
User’s Guide

Version 1.0

September 28, 2007

ii

This is the preface.

Contents

1 What Is VisTrails? 1

2 Getting Started 3
2.1 Installation . 3
2.2 Quick Start . 3
2.3 Manipulating VisTrails Files . 5
2.4 VisTrails Basics . 5
2.5 VisTrails Interaction . 6

3 Creating and Modifying Workflows 7
3.1 Working with Modules . 7
3.2 Adding and Deleting Modules . 7
3.3 Connecting Modules . 8
3.4 Changing Module Parameters . 9
3.5 Configuring Module Ports . 10
3.6 Basic Modules . 10

4 Interacting with the Version Tree 12
4.1 Version Tree View . 12
4.2 Adding and Deleting Tags . 13
4.3 Adding Version Annotations . 14
4.4 Navigating Versions . 14
4.5 Comparing Versions . 14

5 The Spreadsheet 16
5.1 The Spreadsheet Layout . 16
5.2 Using the Spreadsheet . 17

5.2.1 Interactive Mode . 17
5.2.2 Editing Mode . 18

5.3 Saving a Spreadsheet . 19
5.4 Creating a Customized Cell Widget . 20

iii

iv CONTENTS

6 Querying the Version Tree 21
6.1 Query By Example . 21
6.2 Textual Queries . 22
6.3 Query Results . 24

7 Parameter Exploration 25
7.1 Creating a Parameter Exploration . 25
7.2 Spreadsheet Integration . 28
7.3 Examples . 28

7.3.1 Isosurfaces . 29
7.3.2 Resampling . 29
7.3.3 Animation . 30

8 Using Bookmarks 33

9 Connecting to a Database 34
9.1 Setup . 34

9.1.1 Setting up the database . 34
9.1.2 Setting up VisTrails . 35

9.2 Opening from a database . 35
9.3 Saving to a database . 36
9.4 Known Issues . 37

10 Using Analogies to Update Workflows 38

11 Writing VisTrails Packages 39
11.1 Introduction . 39
11.2 Wrapping Command-line tools . 44

11.2.1 Class Mixins . 44
11.2.2 Package Configuration . 45
11.2.3 Temporary File Management . 47

11.3 Interpackage Dependencies . 48
11.4 Requirements . 50
11.5 Interaction with Caching . 50
11.6 Advanced: Wrapping a big API . 50

12 Advanced Topics: Module Execution and Caching 51

13 Example: Web Services 52
13.1 Enabling the webServices Package . 52
13.2 Creating a new vistrail . 52
13.3 Adding modules to the workflow . 53

CONTENTS v

13.4 Module customization and parameterization . 54
13.5 Connecting modules . 56
13.6 Executing the workflow . 57

14 Example: ITK 58
14.1 Introduction to ITK . 58
14.2 Preparing ITK . 58

14.2.1 Downloading ITK . 58
14.2.2 Building the ITK Libraries . 59

14.3 ITK and VisTrails . 60
14.3.1 ITK Package Organization . 61
14.3.2 Reading DICOM Volumes . 62
14.3.3 Volume Processing With ITK and VisTrails 62
14.3.4 Volume Processing With ITK and VisTrails 62
14.3.5 Visualizing the results . 63

15 Frequently Asked Questions 64
15.1 Running workflows . 64
15.2 Building workflows . 65
15.3 Spreadsheet . 65
15.4 Integrating your software into VisTrails . 66
15.5 VTK . 66

vi CONTENTS

Chapter 1

What Is VisTrails?

VisTrails is a new system that provides data and process management support for exploratory
computational tasks. It combines features of workflow and visualizations systems. Similar to
workflow systems, it allows the combination of loosely-coupled resources, specialized libraries,
and grid and Web services; and similar to some visualization systems it provides a mechanism
for parameter exploration and comparison of different results. But unlike these, VisTrails was
designed to manage exploratory processes, in which, computational tasks evolve over time as
a user iteratively adjusts them while formulating and testing hypotheses. A key distinguishing
feature of VisTrails is a comprehensive provenance infrastructure that maintains detailed history
information about the steps followed in the course of an exploratory task. VisTrails leverages
this information to provide novel operations and user interfaces that streamline this process.

Important Features. One of our main uses for VisTrailshas been exploratory visualization,
but the system is much more general, and contains many other features. Additional feature
that might be relevant include:

• Flexible Provenance Architecture. VisTrails transparently tracks changes made to work-
flows, all the steps followed in the exploration. The system can optionally track run-time
information about the execution of workflows (e.g., who executed a module, on which ma-
chine, elapsed time etc.). VisTrails also provides a flexible annotation framework whereby
users can specify application-specific provenance information.

• Querying and Re-using History. The provenance information is stored in a structure way.
Users have a choice of using a relational database (e.g., MySQL and IBM DB2) or XML
files in the file system. The system provides flexible and intuitive query interfaces through
which users can explore and re-use provenance information. Users can formulate simple
keyword-based and selection queries (e.g., find a visualization created by a given user)
as well as structured queries (e.g., find visualizations that apply simplification before an
isosurface computation for irregular grid data sets).

1

2 CHAPTER 1. WHAT IS VISTRAILS?

• Support for collaborative exploration. The system can be configured with a database
backend that can be used as a shared repository. It also provides a synchronization
facility that allows users to collaborate asynchronously and in a disconnected fashion—
users can check in and check out changes, akin to a version control system (e.g., SVN–
http://subversion.tigris.org).

• Extensibility. VisTrails provides a very simple plugin functionality that can be used to
dynamically add packages and libraries. Neither changes to the user interface nor re-
compilation of the system are necessary. Because VisTrails is written in Python, the
integration of Python-wrapped libraries is straightforward. For example, a single line in
the VisTrails start-up file is needed to import all of VTK’s classes.

• Scalable Derivation of Data Products and Parameter Exploration. A series of operations
is supported by VisTrails for the simultaneous generation of multiple data products,
including an interface that allows users to specify sets of values for different parameters
in a workflow. The results of a parameter exploration can be displayed side by side in the
VisTrails Spreadsheet for easy comparison.

• Task Creation by Analogy. Analogies are supported as first-class operations to guide semi-
automated changes to multiple workflows, without requiring users to directly manipulate
or edit the workflow specifications.

Obtaining the Software. Visit http://www.vistrails.org to access the VisTrails community Web
site. Here you will find information including instructions for obtaining the software, online
documentation, video tutorial, and pointers to papers and presentations.

VisTrails is written in Python and it uses the multi-platform Qt library for its user interface.
The system available as open source—it is released under the GPL 2.0 license. The pre-compiled
versions for Windows, Mac OS X, and Linux, come with an installer and include a number
of packages, including VTK, matplotlib, and Image Magick. Additional packages, including
packages written by users, are also available (e.g., ITK, Matlab, Metro). It is easy to add new
packages using the VisTrails plugin infrastructure.

Chapter 2

Getting Started

The VisTrails system is distributed both as source code and pre-built binaries, and instructions
for obtaining either can be found at our website: http://www.vistrails.org. Because the system
is written in Python using a Qt interface, it can be run on most architectures that support
these two components, even if a pre-built binary is not available for your system. Section 2.1
provides instructions to guide you through installation procedures, and Section 2.2 gives a quick
orientation and serves as a jumping off point to exploring the different features of VisTrails.

2.1 Installation

To obtain a copy of VisTrails, please see our website: http://www.vistrails.org. There, you will find
binaries for Windows (tested on XP and Vista) and Mac OS X (tested on 10.4.x). In addition,
there are instructions for obtaining a binary version for Ubuntu Linux. If you do not have
one of these systems or would prefer to install VisTrails from source, you can also download
the source. If you decide to install from source, please follow the instructions on the website
as there are a few dependencies that you will need to make sure are installed. We encourage
first-time users to download a binary version.

After obtaining a copy of VisTrails, installation is system-dependent, but both of the Win-
dows and Mac OS X binaries come with installers that should be familiar to most users. In
addition to the base VisTrails system, these installers also include a number of packages includ-
ing VTK and matplotlib. For other versions, you should be able to install VisTrails to its own
directory with the same set of packages. Again, refer to the website for specific instructions or
help with installation.

2.2 Quick Start

Starting VisTrails is mildly system dependent. On Windows and Mac OS X, it requires clicking
on the VisTrails application icon. In general, however, it is possible to start VisTrails on any

3

4 CHAPTER 2. GETTING STARTED

(a) VisTrails Builder Window (b) VisTrails Spreadsheet Window

Figure 2.1: Default View Upon Starting VisTrails

system by navigating to the directory where “vistrails.py” lives (usually the root directory of
your installation) and executing the command:

python vistrails.py

Depending on a number of factors, it can take a few seconds for the system to start up.
As VisTrails loads, you may see some messages that detail the packages being loaded and
initialized. This is normal operation, but if the system fails to load, these messages will provide
information that may help you understand why. After everything has loaded, you will see
the VisTrails Builder window as shown in Figure 2.1(a). If you have enabled the VisTrails
Spreadsheet, you will also see a second window like that in Figure 2.1(b). (Note that the
spreadsheet is enabled by default.)

(see Section 2.3) (see Section 2.5) (see Chapters 3,4,6,7) (see Section 2.5)

Figure 2.2: The VisTrails toolbar

The VisTrails toolbar serves to help users navigate the various modes and functions Vis-
Trails provides. As illustrated by Figure 2.2, the left side of the toolbar contains standard
file manipulation buttons, and the next section provides buttons for execution and undo/redo
functionality. The four buttons in the middle section serve to switch between different modes
to manipulate, query, and explore workflows. The right-most buttons allow the user to toggle
between different ways of navigating around the current canvas.

2.3. MANIPULATING VISTRAILS FILES 5

2.3 Manipulating VisTrails Files

To open a VisTrails file, or vistrail, you can either click the open button in the toolbar or select
Open from the File menu. This brings up a standard file dialog where you can select a vistrail
to open. Vistrails are identified by the “.vt” file extension. Opening a vistrail adds a tab to
the builder window where each tab represents a different vistrail. Clicking a tab switches the
current vistrail. Vistrails can also be stored in a database, enabling a central repository for
workflows. See Chapter 9 for more details about this feature.

To close a vistrail, you can either choose the Close option from the File menu or click the
red ‘X’ button on the upper right side of the builder window. If the vistrail has not been saved,
you will asked if you wish to save your work. To save a vistrail, there is both a button and a
menu item in the File menu. If you would like to save the vistrail with a different name or in
a different location, you can use the Save As option.

2.4 VisTrails Basics

If you are already familiar with workflows and workflow systems, you can skip this paragraph.
In general, a workflow is a way to structure a complex computational process that may in-
volve a variety of different resources and services. Instead of trying to keep track of multiple
programs, scripts, and their dependencies, workflows abstract the details of computations and
dependencies into a graph consisting of computational modules and connections between these
modules.

VisTrails exhibits an interface for building workflows that is similar to many existing work-
flow systems. As such, it allows users to interactively create workflows using a extensible library
of modules and a connection protocol thats helps a user determine how to connect modules.
Users drag modules from a list of available modules to a workflow canvas to add them to a work-
flow. Each module has a set of input and output ports, and outputs from one module can be
connected to inputs of another module, assuming that the types match. For more information
on building workflows in VisTrails, see Chapter 3.

In addition to providing an interface for manipulating individual workflows, VisTrails con-
tains a number of features that function on a collection of workflows. A vistrail is a collection
of related workflows. As you explore different computational approaches or visualization tech-
niques, a workflow may evolve in a lot of directions. VisTrails captures all of these changes
automatically and transparently. Thus, you can revisit a previous version of a workflow and
modify it without worrying about saving intermediate versions. This history is displayed by
the VisTrails Version Tree, and different ways of interacting with this tree are discussed in
Chapter 4.

With a collection of workflows, one of the necessary tasks is to search for specific workflows.
The criteria for these searches may vary from finding workflows modified within a specific time
frame to finding workflows that contain a specific module. Because of the version history that

6 CHAPTER 2. GETTING STARTED

VisTrails captures, these tasks are natural to implement and query. VisTrails has two methods
for querying workflows, a simple text-based query language and a query-by-example canvas
that allows users to build exactly the workflow structure they are looking for. Both of these
techniques are described in Chapter 6.

The fourth button that toggles between the different modes in VisTrails allows users to
explore workflows by running the same workflow with different parameters. Parameter Ex-
ploration provides an intuitive interface for computing workflows with parameters that vary
in multiple dimensions. When coupled with the VisTrails Spreadsheet, parameter exploration
allows you to quickly compare results and discover optimal parameter settings. See Chapter 7
for specific information on using Parameter Exploration.

2.5 VisTrails Interaction

The Execute button serves as the “play” button for each of the modes describes above. In both
the Builder and Version Tree, it executes the current workflow. For querying, it executes the
query, and in parameter exploration, it executes the workflow for each of the possible parameter
settings. The undo and redo buttons function in the standard way, but note that these actions
are implicitly switching between different versions of a workflow. Thus, you will notice that as
you undo or redo a change to a workflow, the selected version in the version tree changes.

For all modes except Parameter Exploration, the center pane of VisTrails is a canvas where
you can manipulate the current workflow, version tree, or query workflow. The buttons on
the right side of the toolbar allow you to channge the default behavior of the standard mouse
button (the left button for most multiple button mice). You can choose the behavior to select
items in the scene, pan around the scene, or zoom in and out of the scene by selecting the given
button. In addition, if you are using a mouse with multiple buttons, the right button will zoom,
and the middle button will pan. To use the zoom functionality, click and drag up to zoom out
and drag down to zoom in.

Chapter 3

Creating and Modifying Workflows

3.1 Working with Modules

In VisTrails, modules are represented by a rectangle in the Pipeline view of the Builder.
The name of the module is shown in bold letters in the middle of the rectangle. The input
and output ports for the module are denoted by small squares on the top and bottom of the
module, respectively. Modules are connected together to define the dataflow using curved black
lines that go from output to input ports between modules. Each module may have also have
adjustable parameters that can be viewed when a module is selected. Modules can be connected,
disconnected, added, and deleted from a workflow.

As an example of building workflows, we will modify a basic VTK workflow by replacing
one module with another in the final workflow of the “vtk book 3rd p189.vt” vistrail. After
opening this vistrail, you will need to click on the Pipeline button in the toolbar to edit the
workflow.

3.2 Adding and Deleting Modules

A list of available modules is displayed hierarchically in the Modules container on the left side
of the VisTrails Builder. A core set of basic modules are always distributed with the VisTrails
system. Other packages, such as VTK, are also distributed, but are not necessary for VisTrails
and thus can be disabled on startup (see Chapter 11). Depending on the number of packages
imported on startup, the number of modules to select from can be difficult to navigate. Thus,
a simple search box is provided at the top of the container to narrow the displayed results. To
add a module to the workflow, simply drag the text from the Module container to the workflow
canvas.

Modules and connections may be selected in multiple ways and are denoted by a yellow
highlight. Besides directly left clicking on the object, a box selection is available by left clicking
and dragging over the modules and connections. Multiple selection can be performed with the

7

8 CHAPTER 3. CREATING AND MODIFYING WORKFLOWS

(a) (b)

Figure 3.1: (a) The vtkCylinder module is added to the canvas, (b) the vtkQuadric module
is deleted and the connection replaced.

box selection as well as by right clicking on multiple objects with the ‘Shift’ key pressed.
There are several ways to manipulate selected modules in the workflow canvas. Moving

them is performed by dragging a selected module using the left mouse button. Deleting selected
modules is performed by pressing the ‘Delete’ key. The modules and connections can also be
copied and pasted using the Edit menu, or with ‘Ctrl-c’ and ‘Ctrl-v’, respectively.

In our running example, type “vtkCylinder” into the search box of the Module container.
As the letters are typed, the list filters the available modules to match the query. Select
this module and drag the text onto an empty space in the canvas. This module will replace
the vtkQuadric module in our example. Thus, select the vtkQuadric module in the canvas
and press the ‘Delete’ key. This removes the module along with any connections it has (see
Figure 3.1).

3.3 Connecting Modules

Modules are connected in VisTrails through the input and output ports at the top and bottom
of the module, respectively. By hovering the mouse over the box that defines a port, the name
and data type are shown in a small tooltip. To connect two ports from different modules,
start by left clicking inside one port, then dragging the mouse to the other. The connection
line will automatically snap to the ports in a module that have a matching datatype. Since
multiple ports may match, hovering the mouse over the port to confirm the desired match may
be necessary. Once a suitable match is found, releasing the left mouse button will create the
connection. Note, a connection will only be made if the input and output port’s data types
match. To disconnect a connection between modules, the line between the modules can be
selected and deleted with the ‘Delete’ key.

Returning to our example, the new module vtkCylinder needs to be connected to the
vtkSampleFunction module as the previous data source was. Place the cursor over the only
output port on the vtkCylinder module, located on the bottom right. A tooltip should appear

3.4. CHANGING MODULE PARAMETERS 9

(a) (b) (c) (d)

Figure 3.2: (a)(c) The module methods interface is shown with a change of the SetRadius

parameter to 1.0 and 0.25. (b)(d) The results of the changes are displayed on execution.

that reads “Output port self (vtkCylinder)”. Left click on the port and drag the mouse over the
vtkSampleFunction module. The connection should snap to the fourth input port from the left.
Hovering the mouse over this port shows a tooltip that read “Input port SetImplicitFunction
(vtkImplicitFunction)”. Release the mouse button to complete the connection between these
two modules (see Figure 3.1). To check for a valide dataflow, execute the workflow and see if
the results appear in the spreadsheet.

3.4 Changing Module Parameters

The parameters for a module can be accessed in the Methods container located on the right
side of the Builder. When a module is selected from the canvas, the corresponding methods are
displayed. As with the Modules container, a search box is provided to quickly find a desired
method. By default, the Builder only manages methods with set parameters. To check the set
parameters, a Set Methods container is available below the Methods container. Changing a
parameter can be performed directly in the Set Methods container. To set a parameter for the
first time, click on the corresponding method and drag it into the Set Methods container, then
enter the parameters directly into the text boxes. To remove a set parameter, simply select the
method in the Set Methods container and press the ‘Delete’ key.

To perform a parameter change with our example, select the vtkCylinder module in the
canvas. The methods are shown hierarchically in the Methods container. Find the SetRadius

method and select it, then drag the highlighted text from the Methods container into the Set

Methods container below. The result is a SetRadius box with a Float text input. Enter
0.25 into the text box and press the ‘Enter’ key. By executing the workflow, the modified
visualization appears in the spreadsheet. Figure 3.2 shows the interface and results of the
parameter explorations.

10 CHAPTER 3. CREATING AND MODIFYING WORKFLOWS

(a) (b)

Figure 3.3: (a) The vtkCylinder module is configured to show an additional GetRadius port,
which is then connected to a StandardOutput module. (b) The module configuration window
allows the hidden ports to be displayed.

3.5 Configuring Module Ports

For convenience, all the inputs and outputs of a module are not always shown in the canvas
as ports. The ports that are shown by default are defined using an option when defining the
method signatures of a package. To access the full list of ports, the module configuration
window is used. This is opened by selecting the triangle at the top right of a module to open
a popup menu and selecting the Edit Configuration menu item, or alternatively by pressing
‘Ctrl-E’ when a module is selected. The window shows a list of input and output ports and
allows the user to toggle any additional ports to enable. When the configuration is complete,
the new ports will appear on a module with a circle icon instad of the normal square. These
new ports can then be used for connections in the same way as the others.

As an example of configuring a module port, in our previous example select the vtkCylinder
module in the canvas and press ‘Ctrl-E’. In the newly opened configuration window, check the
box for the GetRadius port, then click OK to close the window. A new circle port should appear
on the module. Next, add a new StandardOutput module from the basic modules and connect
the output port for GetRadius with the input port of StandardOutput. Upon execution, the
value 0.25 is now output to the console. Figure 3.3 shows the new workflow together with the
module configuration window.

3.6 Basic Modules

In addition to the modules provided by external libraries, VisTrails provides a few basic modules
for convenience and to facilitate the coupling of multiple packages in one workflow. These
modules mostly consist of basic data types in Python and some manipulators for them. In
addition, file manipulation modules are provided to read files from disk and write files to disk.

Because every Python operation cannot be represented as a module, the PythonSource

3.6. BASIC MODULES 11

(a) (b)

Figure 3.4: (a) A PythonSource module can be used to directly insert scripts into the workflow.
(b) The configuration window for PythonSource allows multiple input and output ports to be
specified along with the Python code that is to be executed.

module is provided to allow users to write Python statements to be executed as part of a
workflow. By pressing ‘Ctrl-E’ when a PythonSource module is selected in the canvas, a
configuration window is opened. This window allows the user to specify custom input and
output ports as well as directly enter Python source to be executed in the workflow.

To demonstrate a PythonSource module, we return to our example. Instead of using a
StandardOutput module as above, we will output the center of the cylinder using Python.
First, add a PythonSource module to the canvas and remove the StandardOutput module.
Select the PythonSource module and press ‘Ctrl-E’ to edit the configuration. In the newly
opened configuration window, create a new input port named “center” of type Float. Next, in
the source window enter:

print center

then select OK to close the window. Finally, connect the GetRadius output of the vtkCylinder

module to the new input port of PythonSource. Upon execution, the radius of the cylinder
is printed to the console as before. Figure 3.4 shows the new workflow together with the
PythonSource configuration window.

Chapter 4

Interacting with the Version Tree

4.1 Version Tree View

The History button on the VisTrails Toolbar lets users interact with a workflow history. It
consists of a tree view in the center and the Properties tool window on the right for querying
and managing version properties. Versions are displayed as ellipses in the tree view where the
root of the tree is displayed at the top of the view. The nodes of the tree correspond to a
version of a workflow while an edge between two nodes indicates that one was derived from the
other.

By default, only nodes that are leaves, have more than one child node, are specially tagged,
and the current version, will be displayed. The nodes are displayed as colored ellipses, and
are either blue or orange. A blue color denotes that the corresponding version was created
by the current user while orange nodes were created by other users. The brightness of each
node indicates how recently a version was created; brighter nodes were created more recently
than dimmer ones. Each node may also have a tag that describes the version, and this tag is
displayed in the center of the ellipse of the corresponding version.

All of the versions are connected to each other by either solid or broken lines. A solid line
indicates that the child node is a direct descendant of the parent node, meaning the user has
made only a single change from the older version to the newer version. Likewise, a broken
line indicates that more than one change has been made, but the intermediate versions have
not been tagged. Because most non-trivial changes to a workflow take more than action, most
edges in a the version tree will be shown as these broken lines.

To see an example of a version tree, load the example vistrail “vtk book 3rd p189.vt”. All
versions will be shown in orange unless your username happens to be “emanuele”. Recall that
this tree displays the structure of changes to a workflow so let’s make some changes to see their
effect on the version history. In the History view, select the node tagged Almost there, and
then click on the Pipeline button to switch to a view of the workflow. Select a connection
and delete it. Now, switch back to the History view, and notice that there is a new child

12

4.2. ADDING AND DELETING TAGS 13

Figure 4.1: (a) All versions created by other users are shown in orange. (b) Deleting a connection
results in a blue version connected by a solid line. (c) More interactions on this version will
cause the solid line become a broken one.

node connected to Almost there. In addition, the line connecting the new node to its parent
is solid, indicating that only a single change has been made. If we delete more connections, the
solid line would become a broken line. See Figure 4.1.

4.2 Adding and Deleting Tags

As noted above, only certain nodes, including specially tagged ones, are shown by default in
the version tree. To tag a version, simply add meaningful text to the tag text box in the
Properties window and press ‘Return’. If you would like to change the tag to a different text,
click in the same text box and modify the string, again hitting ‘Return’ when finished. Note
that deleting all of the text in the tag field effectively deletes the tag. A second way to delete
a tag is to click the ‘X’ button to the right of the text box. Removing a tag from a node may
cause it to not be displayed in the default version tree view if it doesn’t satisfy any of the other
criteria for display.

14 CHAPTER 4. INTERACTING WITH THE VERSION TREE

4.3 Adding Version Annotations

In addition to the tag field, the Properties window also displays information about the user
who created the selected version and when that version was created. At the top of the window
is a field for querying a vistrail, and this functionality is described in detail in Chapter 6. The
final piece of the window is the Notes field which allows users to store notes or annotations
related to a version. As with tags, adding notes to a version is as easy as selecting the desired
version and modifying the text field. Notes are automatically saved when you save the vistrail
file.

4.4 Navigating Versions

Besides clicking on nodes of a version tree, you can also use the Undo and Redo buttons to change
versions. Because the version tree captures all changes to a workflow, undo and redo not only
revert or reinstate changes to a workflow, but also change the currently selected version in the
version tree. More precisely, undoing a change in a workflow is exactly the same as selecting
the parent of the current node in the version tree. Note that because the current version is
always shown in the version tree, undo and redo provide an effective way to navigate between
two nodes connected with a broken line.

4.5 Comparing Versions

While selecting versions in the History view and using the Pipeline view to examine each
version is extremely useful, it can be cumbersome when trying to compare two different versions.
To help with such a comparison, VisTrails provides a the Version Difference mechanism for
quickly comparing two versions. There are two ways to compute this difference. The first is to
select two versions in the tree and choose Execute Version Difference from the Run menu.
The easier method is to drag one version onto the other.

After either method, a Visual Diff window will open (see Figure 4.2). The difference is
displayed in a manner that is very similar to the pipeline view, but modules and connections
are colored based on similarity. Dark gray indicates those modules and connections that are
shared between the two versions; orange and blue show modules and connections that exist in
one workflow and not the other; and light gray modules are those where parameters between
the two versions differ. Clicking the Legend button will bring up a window to remind you what
each color corresponds to. For a module that is colored light gray, clicking on the Parameter

Changes button will bring up a window that shows the difference in parameters for that module.

Figure 4.2 shows the result of comparing the z-spaced and textureMapper versions in
the “lung.vt” example. To try out this feature, click and drag the z-space version to the
textureMapper version. Note that the cursor icon will change to a green plus when the drag

4.5. COMPARING VERSIONS 15

Figure 4.2: A Visual Diff showing the difference between version z-space and version
textureMapper.

is valid. After the diff appears, click on the Parameter Changes button, and then click on the
vtkRenderer module to see the parameter differences. We can see that one of the changes from
z-space to textureMapper was to add a black background.

Chapter 5

The Spreadsheet

As described in Section 4.5, VisTrails has a powerful built-in mechanism to compare workflows.
However, this comparison shows changes in the design of the workflows, and we are often also
interested in differences in the results of workflows. The VisTrails Spreadsheet provides a simple,
flexible, and extensible interface to display and compare results from workflows. Coupled with
the version differences, users can explore the evolution of their workflows.

The Spreadsheet package is installed with VisTrails by default, and it can display a variety of
data ranging from VTK renderings to webpages without additional configuration. In addition to
the included types of viewers, users can create and register additional viewers using customized
cell widgets (see Section 5.4).

5.1 The Spreadsheet Layout

As should be expected, the VisTrails Spreadsheet consists of one or more sheets, each with a
customizable number of rows and columns. Users can add additional sheets either by clicking
the New Sheet button in the Spreadsheet toolbar or choosing the menu item with the same
name from the Main menu. Similarly, a sheet can be deleted by clicking the ‘X’ button in the
lower-right corner or choosing the Delete Sheet menu item.

To modify the layout for the active sheet, you can both change the number of rows and
columns and resize individual cells. The number of rows is controlled by the left spinner in the
toolbar and the number of columns by the right one. To resize a given row or column, click
and drag on one edge of the row or column header. In addition, you can resize an individual
cell by moving the mouse to lower-right corner of the cell until the cursor changes and clicking
and dragging to the desired size (see Figure 5.2(d)). Note that this will affect the entire layout,
compressing or expanding rows and columns to generate or fill space for resized cell.

16

5.2. USING THE SPREADSHEET 17

Figure 5.1: The VisTrails Spreadsheet

5.2 Using the Spreadsheet

Currently, there are two operating modes in the Spreadsheet: Interactive Mode and Editing
Mode. Interactive Mode allows users to view and interact with the spreadsheet cells while
Editing Mode provides operations for manipulating cells. The modes can be toggled by the
View menu or their corresponding keyboard shortcuts (‘Ctrl-Shift-I’) and ‘Ctrl-Shift-E’).

5.2.1 Interactive Mode

In Interactive Mode, users can interact directly with the viewer for an individual cell, interact
with multiple cells at once, or change the layout of the sheet. Because cells can differ in their
contents, interacting with a cell changes based on the type of data displayed. For example, in
a VTKCell, a user can rotate, pan, and zoom in or out using the mouse.

In a sheet, a cell can be both active and selected. There can only be one active cell, and
that cell is highlighted by a yellow border. Clicking on any cell will make it active. This active
cell will respond to keyboard shortcuts as well as mouse clicks and drags. In constrast to the
active cell, one or more cells can be selected, and the active cell need not be selected. To
select multiple cells, either click on a row or column heading to toggle selection or ‘Ctrl’-click
to add or remove a cell from the group of selected cells. The backgrounds of selected cells are

18 CHAPTER 5. THE SPREADSHEET

Figure 5.2: Different states of a spreadsheet cell. (a) inactive and unselected (b) active and
unselected (c) active and selected (d) an active cell with its toolbar and resizer

highlighted using the system’s selection color. See Figure 5.2 for examples of the different cell
states.

Depending on the cell type, additional controls may appear in the toolbar when a cell is
activated. These controls affect only the active cell, and change for different cell types. As
shown by Figure 5.2(d), an ImageViewerCell adds controls for resizing, flipping, and rotating
the image in the active cell.

Arranging Cells

As described in Section 5.1, cells can be resized by either resizing rows, columns, or an individual
cell. In addition to resizing, a row or column can be moved by clicking on its header and dragging
it along the header bar to the desired position. See Section 5.2.2 for instructions on moving a
specific cell to a different location.

Synchronizing Cells

Often, when a group of cells all display results from similar workflows, it is useful to interact
with all of these cells at the same time. For example, for a group VTKCells, it is instructive to
rotate or zoom in on multiple cells at once and compare the results. For this reason, if a group
of cells is selected, mouse and keyboard events for a single cell of the selection are propogated
to each of the other selected cells. Currently, this feature only works for VTKCells, but we plan
to add this to other cell types as well. An example of this functionality is shown in Figure 5.3.

5.2.2 Editing Mode

Editing Mode provides more operations to layout and organize spreadsheet cells. In this mode,
the view for each cell is frozen and overlaid with additional information and controls (see
Figure 5.4). The top of the overlay displays information about which vistrail, version, and type

5.3. SAVING A SPREADSHEET 19

Figure 5.3: When selecting all cells, interacting with one VTK cell (A1) causes the other two
VTK cells (B1 and B2) to change their camera to the same position.

of execution were used to generate the cell. The bottom piece of the overlay contains a variety
of controls to manipulate the cell depending on the its state.

Cells can be moved or copied to different locations on the spreadsheet by clicking and
dragging the appropriate icons (Move or Copy) for a given cell to its desired location. To move
a cell to a location on a different sheet, drag the icon over the target sheet tab to bring that
sheet into focus first and then drop it at the desired location. If you move a cell to an already-
occupied cell, the contents of the two cells will be swapped. See Figure 5.4 for an example of
swappng two cells.

If a cell was generated via parameter exploration (see Chapter 7), the Create Version

button will be available to save the workflow that generated the result back to the vistrail.
Clicking this button modifies the vistrail from which the cell was generated by adding a new
version with the designated parameter settings. Thus, if go back to the History mode of the
VisTrails Builder for that vistrail, you will find that a new version has been added to the version
tree.

5.3 Saving a Spreadsheet

Warning: This is currently an experimental feature and as such is not robust. If you rename
or move the vistrails used by the saved spreadsheet, the spreadsheet will not load correctly.

Because spreadsheets can include several workflow executions or parameter explorations,

20 CHAPTER 5. THE SPREADSHEET

Figure 5.4: The spreadsheet in Editing Mode. (a) All cell widgets are replaced with an in-
formation widget (b) Two cells are swapped after drag and drop the ’Move’ icon from A1 to
B1

it is helpful to be able to save the layout of the current spreadsheet. To save a spreadsheet,
simply choose the Save menu item from the Main menu, and complete the dialog. After saving
a spreadsheet, you can reopen it using the Open menu item.

5.4 Creating a Customized Cell Widget

Incomplete: This section will be added at a later date. Check the web site for more information
or contact the developers for more information.

Chapter 6

Querying the Version Tree

VisTrails is designed for manipulating collections of workflows, and an integral part of this design
is the ability to quickly search through these collections. VisTrails provides two methods for
querying vistrails and workflows. The first is a query-by-example interface which allows users
to build query workflows and search for those with similar structures and parameters, and the
second is a textual interface with a straightforward syntax. For each interface, the results are
emphvisual: each matching version is highlighted in the History view, and if the query involves
specific workflow characteristics, any matching entities are also highlighted in the Pipeline view
for the current version.

6.1 Query By Example

One of the problems faced when trying to query a collection of workflows is the fact that
structure is important. Suppose that you want to find only workflows where two modules are
used in sequence. Instead of trying to translate this into a text-based syntax, it is easier to
construct this relationship. VisTrails provides such an interface which mirrors the Pipeline

view, allowing users to construct a (partial) workflow to serve as the search criteria.

To use the Query by Example interface, click on the Query button on the toolbar. This
view is extremely similar to the Pipeline view and pipelines can be built in a similar manner.
Just like the Pipeline view, modules are added by dragging them from the list on the left side
of the window, connections are added by clicking and dragging from a port on one module to a
corresponding port on another module, and parameters can be edited on the right-side of the
window. One major difference between the Pipeline view and the Query view is that you can
use comparison operations in parameter values. For example, instead of searching for a pipeline
that contains a Float with a value of 4.5, you can search for a pipeline that contains a Float
with a value ‘< 4.5’ or ‘> 4.5’. Figure 6.1 shows an example pipeline that has been built in
the query builder.

Note that Query by Example provides the capability to iteratively refine searches by adding

21

22 CHAPTER 6. QUERYING THE VERSION TREE

Figure 6.1: Example pipeline in query mode.

more criteria. For example, a user interested in workflows that contain a certain module may
find that such a query returns too many results. That user can refine the query to only find
those workflows where the given module has a parameter setting that falls in a given range.

After constructing a pipeline, click the Execute button to begin the query. This button
will be available as long as the query window is not empty. Executing the query will bring
you back to the History view where the matching versions are displayed. Section 6.3 provides
information on interacting with query results.

6.2 Textual Queries

There are many ways to search for versions in the version tree using texutal queries, but they
all rely on a simple text box for input. Begin a search by activating the History view. The
search box is in the Properties subwindow, and can be identified by the magnifying glass icon
next to it. If you enter query text, VisTrails will attempt to match logical categories, but if
your query is more specific, VisTrails has special syntax to markup the query. Figure 6.2 shows
an example query. To execute a query, simply press the ‘Return’ key after typing your query.

Table 6.1 lists the different ways to markup a query. Note that you can search by user name
to see which changes a particular user has made and also by date to see which changes were
made in a specific time frame. When searching by date, you can search for all changes before
or after a given date or an amount of time relative to the present. If searching for changes
before or after a specific date, the date can be entered in a variety of formats. The simplest
is ‘day month year ’, but if the year is omitted, the current year is used. The month may be
specified by either name or numerical value. For example ‘before: 18 November 2004’ is a

6.2. TEXTUAL QUERIES 23

(a) (b)

Figure 6.2: (a) Query results in history view and (b) the Results in pipeline view.

Figure 6.3: A query made to find any changes made before Feb 19.

24 CHAPTER 6. QUERYING THE VERSION TREE

Search Type Syntax

User name user: user name

Annotation notes: phrase

Tag name: version tag

Date
before: date | relative time
after: date | relative time

Table 6.1: Syntax for querying specific information using textual queries.

valid query. If searching by relative time, you can prepend the amount of time relative to the
present including the units to ‘ago’. An example of this type of query is ‘after: 30 minutes

ago’. The available units are seconds, minutes, hours, days, months, or years.
You can concatenate simple search statements to create a compound search to search across

different criteria or for a specific range. For example, to search for workflows whose tag includes
‘brain’ and were created by the user ‘johnsmith’, the query would be ‘name: brain user:

johnsmith’. To search for all workflows created between April 1 and June 1, the query would
be ‘after: April 1 before: June 1’.

6.3 Query Results

After executing either a query by example or a textual query, the matching versions are high-
lighted in the version tree. In addition, there is a button named Reset Query in the lower-left
of the version tree that allows you to reset the query, returning the view to normal. For queries
by example, if you click on a specific matching version and change to the Pipeline view,
the matching structure will also be highlighted. Figure 6.2 shows the results of the query by
example in Figure 6.1 in both the History and Pipeline views.

While in the History view, you can select two different ways of viewing search results.
The magnifying glass icon to the left of the textual search box contains a dropdown menu
with two options: “Search” and “Refine”. The first displays results by simply highlighting the
matching nodes while the second condenses the tree to show only the versions that match. For
large vistrails, this second method can help you determine relationships between the matching
versions more easily.

In addition, VisTrails keeps track of the most recent textual queries, and repeating these
queries can be accomplished by selecting the recent query from the dropdown menu attached
to the search box. You can also clear recent searches using this menu. Finally, the ‘X’ button
next to the search box will reset the query and restore the normal view of the version tree.

Chapter 7

Parameter Exploration

While exploring workflows, one critical task is tweaking parameter values to improve simulations
or visualizations. VisTrails contains an integrated parameter exploration interface that allow
users to thoroghly explore the parameter space and quickly identify their desired settings. By
binding parameters to a range of values, users can generate a collection of results without having
to tediously edit the workflow.

VisTrails Parameter Exploration is Spreadsheet-aware so users can map the intermediate
results from explorations to cells of the Spreadsheet. Because the Spreadsheet provides a multi-
view, gridded, interface that makes efficient use of screen space, users can quickly compare the
results of different parameter settings. The changes in parameters can be displayed across rows,
columns, and sheets. In addition, parameters can be explored across timesteps, and displayed
in the Spreadsheet as animatations. This could be used, for example, to show how pathological
tissues and tumors are affected by radiation treatment in a series of scans.

7.1 Creating a Parameter Exploration

Before beginning to explore parameters, make sure that the workflow that you wish to explore
is active. See Chapter 4 for information on selecting a specific workflow. To access VisTrails
Parameter Exploration, click on the Exploration button in the VisTrails toolbar.

The Parameter Exploration window (shown in Figure 7.1) is centered around a tabular
environment where the exploration parameters can be setup. On the right side of the window,
there are a variety of panels that control aspects of the exploration (see Figure 7.4: the Set

Methods panel contains the list parameters that can be be explored; the Annotated Pipeline

panel displays the workflow to be explored an helps resolve ambiguities for parameter set-
tings, and the Spreadsheet Virtual Cell aids users in laying out exploration results in the
spreadsheet.

The columns headings of the main exploration window control how parameter values are
interpolated. The five controls on the to right side determine, from left to right, exploration in

25

26 CHAPTER 7. PARAMETER EXPLORATION

Figure 7.1: Parameter Exploration Window

Figure 7.2: Setting values for parameter exploration.

the ‘x’ direction, the ‘y’ direction, the ‘z’ direction, time, and no direction. The spinner next
to each of these controls the number of parameter values to be explored in that direction, and
for each parameter, you can select one of the directons to explore that parameter’s values.

To add parameters to an exploration, simply drag the corresponding method from the Set

Methods panel to the center canvas. To reduce clutter, this panel only shows the methods for
which parameters were assigned values in the Pipeline view. See Chapter 3 for instructions
on adding methods and parameters to a module.

After dragging a method to the exploration canvas, you can, for each parameter, set the
collection of values to be explored and the direction in which to explore. See Figure 7.2 for
an example. The collection of values can be set by linear interpolation, a list of values, or a
user-defined function. You can choose the desired method from the drop-down menu on the
right side of the parameter heading. For linear interpolation, the starting and ending values
must be specified; for a list, the entire comma-separated list must be specified, and for a user-
defined function, a Python function must be specified. For the list and user-defined functions,
you can access an editor via the ‘...’ button. See Figure 7.3 for an example. In addition, you

7.1. CREATING A PARAMETER EXPLORATION 27

(a) (b)

Figure 7.3: Editors for (a) lists of values, and (b) user-defined functions.

(a) (b) (c)

Figure 7.4: The right panels of the Parameter Exploration window. The numbered red circles
distinguish duplicate modules, and the cells in (c) determine the layout for spreadsheet results.

can manually enter a list using Python notation; for example, [30, 36, 45, 75]. To set the
direction in which to explore a given parameter, simply select the radio button in the column
for the specified direction. Note that choosing the final column disables exploration for that
parameters.

In both the Set Methods and Annotated Pipeline panels, you may see numbered red
circles. See Figure 7.4 for an example of this behavior. These circles appear when there is more
than module of a given type in a workflow. For each type satisfying this criteria, the instances
are numbered and displayed so that you can identify which part of the pipeline a module in the
Set Methods panel corresponds to.

To run a parameter exploration, click the Execute button in the VisTrails toolbar or select
Execute Parameter Exploration from Run menu.

28 CHAPTER 7. PARAMETER EXPLORATION

Figure 7.5: Results of the Virtual Cell arrangement.

7.2 Spreadsheet Integration

As stated earlier, the Spreadsheet provides integrated support for parameter explorations. Each
of the directions of exploration corresponds to a visual dimension in the spreadsheet: the ‘x’
direction corresponds to columns; the ‘y’ direction to rows; the ‘z’ direction to sheets; and time
to animations. However, when a workflow already outputs to more than one cell, you can layout
the group of cells as it will be replicated during the exploration. For example, given a workflow
with 2 output cells and an exploration for three parameter values in the ‘x’ direction, the
resulting spreadsheet could be 1× 6 or 2× 3. The Spreadsheet Virtual Cell panel controls
the layout of the pattern. Drag and drop cells to position them. See Figures 7.4(c) and 7.5 for
an example.

7.3 Examples

To demonstrate the power of parameter exploration, we conclude this chapter with a couple of
detailed examples. For these examples, make sure that the Spreadsheet is installed and enabled
(see Chapter 5).

7.3. EXAMPLES 29

(a) (b)

Figure 7.6: Parameter Exploration of (a) two and (b) four isovalues as displayed in the Spread-
sheet

7.3.1 Isosurfaces

One important task in visualization is finding isosurfaces that capture interesting features. In
the this example, we’ll look at determining the interfaces between different types of tissue
captured by CT scans. To begin, load the “terminator.vt” vistrail, select the “isosurface” node
in the version tree, and switch to parameter exploration. From the Set Methods panel, click
and drag the SetValue method of the vtkContourFilter module to the center view.

We’d like to compare different values for the isosurfaces so change the start and end values
to “30” and “75”. Since side-by-side visualization will look better on most monitors, select the
radio button below the ‘x’ dimension control, and increase the value of the control to 2 (see
Figure 7.2). Execute the exploration and switch to the Spreadsheet to view the results. They
should match Figure 7.6(a).

While these two isovalues show interesting features, we may wish to examine other interme-
diate isosurfaces. To do so, switch back to the main VisTrails window and increase the number
of results to generate in the ‘x’ direction to four. VisTrails will calculate the intermediate values
via linear interpolation, and your execution of this new exploration should match Figure 7.6(b).

7.3.2 Resampling

The next example uses both X and Y dimension combo boxes to change the values of two
parameters at the same time in the same spreadsheet. For this we will add the module
vtkImageResample to the pipeline insert it between vtkStructuredPointsReader and vtkContourFilter

and connect the output of the reader to input of the resampler and the output of the resampler
to the input of the contour filter. Finally, select the vtkImageResample module and add the
SetAxisMagnificationFactor method with parameter values 0 and 0.2. See Chapter 3 for

30 CHAPTER 7. PARAMETER EXPLORATION

reminders on how to accomplish these tasks.
After modifying the workflow, switch back to the Exploration view, and add drag the

SetValue and SetAxisMagnificationFactor methods to the exploration table. Set the iso-
values as in the previous example, but set the range of the second parameter of the magnification
factor to start at at 0.2 and end at 1.0. Also, set the magnification factor to vary over the ‘y’
direction. Finally, set the exploration to generate 16 results, four in the ‘x’ direction, and four
in the ‘y’ direction. Your exploration setup should match Figure 7.7(a), and after executing,
you should see a result that resembles Figure 7.7(b). Notice that the isosurface changes from
left to right while the images have less artifacts as the magnification factor approaches 1.0 from
top to bottom.

7.3.3 Animation

To create an animation, we’ll use the same “terminator.vt” example (make sure that you have
the “Isosurface” version selected). Follow the same steps as in the Isosurface example, but
this time, use the range from 30 to 80 (again using linear interpolation) and select time as the
dimension to explore, setting the number of results to generate to 7. See Figure 7.8(a) to check
your settings. After executing, the Spreadsheet will show a single cell, but if you select that
cell, you will be able to click the Play button in the toolbar. You should see an animation
where each frame is the result of choosing a different isovalue. A sample frame is displayed in
Figure 7.8(b).

7.3. EXAMPLES 31

(a) Setting up parameter exploration

(b) Resulting spreadsheet

Figure 7.7: Using parameter exploration with two parameters

32 CHAPTER 7. PARAMETER EXPLORATION

(a) Setting up parameter exploration

(b) One frame from the resulting animation

Figure 7.8: Animations with parameter exploration

Chapter 8

Using Bookmarks

33

Chapter 9

Connecting to a Database

As an environment for collaborative scientific exploration, VisTrails supports both stand-alone,
file-based storage and relational storage of vistrails. With a relational database supporting
VisTrails, users can easily collaborate on projects without copying files back and forth. At the
same time, a user who wishes to work without being connected to a database can save their
work locally to files. Finally, VisTrails can import and export to both types of storage so a user
can import a vistrail from the database, save it locally as a file on their laptop, make and save
changes, and export those changes back to the database. Remember that because the complete
workflow evolution is always saved, users will never step on each others’ feet.

By default, VisTrails works with local files stored in the “.vt” format (essentially compressed
XML). You can save the uncompressed XML by saving the file with a “.xml” extension. When
saving a vistrail, the system displays a standard save dialog. These files have a version associated
with them so when the schema for these files may change, VisTrails will be able import older
versions. The current version of the XML schema can be found in the distribution at:

db/versions/v0_8_0/schemas/xml/vistrail.xsd

where v_8_0 is the current version.

9.1 Setup

As described earlier, VisTrails supports relational storage as well as file-based storage. Cur-
rently, VisTrails has been tested with the MySQL system, but we plan to support most standard
relational systems.

9.1.1 Setting up the database

Before using VisTrails with a relational system, you must have a database system installed
and have access to create, access, and modify that database. If you are planning to deploy for

34

9.2. OPENING FROM A DATABASE 35

institution-wide access, you should consult your system administrator to determine the correct
configuration. The schema for relational VisTrails system can be found in the distribution at

db/versions/v0_8_0/schemas/sql/vistrails.sql

where v0_8_0 is the current version. This schema contains a sequence of SQL commands that
define the tables needed for storing vistrails.

After you or someone else has created the database for the vistrails, you will need the
following information:

1. hostname: the name or IP of the machine that stores the database (localhost if it is
your own machine)

2. port : the port that you connect to the database on

3. user : the username that should be used to access and modify the vistrails database

4. password : the password for the account corresponding to the given user

5. database name: the name of the database where the vistrails are to be stored.

9.1.2 Setting up VisTrails

If you would are planning to use the database for most of your work, you can switch VisTrails
to open vistrails from the database by default. To do so, open the Preferences window, and
check the “Read/Write to database by default” box in the General Configuration tab. You
can switch the default back to a file-based interaction by unchecking this box.

9.2 Opening from a database

If you have set VisTrails to use a relational database by default (see Section 9.1.2), you will be
able to open a vistrail by either selecting Open from the File menu or clicking the button with
the same name on the toolbar. Otherwise, you should choose the Import item from the File

menu. You should see a dialog like the one pictured in Figure 9.1(a).
If you have already connected to databases using VisTrails, you should see a list of them in

the left column of the dialog. If not, you will need to add one. To do so, click the plus icon in
the lower-left corner. This will bring up a dialog like that shown in Figure 9.1(b), and to setup a
connection, you will need the database connection information outlined in Section 9.1.1. After
filling in that information, you can test the connection by clicking the Test button. If the test
succeeds, click the Create button to add the database to the available sources for vistrails.

The database you wish to use should now be listed in the left column. Clicking on that row
will query the database for a list of vistrails available from the database and display them in

36 CHAPTER 9. CONNECTING TO A DATABASE

(a) (b)

Figure 9.1: (a) Opening a vistrail from the database, (b) Creating a new database connection

Figure 9.2: Saving a vistrail to the databse

the right column. To open a vistrail, select the desired vistrail and click the Open button or
simply double-click the vistrail. When the vistrail has loaded, you will be able to interact with
it in exactly the same way as a vistrail loaded from an XML file.

9.3 Saving to a database

If you opened a vistrail from the database, the default save action will be to save that vistrail
back to the database. There will be no dialogs displayed—the database the vistrail was loaded
from will be automatically updated.

If you opened the vistrail from a file, you will need to select either Save As.. or Export from
the File menu, depending on whether VisTrails uses the database by default (see Section 9.1.2.
You will be shown a dialog similar to the one in Figure 9.2. As discussed in Secion 9.2, you
can create a new connection to the database or use an existing one. Note that the name of the
vistrail must differ from those already stored on the databse, and clicking the Save button will

9.4. KNOWN ISSUES 37

persist the changes to the database.

9.4 Known Issues

Currently, saving a vistrail to the database will overwrite the vistrail currently stored on the
database. However, we plan to add synchronization soon so that all explorations are captured.
Thus, be aware that if two users have the same vistrail loaded from the database at the same
time, and both users save their changes, only the second user’s changes will be captured.

Chapter 10

Using Analogies to Update Workflows

38

Chapter 11

Writing VisTrails Packages

11.1 Introduction

VisTrails provides a plugin infrastructure to integrate user-defined functions and libraries.
Specifically, users can incorporate their own visualization and simulation codes into pipelines
by defining custom modules. These modules are bundled in what we call packages. A VisTrails
package is simply a collection of Python classes stored in one or more files, respecting some
conventions that will be described shortly. Each of these classes will represent a new module.
In this chapter, we will build progressively more complicated modules. Note that even though
each section introduces a specific large feature of the VisTrails package mechanism, new small
features are highlighted and explained as we go along. Because of this, we recommend at least
skimming through the entire chapter at least once.

Let us start with a minimal complete example of a very simple calculator:

1 import core.modules.module_registry
2 from core.modules.vistrails_module import Module, ModuleError

3 version = "0.9.0"

4 name = "PythonCalc"

5 identifier = "edu.utah.sci.vistrails.pythoncalc"

6 class PythonCalc(Module):
7 """PythonCalc is a module that performs simple arithmetic operations on
8 its inputs."""

9 def compute(self):

10 v1 = self.getInputFromPort("value1")

11 v2 = self.getInputFromPort("value2")

12 result = self.op(v1, v2)
13 self.setResult("value", result)

39

40 CHAPTER 11. WRITING VISTRAILS PACKAGES

14 def op(self, v1, v2):

15 op = self.getInputFromPort("op")
16 if op == ’+’: return v1 + v2
17 elif op == ’-’: return v1 - v2
18 elif op == ’*’: return v1 * v2
19 elif op == ’/’: return v1 / v2
20 else: raise ModuleError(self, "unrecognized operation: ’%s’" % op)

21 ###

22 def initialize(*args, **keywords):

23 # We’ll first create a local alias for the module registry so that
24 # we can refer to it in a shorter way.
25 reg = core.modules.module_registry.registry

26 reg.addModule(PythonCalc)

27 reg.addInputPort(PythonCalc, "value1",
28 (core.modules.basic_modules.Float, ’the first argument’))
29 reg.addInputPort(PythonCalc, "value2",
30 (core.modules.basic_modules.Float, ’the second argument’))
31 reg.addInputPort(PythonCalc, "op",
32 (core.modules.basic_modules.String, ’the operation’))
33 reg.addOutputPort(PythonCalc, "value",
34 (core.modules.basic_modules.Float, ’the result’))

To try this out in VisTrails, save the file above in your packages directory as pythoncalc.py.
Then, click on Edit and then Preferences. A dialog similar to what is shown in Figure 11.1
should appear. Select the pythonCalc package, then click on Enable... This should move the
package to the Enabled packages list. Close the dialog. The package and module should now
be visible in the VisTrails builder.

Now create a workflow similar to what is shown in Figure 11.2. When executed, this
workflow will print the following on your terminal:

1 7.0

Let’s now examine how this works. The first two lines simply import required components.
Then, we have three lines that give VisTrails meta-information about the package. version is
simply information about the package version. This might be tied to the underlying library or
not. The only recommended guideline is that compatibility is not broken across minor releases,
but this is not enforced in any way. name is a human-readable name for the package.

11.1. INTRODUCTION 41

Figure 11.1: All available packages can be enabled and disabled with the VisTrails preferences
dialog.

42 CHAPTER 11. WRITING VISTRAILS PACKAGES

Figure 11.2: A simple workflow that uses PythonCalc, a user-defined module.

11.1. INTRODUCTION 43

Choosing a good identifier The most important meta-data, however, is the package iden-
tifier, stored in identifier. This is a string that must be globally unique across all packages,
not only in your system, but in any possible system. We recommend using an identifier similar
to Java’s package identifiers. These look essentially like regular DNS names, but the word order
is reversed. This makes sorting on the strings a lot more meaningful. You should generally go
for institution.project.creatorusername for a package related to a certain project from
some institution, and institution.creatorname for a personally developed package. If you
are wrapping third-party functionality, do not use their institution’s DNS, use your own. The
rationale for this is that the third party itself might decide to create their VisTrails package,
and you do not want to introduce conflicts.

Line 6 is where we actually start defining a new module. Every VisTrails module corresponds
to a Python class that ultimately derives from Module, a class defined in core.modules.vistrails module.
A new module must implement a compute method that takes no extra parameters, such as on
Line 9. This method represents the actual computation that happens in a module. This com-
putation typically involves getting the necessary input and generating the output. We will now
see how that works.

Line 10 shows how to extract input from a port. Specifically, we’re getting the values passed
to input ports value1 and value2. We then perform some operation with these values, and
need to report the output on an output port, so that it is available for downstream modules.
This is done on Line 13, where the result is set to port value.

Let us now look more carefully at the remainder of the class definition. Notice that develop-
ers are allowed to define extra helper methods (Line 14). These methods can naturally use the
ports API. The other important feature of op(self, v1, v2) is error checking. PythonCalc

requires a string that represents the operation to be performed with the two numbers. If the
string is invalid, it signals an error, by simply raising a Python exception ModuleError that
is provided in core.modules.vistrails module. This exception expects two parameters: the
module that generated the exception (typically self) and a string describing the error, which
will be presented to the user.

That is all that it takes in terms of module behavior. The rest of the code is meant to
interact with VisTrails, and let the system know about the modules and ports being exposed.
To do that, users must provide an function in the main body of the package file (the function
starting on Line 22). The first thing is usually to register the module itself, such as on Line
26. Then, we need to tell VisTrails about the input and output ports we want to expose.
Input ports are set with the addInputPort method in the registry, and output ports, with
addOutputPort. These calls take three parameters. The first parameter is the module you’re
adding a new port to. The second one is simply the name of the port, and the third one is
a description of the parameter. In simple cases, this is just a pair, where the first element is
a VisTrails module representing the module type being passed, and the second element is a
string describing it. Later, we will see how to pass more complicated data types. Notice that
the types being used are VisTrails modules (Line 30), and not Python types.

44 CHAPTER 11. WRITING VISTRAILS PACKAGES

This is it — you have successfully created a new package and modules. From now on, we
will look at more complicated examples, and more advanced features of the package mechanism.

11.2 Wrapping Command-line tools

Many existing programs are readily available through a command-line interface. Also, many
existing workflows are usually first implemented through scripts, which work primarily with
command-line tools. This section describes how to wrap command-line applications so they
can be used with VisTrails. We will use as a running example the afront package, which wraps
afront, a program to generate 3D triangle meshes1. This package is available by default on
a VisTrails install. We will wrap the basic functionality in three different modules: Afront,
MeshQualityHistogram and AfrontIso.

11.2.1 Class Mixins

Each of these modules will be implemented by a Python class, and they will all invoke the
afront binary. Afront is the base execution module, and AfrontIso requires extra parameters
on top of the original ones. Because of this, we will implement AfrontIso as a subclass
of Afront. MeshQualityHistogram, however, requires entirely different parameters, and so
should not be a subclass of Afront. Our package will look something like this, then:

1 from core.modules.vistrails_module import Module
2 ... # other import statements

3 name = "Afront"
4 version = "0.1.0"
5 identifier = "edu.utah.sci.cscheid"

6 class Afront(Module):
7 def compute(self):
8 ... # invokes afront

9 class AfrontIso(Afront):
10 def compute(self):
11 ... # invokes afront with additional parameters

12 class MeshQualityHistogram(Module):
13 def compute(self):
14 ... # invokes afront with completely different parameters

1Afront is available at http://afront.sourceforge.net

11.2. WRAPPING COMMAND-LINE TOOLS 45

15 def initialize():
16 ...

It should be clear that all three modules share some functionality (invoking afront), but
not all. We would like to avoid duplicate code, but there is not a single class where we can
implement the base code. The solution is to create a mixin class, where we implement the
necessary functionality, and then inherit from both classes. In the following snippets, we will
highlight the changes in the code.

1 from core.modules.vistrails_module import Module, ModuleError
2 from core.system import list2cmdline
3 import os

4 class AfrontRun(object):
5 _debug = False
6 def run(self, args):
7 cmd = [’afront’, ’-nogui’] + args
8 cmdline = list2cmdline(cmd)
9 if self._debug:

10 print cmdline
11 os.system(cmdline)
12 if result != 0:
13 raise ModuleError(self, "Execution failed")

14 class Afront(Module, AfrontRun):
15 ...

16 class MeshQualityHistogram(Module, AfrontRun):
17 ...

Now every module in the afront package has access to run(). The other new feature in
this snippet is list2cmdline, which turns a list of strings into a command line. It does this
in a careful way (protecting arguments with spaces, for example). Notice that we use a call to
a shell (os.system()) to invoke afront. This is frequently the easiest way to get third-party
functionality into VisTrails.

11.2.2 Package Configuration

There are two obvious shortcomings to the way run() is implemented. First, the code assumes
afront is available in the system path, which might not be true in practice. Second, the
debugging variable is inaccessible to the interface, where it would be really handy. VisTrails

46 CHAPTER 11. WRITING VISTRAILS PACKAGES

provides a way to configure a package through a dialog. It is very simple to provide your own
configuration: just add a configuration attribute to your package, as follows:

1 from core.configuration import ConfigurationObject
2 from core.modules.vistrails_module import Module, ModuleError
3 from core.system import list2cmdline
4 import os

5 configuration = ConfigurationObject(path=(None, str),
6 debug=False)

7 class AfrontRun(object):

8 def run(self, args):
9 if configuration.check(’path’): # there’s a set directory

10 afront_cmd = configuration.path + ’/afront’
11 else: # Assume afront is on path
12 afront_cmd = ’afront’
13 cmd = [afront_cmd, ’-nogui’] + args
14 cmdline = list2cmdline(cmd)
15 if configuration.debug:
16 print cmdline
17 ...
18 ...

Let us first look at how to specify configuration options. Named arguments to the ConfigurationObject
constructor become attributes in the object. If the attribute has a default value, simply pass it
to the constructor. If the attribute should by default be unset, pass the constructor a pair whose
first element is None, and second element is the type of the expected parameter. Currently, the
valid types are bool, int, float and str.

To use the configuration object in your code, you can simply access the attributes. (as on
line 15). This is fine when there is a default value set for the attribute. In the case of path,
however, the absence of a value is encoded by a tuple (None, str), so using it directly is
inconvenient. That is where the check() method comes in (line 9). It returns False if there is
no set value, and returns the value otherwise.

The real advantage of using a configuration object is that the values can be changed through
a GUI, and they are persistent across VisTrails sessions. To configure a package, open the
Preferences menu (click on Edit and Preferences). Then, select the package you want to
configure by clicking on it (a package must be enabled to be configurable). If the Configure

button is disabled, it means the package does not have a configuration object. When you do
click on it, a dialog like the one in Figure 11.3 will appear.

11.2. WRAPPING COMMAND-LINE TOOLS 47

Figure 11.3: Configuration window for a package that provides a configuration object.

To edit a particular field, double-click on it, and change the value. The values set on that
window are persistent across VisTrails sessions, being saved on a per-user basis.

11.2.3 Temporary File Management

Command-line programs typically generate files as outputs. On complicated pipelines, many
files get created and passed to other modules. To facilitate the use of files as communication ob-
jects, VisTrails provides basic infrastructure for temporary file management. This way, package
developers do not have to worry about file ownership and lifetimes.

To use this infrastructure, it must be possible to tell the program being called which filename
to use as output. VisTrails can accomodate particular some filename requirements (in particu-
lar, specific filename extensions might be important in Windows environments, and these can
be set), but it must be possible to direct the output to a certain filename.

We will use Afront’s execute() method to illustrate the feature.

1 ...
2 class Afront(Module, AfrontRun):

3 def compute(self):
4 o = self.interpreter.filePool.create_file(suffix=’.m’)
5 args = []
6 if not self.hasInputFromPort("file"):
7 raise ModuleError(self, "Needs input file")
8 args.append(self.getInputFromPort("file").name)
9 if self.hasInputFromPort("rho"):

10 args.append("-rho")
11 args.append(str(self.getInputFromPort("rho")))
12 if self.hasInputFromPort("eta"):

48 CHAPTER 11. WRITING VISTRAILS PACKAGES

13 args.append("-reduction")
14 args.append(str(self.getInputFromPort("eta")))
15 args.append("-outname")
16 args.append(o.name)
17 args.append("-tri")
18 self.run(args)
19 self.setResult("output", o)
20 ...

Line 4 shows how to create a temporary file during the execution of a pipeline. There are
a few new things happening, so let us look at them one at a time. Every module holds a
reference to the current interpreter, the object responsible for orchestrating the execution of a
pipeline. This object has a filePool, which is what we will use to create a pipeline, through
the create file method. This method takes optionally a named parameter suffix, which
forces the temporary file that will be created to have the right extension.

The file pool returns an instance of basic modules.File, a module that is provided by the
basic VisTrails packages. There are two important things you should know about File. First,
it has a name attribute that stores the name of the file it represents. In this case, it is the name
of the recently-created temporary file. This allows you to safely use this file when calling a
shell, as can be seen on Line 16. The other important feature is that it can be passed directly
to an output port, so that this file can be used by subsequent modules. This is shown on Line
19.

Accomodating badly-designed programs Even though it is considered bad design to not
allow the specification of output filename, there exist programs that do so. In this case, a
possible workaround is to execute the command-line tool, and move the generated file to the
name given by VisTrails.

11.3 Interpackage Dependencies

When creating more sophisticated VisTrails packages, you might want to create a new mod-
ule that requires a module from another package. For example, using modules from different
packages as input ports, or even subclassing modules from other packages require managing of
interpackage dependencies. VisTrails needs to know about these, so packages can be initialized
in the correct order. To specify these dependencies, you should add a python callable named
dependencies to your package. We will start with a simple situation where new input and
output ports are added to PythonCalc, one that uses modules in a different package:

1 ...

11.3. INTERPACKAGE DEPENDENCIES 49

2 class PythonCalc(Module):

3 def compute(self):
4 ...

5 # Computes values for SciPy matrices as well
6 if self.hasInputFromPort("mat1"):
7 m1 = self.getInputFromPort("mat1")
8 m2 = self.getInputFromPort("mat2")
9 self.setResult("mat_value", self.mat_op(m1, m2))

10 def mat_op(self, v1, v2):
11 reg = core.modules_module_registry.registry
12 Matrix = reg.getDescriptorByName(’Matrix’).module
13 result = Matrix()
14 result.matrix = self.op(m1.matrix, m2.matrix)
15 return result

16 ...

17 def dependencies():
18 return ["SciPy"]

19 def initialize():
20 ...
21 Matrix = reg.getDescriptorByName(’Matrix’).module

22 reg.addInputPort(PythonCalc, "mat1", (Matrix, ’first matrix’))
23 reg.addInputPort(PythonCalc, "mat2", (Matrix, second matrix’))
24 reg.addOutputPort(PythonCalc, "value", (Matrix, matrix result))

Let us look at the first new call on Line 6. hasInputFromPort can be used for optional
ports : ports that only used when there are connections attached to it. If there is one such
connection, we get the inputs from both ports, and call mat op. This method will perform the
necessary conversion to native SciPy matrices before calling op.

50 CHAPTER 11. WRITING VISTRAILS PACKAGES

11.4 Requirements

11.5 Interaction with Caching

11.6 Advanced: Wrapping a big API

In the future, there will be a walkthrough of the VTK package wrapping mechanism.

Chapter 12

Advanced Topics: Module Execution
and Caching

51

Chapter 13

Example: Web Services

In this chapter, you will learn how to invoke web services from within VisTrails workflows.
We will build a simple workflow that invokes a few web services and publishes a web page
with the results. The web services we will use are provided by The Chemical Informatics
and Cyberinfrastructure Collaboratory (CICC) at Indiana University and can be found at
http://www.chembiogrid.org/products/index.html.

13.1 Enabling the webServices Package

The first thing we need to do after starting VisTrails is to enable the “webServices” package
on the Preferences pane.

Open the Preferences panel (On Windows and Linux, it is located under the Edit menu,
and on the Mac, it is under the VisTrails menu), and select the tab named Module Packages

(see Figure 13.1). On the Disabled packages list, select webServices and click on Enable.
Now select webServices on the Enabled packages list and click on Configure. A new

window will appear and you will be able to add a ‘;’-separated list of web services urls. Select
wsdlList and click on the Value field. You can type the web services urls you want. For our
example, we need the following two urls:

http://rguha.ath.cx:8080/pws/services/Structure?wsdl;

http://rguha.ath.cx:8080/cdkws/services/StructureDiagram?wsdl

Click on Close. Then you are required to disable and enable the package again so the urls
can be loaded. After that, close the Preferences window.

13.2 Creating a new vistrail

After configuring the webServices package properly, you will see that there will be a tab
webServices in your Modules panel (see Figure 13.2(a)). The webService package will generate

52

13.3. ADDING MODULES TO THE WORKFLOW 53

Figure 13.1: webServices package information shown on VisTrails Preferences Pane.

a module for each published method in a web service. If you do not already have a new vistrails
open, that is the right time to create a new one.

13.3 Adding modules to the workflow

At this point, we should start adding modules to our workflow.

If you have the web services list visible in your Modules panel, click on “getSmilesByCID”
and drag it to the Pipeline view area. Otherwise, use the search capability: in the Search field
of the Modules panel (the leftmost pane of the Builder Window), type in “getSmilesByCID”.
You will notice that a module under the webServices branch will be selected. Now you can
add it by clicking-and-dragging it over the Pipeline view area represented by the darker
grey canvas on the Builder Window. This module gets the SMILES 1 corresponding to a
compound ID. We need to add more modules that will process the output provided by the
getSmilesByCID module, including another web service module that will obtain the 2D diagram
of the compound. In the same way described above, add the following modules (the number in
parenthesis represents the number of modules you should add):

• PythonSource(2)

• getDiagram(1)

• RichTextCell(1)

1Simplified Molecular Input Line Entry System. Specification for unambiguously describing the structure of
chemical molecules using short ASCII strings.

54 CHAPTER 13. EXAMPLE: WEB SERVICES

(a) (b) (c)

Figure 13.2: (a) The webServices tab is added to the Modules panel after modifying vistrais
startup.py file (b) All the modules necessary for building the workflow were added to the
workflow (c) the version tree after tagging the current version

After adding these modules, our workflow should be similar to the one shown in Figure 13.2(b).

The modules were added to the pipeline view, but remain unconnected. This is a good
point for us to save our work. First we will name this pipeline as modules. To do that, we need
to switch to the version tree view by selecting the Version Tree tab in the top pane on the
right of the buider window. In the vtinterfaceVersion Tag field type in “modules” and click on
change. Your version tree should now look similar to the one in Figure 13.2(c).

Now we save our work by clicking on the Save button (the third from left to right on the
Builder Toolbar) or pressing ‘Ctrl+S’ (‘Command+S’ on Mac). Give a name to your file, such
as “chembiogrid webservice.xml”. Then we can go back to the pipeline view by selecting the
Pipeline tab.

13.4 Module customization and parameterization

Each module box has a set of input ports, located in the upper-left hand corner of the box, and
a set of output ports, located in its lower-right hand corner. They will be used to pipe data
between modules. You may have noticed that the PythonSource module does not contain any
input or output port. This module is designed to contain any piece of Python code. So we, as
pipeline builders, must define the input and the output ports and include the piece of code to
manipulate the inputs and generate outputs. We are going to use this module to process data
between the web services and to create our html page.

13.4. MODULE CUSTOMIZATION AND PARAMETERIZATION 55

First, open the configuration window of the top most PythonSource module by clicking on
the arrow on the top-right corner of the module box and select Edit Configuration (please
refer to Chapter 3 for more information on PythonSource).

Add one input port, “data” of type String (the same output type of getSmilesByCID

module) and add an output port called “smiles” also of type String (the same input type of
getDiagram).

Now type the following code in the text area and click “OK” when you are done:

smiles = data[0]

The getSmilesByCID module returns an array of strings encoded in a String object. The
getDiagram module, on the other hand, expects a single “smiles”. So we need to extract only
one element of the array and pipe it through the getDiagram module (later you can add another
output port and pipe the other smiles to another getDiagram module.

Now we will customize the other PythonSource. Open its Configuration Window and add
an input port, “diagram” of type String (the same output type of the getDiagram module).
Also, add an output port, htmlFile of type File and type the following piece of code in the
text area:

import base64
image = base64.decodestring(diagram)
f = self.interpreter.filePool.create_file(".jpg")
my_file = open(str(f.name), ’wb’)
my_file.write(image)
my_file.close()
text = ’<HTML><TITLE>Compound Summary</TITLE><BODY BGCOLOR="#FFFFFF">’
text += ’<TABLE WIDTH="100%" BORDER="1" BGCOLOR="#FFFFFF" %CELLPADDING="4"> ’
text += ’<TR><TD VALIGN="TOP"><P><IMG SRC="’
text += f.name + ’"></TD>’
text += ’<TD>Name:: Caffeine
’
text += "A methylxanthine naturally occurring in some beverages and "
text += "also used as a pharmacological agent. Caffeine’s most notable "
text += "pharmacological effect is as a central nervous system stimulant,"
text += " increasing alertness and producing agitation.</TD></TR></TABLE>"
output = self.interpreter.filePool.create_file()
my_file = open(str(output.name), ’w’)
my_file.write(text)
my_file.close()
self.setResult("htmlFile",output)

The PythonSource Configuration Window should look similar to the one shown on Fig-
ure 13.3.

We also need to set a few parameters in order to getSmilesByCID to work properly.
getSmilesByCID receives a compound ID. Caffeine’s CID is 2519.

56 CHAPTER 13. EXAMPLE: WEB SERVICES

Figure 13.3: The code for decoding the image and generating the html file.

The getDiagram also needs parameters to be set. Provide the following values: “height”:
250, “width”: 250, and “scale”: 1.0. Please refer to Chapter 3 for details on how to set
parameters.

Let’s give the name “parameters set” to this pipeline. Repeat the steps we performed above
to change a version tag and save your pipeline.

13.5 Connecting modules

Now that we have all the modules necessary to process our data, we must connect them properly
to fully form our processing pipeline. Each module box has a set of input ports, located in the
upper-left hand corner of the box, and a set of output ports, located in its lower-right hand
corner. In order to connect two modules together, click-and-drag the appropriate output box
contained in the module to the module using it as its input. For modules that have more than
one input/output, you can see the type of each individual port when hovering the mouse (as a
tooltip). VisTrails will also snap a connection to matching ports.

So, for example, by clicking and dragging the output port of the getSmilesByCID module to
the input port of PythonSource module, a connection will be made between the two modules.

13.6. EXECUTING THE WORKFLOW 57

Figure 13.4: The html report generated by our pipeline.

This connection is indicated by a solid black line. Now we must continue connecting our
pipeline. Add the following connections in the same way described above:

• The output port of PythonSource to the input port “smiles” of getDiagram

• The output port of getDiagram to the input port of PythonSource

• The output port of PythonSource to the input port “File” of RichTextCell

Name this version “connections” and you are ready to execute this pipeline.

13.6 Executing the workflow

The workflow is now ready to be visualized. As we have a RichTextCell module, pressing the
Execute current pipeline button will send the current pipeline with the current parameters
to the VisTrails Spreadsheet, resulting on an image similar to Figure 13.4.

Chapter 14

Example: ITK

14.1 Introduction to ITK

The Insight Toolkit, or ITK [1], is an open-source software system designed to support the
Visible Human Project [2]. ITK is under continual development, being updated to employ
cutting-edge segmentation and registration algorithms for multiple dimensions.

In order to fascilitate the implementation of processing mechanisms specific to the medical
imaging community, ITK provides a robust set of general purpose image processing tools. These
image processing tools are available to users through the standard ITK Filter interface [3].
Although ITK is implemented in C++, through the use of CMake 1 and CableSwig 2, the
functionality of ITK is made available to languages such as TCL, Java, and Python.

14.2 Preparing ITK

At the time of this writing, the latest stable release of ITK is 3.2.0
In order to incorporate the functionality of ITK into the VisTrails system, it first must

be built and installed. In the following sections, we will describe in detail the process of
downloading, building, and installing ITK and all the required components needed to use it.

14.2.1 Downloading ITK

ITK can be downloaded in either source tarballs or via public CVS access to the ITK source
repository. The following instructions take advantage of the CVS source repository; however,
source tarballs can be downloaded from:

• http://www.itk.org/HTML/Download.php

1CMake cross-platform make system. http://www.cmake.org.
2CableSwig Interface generator. http://www.itk.org/HTML/CableSwig.html

58

14.2. PREPARING ITK 59

These instructions can be found, in part, at the ITK website 3. To use CVS, you must
have a CVS client installed on your system. To download the ITK library, issue the following
commands:

cvs -d :pserver:anonymous@www.itk.org:/cvsroot/Insight login

password: insight

cvs -d :pserver:anonymous@www.itk.org:/cvsroot/Insight co Insight

Change directory into the newly created Insight/Utilities directory and issue the following
command:

cvs -d :pserver:anonymous@public.kitware.com:/cvsroot/CableSwig co CableSwig

This checkout includes CableSwig in the ITK system allowing it to be built automatically
during compilation of ITK itself.

14.2.2 Building the ITK Libraries

ITK requires CMake to be installed and available on your system. CMake can be found at:

• http://www.cmake.org

As of ITK version 3.2.0, CMake version 2.4.6 or greater must be used to prevent compilation
errors. In order to simplify updating ITK to later versions of the software, we perform an out-
of-source build. To do this, we first create a directory outside the Insight directory created for
us during the CVS checkout process.

mkdir itk
cd itk

We now run cmake, or the GUI-based version ccmake, in this directory.

ccmake ../Insight

Note: The above command assumes that the Insight directory exists at the same level as
the itk directory that we just created.

The following advanced CMake variables must be set to the appropriate values:

3ITK website. http://www.itk.org

60 CHAPTER 14. EXAMPLE: ITK

CMake Variable Value
BUILD SHARED LIBS ON

INSTALL WRAP ITK COMPATIBILITY ON
ITK CSWIG PYTHON OFF

ITK USE REVIEW ON
USE WRAP ITK ON

WRAP ITK PYTHON ON

Note: Some CMake variables are only available based on the state of others. If a variable is
missing from the list, set what is visible and re-configure, this will often allow you to see and
set additional parameters.

After generating the appropriate files and exiting ccmake, the standard build process can
be completed. In Linux variants and Mac:

make
sudo make install

On Windows, the build process is governed by the type of project or Makefile CMake
generated.

Note: It is possible to use ITK without installing it. To do this, the environment variables
LD LIBRARY PATH and PYTHONPATH must be set to the appropriate build directories:

LD LIBRARY PATH=/Path To itk/bin
PYTHONPATH=/Path To itk/Wrapping/WrapITK/Python

At this point, ITK is build and installed. To validate this, open a Python shell and issue
the following commands:

>>> import itk
>>> itk.Image[itk.US,2]

The above commands should both complete without error. The WrapITK implementation
used to wrap ITK for use in Python lazily instantiates required classes. This means that even if
the import succeeds, the instantiation of the above itk.Image class may fail. This is particularly
common if the envornment LD LIBRARY PATH is incorrectly set.

14.3 ITK and VisTrails

When built and installed with the appropriate Python bindings included, ITK can be used from
VisTrails through the ITK package. ITK is a third-party package and is not included in the
general VisTrails distribution. However, like many third-party packages, it is accessible from
the VisTrails homepage:

14.3. ITK AND VISTRAILS 61

(a) (b) (c)

Figure 14.1: (a) The VisTrails ITK Package Structure Overview (b) The ITK Package Sup-
ported PixelTypes (c) The ITK Package Filter Structure

http://www.vistrails.org

Please Note: The VisTrails ITK package is not a complete wrapping of all ITK functionality
at the time of this writing. If you would like to contact the author regarding the wrapped
functionality, please do so through the e-mail address on the VisTrails homepage.

The VisTrails ITK package is under continual development with the latest versions being
announced on the vistrails homepage. After downloading the package and extracting it in
accordance with the posted instructions, the following line should be added to the startup.py
file:

addPackage(’itk’)

Upon starting VisTrails, the ITK package modules will be made available to the Builder
Window.

14.3.1 ITK Package Organization

The ITK VisTrails package loosely mimics the ITK functionality hierarchy. The package’s top
level consists of base classes, containers, and file readers as shown in Figure 14.1. Also available
at the top level is the PixelType module and the specific types used to create and execute
ITK-based pipelines.

Currently, the ITK Image Filters are organized into functional groups. The five filter types,
as show in Figure 14.1, are:

• Feature Extraction Filters

• Image Intensity Filters

• Segmentation Filters

• Image Selection Filters

62 CHAPTER 14. EXAMPLE: ITK

• Image Smoothing Filters

All filter types currently have at least one representative ITK filter wrapped and usable
from within the VisTrails environment.

14.3.2 Reading DICOM Volumes

ITK includes DICOM support through the GDCM libraries 4. It is worthwhile to note at this
time that these libraries are currently not a complete implementation of the DICOM standard.

DICOM volumes can be integrated into VisTrails through the use of either the GDCM-
Reader or DICOMReader modules in the ITK package. For the rest of this example, we will
use the GDCMReader module as it’s performace is slightly higher than the DICOMReader
implementation.

Figure 14.2 shows the use of the GDCMReader module. In order to properly read a DICOM
volume, the GDCMReader must be supplied with the dimension of the volume to be read
and the directory containing the series to read. By default, WrapITK supports two- and
three-dimensional volumes. In order to include support for higher dimensions, the appropriate
WrapITK variable must be set using cmake.

14.3.3 Volume Processing With ITK and VisTrails

Typically, DICOM volumes are written with no 16-bit unsigned shorts. Unfortunately, most
systems allow the display of only 8-bit values. Because of the higher precision inherent in
DICOM data, it is often preferable to perform any computation, segmentation, or processing
on the data prior to rescaling in order to utilize as much information as possible.

14.3.4 Volume Processing With ITK and VisTrails

Those familiar with the ITK libraries know that ITK image filters are typically templated based
on the dimensionality of the data being processed as well as the data type being processed. In
VisTrails, these parameters are handled through the use of PixelType Modules. Although any
ITK Filter wrapped in VisTrails can accept any of these PixelTypes, the underlying imple-
mentation may not be compatible with the input PixelType. Using PixelTypes incompatible
with the underlying filter implementations is the most frequent cause of error when executing
otherwise functional pipelines in VisTrails.

When processing volumes, it is often necessary to extract a single slice from the volume
at different stages of the processing pipeline. This is possible in VisTrails through the use
of the ExtractImageFilter. Given a volume, a Region, and Dimensionality information, the
ExtractImageFilter can extract a single slice from the data volume that can be used in further

4Grass roots DiCoM Project. http://www.creatis.insa-lyon.fr/Public/Gdcm/

14.3. ITK AND VISTRAILS 63

Figure 14.2: VisTrails workflow utilizing ITK to extract a single slice from a DICOM volume.
The slice is chosen by first forming a Region to extract. The result is viewed through the use
of standard VisTrails Spreadsheet modules.

processing, previewing the results, or writing to disk. An example workflow that extract a slice
from a DICOM volume can be seen in Figure 14.2.

14.3.5 Visualizing the results

Although ITK’s processing filters and the DICOM standard both support 16-bit processing
and storage, many image viewers are capable of displaying in only 8-bit resolution using the
UnsignedChar PixelType. Since the output of an ITK processing workflow is an image, it
makes sense to view it as such. This means that we are required to both remap the data values
in the image to 8-bits as well as perform a casting operation to change the data type from
unsigned shorts to unsigned chars. These operations are performed through the use of the
RescaleIntensityImageFilter and the CastImageFilter. Figure 14.2 demonstrates the use of the
RescaleIntensityImageFilter and the CastImageFilter in conjunction with the ImageToFile and
ImageViewerCell Modules to view the resulting slice in the VisTrails Spreadsheet.

Chapter 15

Frequently Asked Questions

15.1 Running workflows

How can I run a workflow using the command line? Call vistrails using the following
options:

python vistrails.py -l -b path_to_vistrails_file -w pipeline

Using the command line, we’d like to execute a workflow multiple times, with
slightly different parameters, and create a series of output files. Is this possible?
Starting in rev 444, we can change parameters that have an alias through the command line.

For example, offscreen pipeline in offscreen.xml always creates the file called image.png. If
you want generate it with a different filename:

python vistrails.py -l -b ../examples/offscreen.xml \

-w offscreen -a"filename=other.png"

filename in the example above is the alias name assigned to the parameter in the value
method inside the String module. When running a pipeline from the command line, VisTrails
will try to start the spreadsheet automatically if the pipeline requires it. For example, this
other execution will also start the spreadsheet:

python vistrails.py -l -b ../examples/head.xml -w aliases \

-a"isovalue=30,Diffuse_Color_R=0.8,Diffuse_Color_G=0.4,Diffuse_Color_B=0.2"

I can load a vistrail, and the version tree shows up fine. However, no pipelines
appear when I click on a version. What gives? THIS ANSWER IS OUT OF
DATE. PLEASE REFER TO CHAPTER 11. The most likely reason is that the vistrail
uses a package that is not registered with VisTrails. You need to identify the needed package
and add it to your .vistrails/startup.py. A single line like the following should be enough:

64

15.2. BUILDING WORKFLOWS 65

addPackage(’enter_package_name_here’)

Some packages might need more information. For example:

addPackage(’afront’,executable_path=’/path/to/afront’)

Refer to the package documentation for details. The one inconvenient step is that currently
there’s no automated way to describe what is the missing package. We’re working on this
feature for future releases.

15.2 Building workflows

Is there a way to give each widget a ”display name” in addition to the module
name at the center of the widget? Yes, but it is not easily accessible from the GUI and
it definitely needs to be more intuitive. For now, we use the annotation value of key ” desc ”
as a module label. If you want to set a PythonSource label, you have to select the module.
Then click on the Annotation tab, and add a key named ” desc ”, whatever value you set to
this key will be the label. We are currently working on a new interface for this functionality.

15.3 Spreadsheet

Below, “pipeline” is a version number or a tag.

How can I save an image from the spreadsheet? While having the focus on a spreadsheet
cell press ”Ctrl” (on Windows) and select the camera to take a snapshot. The system will
prompt you for the location and file name where it should be saved. The other icons can be
used for saving multiple images that can be used for generating an animation on demand.

Is it possible to save the complete state of the spreadsheet? Yes, the spreadsheet has
a “Save As” functionality.

Can I view multiple sheets at the same time? Yes. Each sheet on the spreadsheet can
be displayed as a dock widget separated from the main spreadsheet window by dragging its tab
name out of the tab bar at the bottom of the spreadsheet.

Then, how can I put back a separated sheet? A sheet can be docked back to the main
window by dragging it back to the tab bar or double-click on its title bar.

How can I order sheets on the spreadsheet? This can be done by dragging the sheet
name on the bottom top bar and drop it to the right place.

66 CHAPTER 15. FREQUENTLY ASKED QUESTIONS

Can I control where a cell will be placed on the spreadsheet window? By default,
an unoccupied cell on the active sheet will be chosen to display the result. However, you can
specify exactly in the pipeline where a spreadsheet cell will be placed by using CellLocation
and SheetReference. CellLocation specifies the location (row and column) of a cell when con-
necting to a spreadsheet cell (VTKCell, ImageViewerCell, ...). Similarly, a SheetReference
module (when connecting to a CellLocation) will specify which sheet the cell will be put on
given its name, minimum row size and minimum column size. There is an example of this in
examples/vtk.xml (select the version below Double Renderer).

15.4 Integrating your software into VisTrails

How can I integrate my own program into VisTrails? The easiest way is to create a
package. Writing a package is often very simple, see Chapter 11 for detailed instructions.

How do modules deal with multiple inputs in a same port? For compatibility reasons,
we do need to allow multiple connections to an input port. However, most package developers
should never have to use this, and so we do our best to hide it. The default behavior for getting
inputs from a port, then, is to always return a single input. If on your module you need multiple
inputs connected to a single port, use the ’forceGetInputListFromPort’ method. It will return
a list of all the data items coming through the port. The VTK package uses this feature, so
look there for usage examples (packages/vtk/base widget.py)

Are there mechanisms for attaching widgets to different modules/parameters?
Right now, we have a mechanism for putting a specific widget for an input port. For ex-
ample, if a port is SetColor(red, green, blue), we can put a color wheel widget there. Or we
can also replace the SetFileName port with a File Widget. However, this is not per parameter
(only per port). We are currently working on this problem.

15.5 VTK

Given a VTK visualization, how can I generate a webpage from it? Check out the
html pipeline in offscreen.xml.

I’m trying to use VTK, but there doesn’t seem to be any output. What is wrong?
To use VTK on VisTrails, you need a slightly different way of connecting the renderer mod-
ules. Instead of using the standard RenderWindow/RenderWindowInteractor infrastructure,
you simply connect the renderer to a VTKCell. The examples directory in the distribution has
several VTK examples that illustrate.

Bibliography

[1] T. S. Yoo, M. J. Ackerman, W. E. Lorensen, W. Schroeder, V. Chalana, S. Aylward,
D. Metaxes, and R. Whitaker, “Engineering and algorithm design for an image processing
API: A technical report on ITK - The Insight Toolkit,” Proceedings of Medicine Meets
Virtual Reality, pp. 586–592, 2002.

[2] R. A. Banvard, “The visible human project image data set from inception to completion
and beyond,” Proceedings of CODATA, 2002.

[3] L. Ibanez, W. Schroeder, L. Ng, and J. Cates, The ITK Software Guide, 2nd ed., Kitware,
Inc. ISBN 1-930934-15-7, http://www.itk.org/ItkSoftwareGuide.pdf, 2005.

67

Index

ConfigurationObject, 46

animation, 25, 30

builder, 7–11

close
vistrail, 5

connections
adding, 8
definition, 5
selecting, 7

database, 34–37
issues, 37
opening from, 35
saving to, 36
setup, 34

diff, see versions, comparing

execute, 6

history, 12

installation, 3

legend, 14

methods, 9
Module registry

addInputPort, 39, 43
addModule, 39, 43
addOutputPort, 39, 43

modules, 7
ModuleError, 39, 43
adding, 7, 53

basic, 10
connecting, 8
definition, 5
deleting, 8
parameters, 9
ports, 10, 49
selecting, 7
writing new, 39

notes, 14

open
from a database, 5
vistrail, 5

packages, 39
filePool, 47
initialize, 39, 43
configuration, 45, 52
dependencies, 48
temporary files, 47
wrapping command-line tools, 44

pan, 6
parameter exploration, 25–30

adding parameters, 26
directions, 25
running, 27
setting values, 26
spreadsheet, see spreadsheet, parameter ex-

ploration
parameters

changing, 9, 55
differences, 14
exploring, see parameter exploration

68

INDEX 69

ports, 8
adding, 10
deleting, 10

PythonSource, 10, 54, 55

queries, 21–24
by example, 21
textual, 22
viewing results, 24

redo, 6, 14
refine, 24

save
vistrail, 5

search, 24
select, 6
spreadsheet, 16–20

cells, 16, 17
columns, 16
layout, 16
modes, 17

editing, 18
interactive, 17

parameter exploration, 25, 28
RichTextCell, 57
rows, 16
saving, 19
sheets

adding, 16
deleting, 16

virtual cell, 28

tab, 5
tags, 12

adding, 13
deleting, 13

toolbar, 4

undo, 6, 14

versions, 12–15
annotations, 14

comparing, 14
navigating, 14
viewing, 12

vistrail
definition, 5

visual diff, see versions, comparing

web services, 52
workflow, 5

zoom, 6

