
UNC Technical Report #TR04-023 http://www.cs.unc.edu/Research/tech-report.html

 Page 1/3

Directly Rendering Non-Polygonal Objects on Graphics Hardware using

Vertex and Fragment Programs

Russell M. Taylor II
Department of Computer Science

University of North Carolina at Chapel Hill

ABSTRACT
A method of exactly rendering non-polygonal objects as primi-
tives using vertex and fragment programs on a commodity GPU is
presented. This method is demonstrated for spheres, implicit
quadric surfaces, and a repeated-slat object, but it generalizes to
any object for which the location and surface normal at a ray in-
tersection can be computed.
CR Descriptors: I.3.3 (Display algorithms). I.3.5 (Curve, sur-
face, solid, and object representations).
Additional Keywords: Implicit Surface Rendering, Ray tracing.

1. Introduction
Many objects in man-made environments consist of unions
of quadratic surfaces (cylinders form gun barrels, lamp
stands, telephone poles, staves, curtain rods; ellipsoids
form door handles, eyes, playground balls; cone sections
form cups, candleticks, table legs, lamp shades), or re-
peated structures (louver blinds, collenades, building fa-
cades). These objects are rendered in current real-time
systems by approximating the objects with triangles, result-
ing in contour and lighting artifacts.

This paper demonstrates that these objects can be rendered
in real time more efficiently than with any prior method.
The insight that enables real-time rendering of non-planar
objects lies in using the screen-space depth buffer for visi-
bility sorting while performing viewing-ray intersection
with each object (in its object space) in a fragment pro-
gram.

1.1 Prior Work

Direct rendering of non-planar objects include Brooks’
reprogramming of the quadratic expression evaluator on
Pixel-Planes 4 to compute quadratic approximation to
spheres [Fuchs95] and Kautz and Seidel’s method that uses
displacement mapping and renders several volumetric
slices through the visual hull of an object. [Kautz01]
Olano described a framework to transform and interpolate
parameters for non-polygonal primitives in screen space
using a Z-buffer architecture on the UNC PixelFlow ma-
chine, and also described how it could be used to drive
algorithms that subdivide non-polygonal primitives.
[Olano98] Shade et. al. describe depth sprites and layered-

depth images that provide sampled object representations
including depth and color. [Shade98]

Previous attempts to perform ray tracing on graphics hard-
ware solve the visibility sort in object space within frag-
ment programs. [Purcell02][Carr02][Hasselgren02]

1.2 New: Commodity Non-Polygonal Objects

The approach presented here relies on the standard Z buffer
to perform visibility sorting between objects. It imple-
ments primitives that represent non-polygonal objects
(NPOs) using polygonal stand-ins on commodity graphics
hardware. Unlike [Olano98], it requires neither that the
primitive be transformable into screen space nor that it be
possible to interpolate its shape parameters in screen space.
Unlike [Kautz01], it requires only polygons enclosing the
screen-space extent of each NPO. Unlike [Shade98], it
renders exact representations of spheres and other surfaces
and enables the use of any invertible modeling transforma-
tion that preserves parallelism. Unlike [Purcell02] and
[Carr02], it renders non-planar objects in real time, mixed
with standard primitives, without read-back to the CPU.

2. Implementation
Real-time rendering of NPOs has been achieved on com-
modity graphics hardware by taking advantage of pro-
grammable vertex and fragment processing. The basic
approach is to perform ray-object intersection in object
space during fragment processing, compute the object’s
color and screen-space depth, and store the results.

Application: Each NPO is represented by:
• one or more polygons that cover the object’s screen-

space projection (called the bounding geometry), and
• per-object parameters sufficient to describe the object.

A sphere can be described by four parameters: the (X, Y, Z)
location of its center and radius. A quadratic surface can
be described by the eight parameters of its implicit equa-
tion: A+BX+CY+DZ+EXY+FXZ+GYZ+HX2+IY2+JZ2 =
0. These parameters can be embedded directly in the frag-
ment program or passed as uniform parameters.

Vertex: In the proof-of-concept implementation described
here, the vertex program computes the object-space eye
point and four coefficients A, B, C, D that can be used to

UNC Technical Report #TR04-023 http://www.cs.unc.edu/Research/tech-report.html

 Page 2/3

determine the clip-space depth of a point in object space
(X,Y,Z) by computing AX + BY + CZ + D.

The proof-of-concept implementation has the vertex pro-
gram pass the linearly-interpolated object-space vertex
positions for the bounding geometry coordinates in object
space. As with any rendering, the vertex program also
computes the homogeneous clip-space position of the ver-
tices for the bounding geometry

Fragment: The fragment program determines the first in-
tersection between the NPO and the ray from the eyepoint
towards the interpolated vertex position. It then computes
the appropriate clip-space depth value for that point using
the A,B,C,D coefficients. If the ray does not pierce the
object, the pixel is discarded (the proof-of-concept imple-
mentation sets the depth past the yon plane). This depth
value can be directly used to order all NPOs in the scene.
If NPOs are rendered in the same scene as polygonal ob-
jects, this depth can be converted into the 1/Z space used
by the standard rendering pipeline using the hither and yon
depths (passed as uniform parameters):

Depth = (1 / Zhither – 1 / Z) / (1 / Zhither – 1 / Zyon)

If the object is textured, the object-space texture coordi-
nates are determined based on the point of intersection.
The texture coordinate calculation is based on the object
type: for a sphere, the proof-of-concept implementation
uses longitude and latitude.

In the proof-of-concept implementation, the light comes
from the eyepoint, enabling the fragment program to reuse
the eye-to-vertex vector as the lighting direction. The ob-
ject-space light position could be passed as a uniform pa-
rameter and used to light the object.

Discussion: The calculations described above can often be
shifted to a different processor (application, vertex, frag-
ment) to alleviate system bottlenecks. For example, the
depth A,B,C,D coefficients could be computed by applica-
tion code and passed to the fragment program as uniform
parameters for each object based on the current modeling,
view, and projection transformations. They can be per-
formed using different algorithms (solving for A,B,C,D
could be done using different points or different ap-
proaches). Figure 1 shows a general quadratic implicit-
function NPO rendering conical mountains out the win-
dow.

The presented technique can be used on a broader set of
objects than implicit equations. For example, figure 1
shows a louver blind NPO. The fragment shader, translates
the bounding-geometry pierce point into the range –1 ≤ Y
< 1 and then intersects the view ray starting there with the
“slats” at Y = -1 and Y = 1. This intersection is then trans-
lated back to the appropriate location. The blinds are
opened and closed by shearing and anisotropically scaling
the bounding geometry. In this manner, an entire set of
blinds can be rendered using one bounding box.

The ray-object intersection is performed in object space
because modeling transformations can change the form of
the parameters (a sphere is no longer a sphere) and because
texture coordinates, if used, are required in object space.

Modeling transforms can also be used to distort the shape
of any NPO. The figure below shows that the modeling
transform can be used to form all ellipsoids from the unit
sphere centered at the origin. This works with all NPOs.

If the fragment shader computes the screen-space normal
for the NPO, all commonly-used advanced rendering fea-
tures such as bump maps, displacement maps, and so on
can be applied. Techniques like supersampled antialiasing
and shadows can be applied directly because the NPO
depth rendering behaves just like triangle rendering with
respect to interpolation and the depth buffer.

The presented techniques are applicable to any function
that uses graphics hardware, not just rendering. Collision
detection, robot motion planning, and computing distance
fields are example applications that may benefit from the
direct rendering of NPOs.

3. Performance

A proof-of-concept implementation was tested on a 3-year-
old Pentium-III 667 MHz, with a 133MHz memory bus, an
NVidia DeForce FX 5700 Ultra, AGP2, and 128MB mem-
ory rendering to a 32-bit display. A 2000-sphere scene
using tight-fit cube bounding geometry rendered 37,500
colored, diffuse + specular lit spheres/second into a
700x700 window (zoom-in shown in image to the left).
The comparable polygonal scene using 6x6-tesselated glut-
SolidSphere(1.0, 6, 6) primitives in display lists ran at
32,200 spheres/second at much lower image quality (zoom-
in from a different viewpoint shown in image to the right).

Bounding Geometry

UNC Technical Report #TR04-023 http://www.cs.unc.edu/Research/tech-report.html

 Page 3/3

It is sufficient to use the screen-space-interpolated depth
values for the bounding geometry as the depth value for the
NPO itself if there are no intersections between NPO ge-
ometry and geometry of other objects in the scene. This
reduces both parameter-passing bandwidth and the number
of calculations in the vertex and fragment programs, in-
creasing the performance beyond that stated above.

4. Limitations
The bounding geometry for NPOs do not by themselves
clip the object geometry: if the viewer looks through the
side face of an axis-aligned bounding box around an NPO
like a cylinder, they will be able to see geometry that ex-
trudes below the bottom face. If this is undesirable, the
NPO fragment program must explicitly check for intersec-
tions lying outside the bounding geometry (this is done for
the cones shown above). This is not required for NPOs
whose implicit functions have zeroes only within the
bounding geometry used to select where on the screen they
will be drawn (spheres).

5. Availability
Source code for the programs used to produce all images in
this will be made available upon publication, and will be
made available to reviewers upong request. A provisional
patent application has been filed on this technique by the
University of North Carolina, which we intend to let expire
in Spring 2004.

6. Future Work
Although spheres and other quadric surfaces together with
specific implementations of primitives for repetitive and
nested surfaces provide a set of interesting objects that can
be rendered, many surfaces in use today possess more com-
plex curvature than can be captured by the NPOs described
above. The curved shapes are often represented (and de-
signed) using spline surfaces, which are then approximated
by a tessellation of triangular facets for rendering.

An extension of the above techniques enables us to use
quadratic or higher-order surface approximations in place
of the first-order triangular tessellation. Rather than planar
geometric surfaces with interpolated normals (as Phong
described), we can have higher-order surfaces with interpo-
lated parametric descriptions. A simple example is that of
a convex patch with varying curvature, a cross-section of
which is shown in the figure below.

At each location, the patch can be approximated by the
osculating circle (ellipsoid in 3D) that matches its position
and curvature at that location. A sampled representation of
the surface could then be provided by a set of such circles
as shown in the figure below. By interpolating the parame-
ters (center and radius) between points, we can form an
infinite set of circles that approximate the surface. Unlike
triangular tessellation, this approximation has smooth sil-
houettes (C1 continuous) and changes in curvature (C0
continuous).

We can implement such an approximation in 3D using the
techniques presented earlier using a polygonal bounding
geometry for the ellipsoidal approximation surface and
associating the circle parameters with each vertex and then
interpolating them between vertices. We can also embed
the parameters into a texture and then map the texture onto
the bounding geometry, providing an even finer sampling
for the ellipsoidal approximation surface. As each view
ray pierces the bounding geometry, interpolation is used to
determine the parameters for the primitive approximating
the surface at that location and the ray is intersected with
this primitive.

This generalizes beyond convex surfaces and ellipsoidal
approximations through the use of quadric or higher-order
approximations. Each ray is still compared against only
one NPO, but the parameters for that NPO are determined
by interpolation (possibly after texture look-up) rather than
being the same across the whole bounding geometry.

Acknowledgements
Thank you to David Borland, Mark Harris, and Alvin
Richardson for many discussions about programmable
graphics hardware. The Cg developer tools and example
programs made it possible to implement the code described
here in under a week.

REFERENCES
Carr, N., J.D. Hall, J.C. Hart, “The Ray Engine,” Graphics Hardware

2002, pp. 1-10.
Fuchs, H., J. Goldfeather, J. Hultquist, S. Spach, J. Austin, F.P. Brooks, J.

Eyles, J. Poulton, “Fast Spheres, Shadows, Textures, Transparencies,
and Image Enhancements in Pixel-Planes,” SIGGRAPH ’85, pp. 111-
120.

Hasselgren, J., “Fragment Program Raytracer,” Cg shader demo program,
http://www.cgshaders.org/shaders/show.php?id=36

Kautz, J. and H.P. Seidel, “Hardware Accelerated Displacement Mapping
for Image Based Rendering,” Graphics Interface 2001, pp. 61-70

Olano, M., A. Lastra, “A Shading Language on Graphics Hardware: The
PixelFlow Shading System,” SIGGRAPH ’98, pp. 159-168.

Purcell, T.J., I. Buck, W. Mark, P. Hanrahan, “Ray Tracing on Program-
mable Graphics Hardware,” SIGGRAPH 2002, pp. 703-712.

Shade, J.W., S. Gortler, L. He, R. Szelinski, “Layered Depth Images,”
SIGGRAPH ’98, pp. 231-242.

