled simulation model for VR sys-
tems. in Proceedings of CHI '92. 1992.

7. Sokolewicz, M.,et al. Using the GIVEN++ Toolkit for Sys-
tem Development in MuSE. in Proceedings of First Euro-
graphics Workshop on Virtual Reality. 1993. Polytechnical
University of Catalonia.

8. Ståhl, O. and M. Andersson.DIVE - a Toolkit for Distributed
VR Applications. in Proceedings of the 6th ERCIM work-
shop. 1994. Stockholm.

9. Singh, G.,et al. BrickNet: Sharing Object Behaviors on the
Net. in Proc. IEEE Virtual Reality Annual International
Symposium (VRAIS'95). 1995: Research Triangle Park, NC.

10. Gossweiler, R.,et al. DIVER: a DIstributed Virtual Envi-
ronment Research Platform. in IEEE 1993 Symposium on
Research Frontiers in Virtual Reality. 1993.

11. Snowden, D.N. and A.J. West.The AVIARY VR-system. A
Prototype Implementation. in Proceedings of the 6th ERCIM
workshop. 1994. Stockholm.

12. Pettifer, S.,et al. DEVA3: Architecture for a Large Scale
Virtual Reality System. in Proc. ACM Symposium in Virtual

Reality Software and Technology 2000 (VRST'00). 2000.
Seoul, Korea.

13. Just, C.,et al. VR Juggler: A Framework for Virtual Reality
Development. in 2nd Immersive Projection Technology
Workshop (IPT98). 1998. Ames.

14. Watsen, K. and M. Zyda.Bamboo - A Portable System for
Dynamically Extensible, Real-time, Networked, Virtual Envi-
ronments. in 1998 IEEE Virtual Reality Annual International
Symposium (VRAIS'98). 1998. Atlanta, Georgia.

15. Julier, S.,et al. The Software Architecture of a Real-Time
Battlefield Visualization Virtual Environment. in Proceed-
ings IEEE Virtual Reality '99. 1999. Houston, Texas: IEEE
Computer Society Press.

16. Arsenault, L.,et al., http://www.diverse.vt.edu/, .

17. Foley, J., V.L. Wallace, and P. Chan,The Human Factors of
Computer Graphics Interaction Techniques.IEEE Computer
Graphics and Application, 1984.4(11): p. 13-48.

18. Measurand,www.measurand.com, . 2000.

19. Kessler, G.D. and L.F. Hodges.A Network Communication
Protocol for Distributed Virtual Environment Systems. in
Proceedings of VRAIS '96. 1996. Santa Clara: IEEE.

20. Adachi, Y., T. Kumano, and K. Ogino.Intermediate Repre-
sentation for Stiff Virtual Objects. in Proc. IEEE Virtual Re-
ality Annual International Symposium (VRAIS'95). 1995.
Research Triangle Park, NC.

21. Bryson, S.T. and S. Johan.Time Management, Simultaneity
and Time-Critical Computation in Interactive Unsteady
Visualization Environments. in IEEE Visualization '96.
1996: IEEE.

22. Mark, W., et al. Adding Force Feedback to Graphics Sys-
tems: Issues and Solutions. in Computer Graphics: Proceed-
ings of SIGGRAPH '96. 1996.

23. Holloway, R.,Registration error analysis for aug-
mented reality.Presence, 1997.6(4): p. 413-432.

