
Scalable Methods for Monitoring and Detecting Behavioral Equivalence Classes
in Scientific Codes ∗

Todd Gamblin
tgamblin@cs.unc.edu

Rob Fowler
rjf@renci.org

Daniel A. Reed
dan reed@renci.org

Renaissance Computing Institute
University of North Carolina at Chapel Hill

Abstract

Emerging petascale systems will have many hundreds of
thousands of processors, but traditional task-level tracing
tools already fail to scale to much smaller systems because
the I/O backbones of these systems cannot handle the peak
load offered by their cores. Complete event traces of all pro-
cesses are thus infeasible. To retain the benefits of detailed
performance measurement while reducing volume of col-
lected data, we developed AMPL, a general-purpose toolkit
that reduces data volume using stratified sampling.

We adopt a scalable sampling strategy, since the sam-
ple size required to measure a system varies sub-linearly
with process count. By grouping, or stratifying, processes
that behave similarly, we can further reduce data overhead
while also providing insight into an application’s behavior.

In this paper, we describe the AMPL toolkit and we re-
port our experiences using it on large-scale scientific ap-
plications. We show that AMPL can successfully reduce
the overhead of tracing scientific applications by an order
of magnitude or more, and we show that our tool scales
sub-linearly, so the improvement will be more dramatic on
petascale machines. Finally, we illustrate the use of AMPL
to monitor applications by performance-equivalent strata,
and we show that this technique can allow for further re-
ductions in trace data volume and traced execution time.

1 Introduction

Processor counts in modern supercomputers are rising
rapidly. Of the systems on the current Top500 list [13],
over 400 are labeled as distributed-memory “clusters”, up
from just over 250 in 2005. The mean processor count of
systems in the Top 100 has risen exponentially in the past

∗Part of this work was performed under the auspices of the SciDAC
Performance Engineering Research Institute, grant number DE-FC02-
06ER25764.

decade. In 1997, the fastest system had just over 1,000 pro-
cessors, while the current performance leader, IBM’s Blue
Gene/L[5], has over 200,000 cores. Only one system in the
current top 100 has fewer than 1,000 processors.

Effectively monitoring highly concurrent systems is a
daunting challenge. An application event trace can gener-
ate hundreds of megabytes of data for each minute of exe-
cution time, and this data needs to be stored and analyzed
offline. However, the largest supercomputers are using disk-
less nodes. For example, Blue Gene/L at Lawrence Liver-
more National Laboratory has 106,496 diskless nodes for
computation, but only 1,664 I/O nodes. Each I/O node is
connected by gigabit ethernet to a network of 224 I/O data
servers. Peak throughput of this system is around 25 GB/s
[16]. A full trace from 212,992 processors could easily sat-
urate this pathway, perturbing measurements and making
the recorded trace useless.

Even if a large trace could be collected and stored ef-
ficiently, traces from petascale systems would contain far
more data than could be analyzed manually. Fortunately,
Amdahl’s law constrains scalable applications to exhibit ex-
tremely regular behavior. A scalable performance monitor-
ing system could exploit such regularity to remove redun-
dancies in collected data so that its outputs would not de-
pend on total system size. An analyst using such a system
could collect just enough performance data to assess appli-
cation performance, and no more.

Using simulation and ex post facto experiments, Mendes,
et al. [12] showed that statistical sampling is a promising
approach to the data reduction problem. It can be used to
accurately estimate the global properties of a population of
processes without collecting data from all of them. Sam-
pling is particularly well-suited to large systems, since the
sample size needed to measure a set of processes scales sub-
linearly with the size of the set. For data with fixed variance,
the sample size is constant in the limit, so sampling very
large populations of processes is proportionally much less
costly than measuring small ones.

1

mailto:tgamblin@cs.unc.edu
mailto:rjf@renci.org
mailto:dan_reed@renci.org

In this paper, we extend Mendes’ work with infrastruc-
ture for on-line, sampled event tracing of arbitrary per-
formance metrics gathered using on-node instrumentation.
Summary data is collected dynamically and used to tune the
sample size as a run progresses. We also explore the appli-
cation of techniques for subdividing, or stratifying, a pop-
ulation into independently sampled behavioral equivalence
classes. Stratification can provide insight into the workings
of an application, as it gives the analyst a rough classifi-
cation of the behavior of running processes. If the behav-
ior within each stratum is homogeneous, the overall cost of
monitoring is reduced. We have implemented these tech-
niques in the Adaptive Monitoring and Profiling Library
(AMPL), which can be linked with instrumented applica-
tions written in C, C++, or FORTRAN.

We review the statistical methods used in this paper in
§2. We describe the architecture and implementation of
AMPL in §3. An experimental validation of AMPL is given
in §4 using sPPM[1], Chombo[3], and ADCIRC[11], three
well known scientific codes. Finally, §5 discusses related
work, and §6 details conclusions drawn from our results as
well as plans for future work.

2 Statistical Sampling Theory

Statistical sampling has long been used in surveys and
opinion polls to estimate general characteristics of popula-
tions by observing the responses of only a small subset, or
sample, of the total population. Below, we review the basic
principles of sampling theory, and we present their appli-
cation to performance monitoring on large-scale computing
systems. We also discuss stratified sampling and its role in
reducing measurement overhead in scientific applications.

2.1 Estimating Mean Values

Given a set of population elements Y , sampling theory
estimates the mean using only a small sample of the total
population. For sample elements, y1, y2, ..., yn, the sample
mean ȳ is an estimator of the population mean Ȳ . We would
like to ensure that the value of ȳ is within a certain error
bound d of Ȳ with some confidence. If we denote the risk of
not falling within the error bound as α, then the confidence
is 1− α, yielding

Pr(|Ȳ − ȳ| > d) ≤ α. (1)

Stated differently, zα standard deviations of the estimator
should fall within the error bound:

zα
√
V ar(ȳ) ≤ d, (2)

where zα is the normal confidence interval computed from
the confidence bound 1 − α. Given the variance of an esti-
mator for the population mean, this inequality can be solved

to obtain a minimum sample size, n, that will satisfy the
constraints, zα and d. For a simple random sample, we have

n ≥ N

[
1 +N

(
d

zαS

)2
]−1

(3)

where S is the standard deviation of the population, and
N is the total population size. The estimation of mean val-
ues is described in [19, 12], so we omit further elementary
derivations. However, two aspects of (3) warrant empha-
sis. First, (3) implies that the minimum cost of monitoring
a population depends on its variance. Given the same con-
fidence and error bounds. a population with high variance
requires more sampled elements than a population with low
variance. Intuitively, highly regular SPMD codes with lim-
ited data dependent behavior will benefit more from sam-
pling than will more irregular, dynamic codes.

Second, asN increases, n approaches (zαS/d)2, and the
relative sampling cost n/N becomes smaller. For a fixed
sample variance, the relative cost of monitoring declines as
system size increases. As mentioned, sample size is con-
stant in the limit, so sampling can be extremely beneficial
for monitoring very large systems.

2.2 Sampling Performance Metrics

Formula (3) suggests that one can substantially reduce
the number of processes monitored in a large parallel sys-
tem, but we must modify it slightly for sampled traces.
Formula (3) assumes that the granularity of sampling is in
line with the events to be estimated. However, our popu-
lation consists of M processes, each executing application
code with embedded instrumentation. Each time control
passes to an instrumentation point, some metric is measured
for a performance event Yi. Thus, the population is di-
vided hierarchically into primary units (processes) and sec-
ondary units (events). Each process “contains” some pos-
sibly changing number of events, and when we sample a
process, we receive all of its data. We must account for this
when designing our sampling strategy.

A simple random sample of primary units in a partitioned
population is formally called cluster sampling, where the
primary units are “clusters” of secondary units. Here, we
give a brief overview of this technique as it applies to par-
allel applications. A more extensive treatment of the math-
ematics involved can be found in [19].

We are given a parallel application running on M pro-
cesses, and we want to sample it repeatedly over some time
interval. The ith process has Ni events per interval, such
that

M∑
i=1

Ni = N. (4)

Events on each process are Yij , where i = 1, 2, ...,M ; j =
1, 2, ..., Ni. The population mean Ȳ is simply the mean over
the values of all events:

Ȳ =
1
N

M∑
i=1

N∑
j=1

Yij . (5)

We wish to estimate Ȳ using a random sample of m pro-
cesses. The counts of events collected from the sampled
processes are referred to as ni. Ȳ can be estimated from the
sample values with the cluster sample mean:

ȳc =
∑m
i=1 yiT∑m
i=1 ni

, (6)

where yiT is the total of all sample values collected from the
ith process. The cluster mean ȳc is then simply the sum of
all sample values divided by the number of events sampled.

Given that ȳc is an effective estimator for Ȳ , one must
choose a suitable sample size to ensure statistical confi-
dence in the estimator. To compute this, we need the vari-
ance, given by:

V ar(ȳc) =
M −m
MmN̄2

s2r, s2r =
∑m
i=1(yiT − ȳcni)2

m− 1
(7)

where N̄ is the average number of events for each process
in the primary population, and s2r is an estimator for the
secondary population variance S2. We can use V ar(ȳc) in
(2) and obtain an equation for sample size as follows:

m =
Ms2r

N̄2V 2 + s2r
, V =

(
d

zα

)2

(8)

The only remaining unknown is N , the number of unique
events. For this, we can use a straightforward estimator,
N ≈ Mn/m. We can now use equation (8) for adaptive
sampling. Given an estimate for the variance of the event
population, we can calculate approximately the size, m, of
our next sample.

2.3 Stratified Sampling

Parallel applications often have behavioral equivalence
classes among their processes, which is reflected in per-
formance data about the application. For example, if pro-
cess zero of an application reads input data, manages check-
points and writes results, the performance profile of process
zero will differ from that of the other processes. Similar sit-
uations arise from spatial and functional decompositions or
master-worker paradigms.

One can exploit this property to reduce real-time moni-
toring overhead beyond what is possible with application-
wide sampling. This is a commonly used technique in the

design of political polls and sociological studies, where it
may be very costly to survey every member of a population
[19]. The communication cost of monitoring is the direct
analog of this for large parallel applications.

Equation (3) shows that the minimum sample size is
strongly correlated with variance of sampled data. Intu-
itively, if a process population has a high variance, and thus
a large minimum sample size for confidence and error con-
straints, one can reduce the sampling requirement by parti-
tioning the population into lower-variance groups.

Consider the case where there are k behavioral equiv-
alence classes, or strata, in a population of N processes,
with sizes N1, N2, ..., Nk; means Ȳ1, Ȳ1, ..., Ȳk; and vari-
ances S2

1 , S
2
2 , ..., S

2
k . Assume further that in the ith stratum,

one uses a sample size ni, calculated with (8). Ȳ can be es-
timated as ȳst =

∑k
i=1 wiȳi, using the strata sample means

ȳ1, ȳ1, ..., ȳk.
The weights wi = Ni/N are simply the ratios of stratum

sizes to total population size, and ȳst is the stratified sample
mean. This is more efficient than ȳ when:

k∑
i=1

Ni(Ȳi − Ȳ)2 >
1
N

k∑
i=1

(N −Ni)S2
i . (9)

In other words, when the variance between strata is signifi-
cantly higher than the variance within strata, stratified sam-
pling can reduce the number of processes that must be sam-
pled to estimate the stratified sample means. For perfor-
mance analysis, stratification gives insight to the structure
of processes in a running application. The stratified sample
means provide us with measures of the behavioral proper-
ties of separate groups of processes, and an engineer can
use this information to assess the performance of his code.

3 The AMPL Library

The use of sampling to estimate scalar properties of pop-
ulations of processes has been studied before [12]. We
have built the Adaptive Monitoring and Profiling Library
(AMPL), which uses the analysis described in §2 as a
heuristic to sample arbitrary event traces at runtime.

AMPL collects and aggregates summary statistics from
each process in a running parallel application. Using the
variance of the sampled measurements, it calculates a min-
imum sample size as described in §2. AMPL dynamically
monitors variance and it periodically updates sample size
to fit the monitored data. This sampling can be performed
globally, across all running processes, or the user can spec-
ify groups of processes to be sampled independently.

3.1 AMPL Architecture

The AMPL runtime is divided functionally into two
components: a central client and per-process monitoring

Initial Sample Monitor Windows Monitor Windows
New Sample
Send Update

.

. . .w1 w5 . . .w6 w10

Figure 1. AMPL Runtime Sampling. Client process is at center, sampled processes are in white, and
unsampled processes are dark. Arrows show communication; sample intervals are denoted by wi.

agents. Agents selectively enable and disable an external
trace library. The monitored execution is divided into a se-
quence of update intervals. Within each update interval is a
sequence of data collection windows. The agents enable or
disable collection for an entire window. They also accumu-
late summary data across the entire update interval and they
send the data to the client at the end of the interval. The
client then calculates a new sample size based on the vari-
ance of the monitored data, randomly selects a new sample
set, and sends an update to monitored nodes. A monitoring
agent receives this update and adopts the new sampling pol-
icy for the duration of the interval This process repeats until
the monitored application’s execution completes. Figure 1
shows the phases of this cycle in detail.

Interaction between the client and agents enables AMPL
to adapt to changing variance in measured performance
data. The user can configure which points in the code are
used to determine AMPL’s windows, the number of win-
dows between updates from the client, and confidence and
error bounds for the adaptive monitoring. As discussed in
§2.3, these confidence and error bounds also affect the vol-
ume of collected data, giving AMPL an adaptive control to
either increase accuracy or decrease trace volume and I/O
overhead. Thus, traces using AMPL can be tuned to match
the bandwidth restrictions of its host system.

An AMPL user can also elect to monitor subgroups of an
application’s processes separately. Per-group monitoring is
similar to the global monitoring described here.

3.2 Modular Communication

AMPL is organized into layers. Initially, we imple-
mented a communication layer in MPI, for close integra-
tion with the scientific codes AMPL was designed to mon-
itor. AMPL is not tied to MPI, and we have implemented
the communication layer modularly to allow for integration
with other libraries and protocols. Client-to-agent sampling
updates and agent-to-client data transport can be specified
independently. Figure 2 shows the communication layer in

AMPL Client
Adaptive Sampling Computation

AMPL Monitoring Agent

Application Code

TAU Instrumentation
Tracing + Data Collection

Statistical
Summary

Data
Sample

Set
Updates

Figure 2. AMPL Software Architecture

the context of AMPLs high-level architectural design.
It is up to the user of AMPL to set the policy for the

implementation of the random sampling of monitored pro-
cesses. When the client requests that a population’s sample
set be updated, it only specifies the number,m, of processes
in the population of M that should be monitored, not their
specific ranks. The update mechanism sends to each agent
a probability within [0..1] that determines with what proba-
bility the agent enables data collection in its process.

We provide two standard update mechanisms. The sub-
set update mechanism selects a fixed sample set of pro-
cesses that will report at each window until the next update.
The processes in this subset are instructed to collect data
with probability 1; all other processes receive 0. This gives
consistency between windows, but may accumulate sample
bias if the number of windows per update interval is set too
large. The global update policy uniformly sends m/M to
each agent. Thus, in each window the expected number of
agents that will collect data will be m. This makes for more
random sampling at the cost of consistency. It also requires
that all agents receive the update.

The desirability of each of our update policies depends

.25

.25

.25

.25
.25.25.25

.25

.25

.25

.25

.25
.25 .25 .25

.25

(a) Global

1

0

0 0

00

0 0

10

1

0 1

0

0 0

(b) Subset

Figure 3. Update mechanisms. Outer circles
are monitored processes, labeled by proba-
bility of recording trace data. Client is shown
at center.

on two factors: (a) the efficiency of the primitives avail-
able for global communication and (b) the need for multiple
samples over several time windows from the same subset
of the processes. To produce a simple statistical charac-
terization of system or application behavior, global update
has the advantage that its samples are truly random. How-
ever, if one desires performance data from the same nodes
for a long period (e.g., to compute a performance profile
for each sampled node), the subset update mechanism is
needed. Figure 3 illustrates these policies.

3.3 Tool Integration

AMPL is written in C++, and it is designed to accept
data from existing data collection tools. It provides C and
C++ bindings for its external interface, and it can label per-
formance events either by simple integer identifiers or by
callpaths. Multiple performance metrics can be monitored
simultaneously, so that data gathered from hardware perfor-
mance counter APIs like PAPI [2] can be recorded along
with timing information.

AMPL contains no measurement or tracing tools of its
own. We integrated AMPL with the University of Oregon’s
Tuning and Analysis Utilities (TAU) [20], a widely used
source-instrumentation toolkit for many languages, includ-
ing C, C++, and FORTRAN. TAU uses PAPI and various
timer libraries as data sources. We modified TAU’s pro-
filer to pass summary performance data to AMPL for online
monitoring. The integration of AMPL with TAU required
only a few hundred lines of code and slight modifications
so that TAU could dynamically enable and disable tracing
under AMPL’s direction. Other tracing and profiling tools
could be integrated with a similar level of effort.

AMPL is intended to be used on very large systems such
as IBM’s Blue Gene/L [5], Cray’s XT3 [21] and Linux
clusters [9, 6]. As such, we designed its routines to be

WindowsPerUpdate = 4
UpdateMechanism = Subset

EpochMarker = "TIMESTEP"

Metrics {
"WALL_CLOCK" Report
"PAPI_FP_INS" Guide

}

Group {
Name = "Adaptive"
Members = 0-127
Confidence = .90
Error = .03

}

Group {
Name = "Static"
SampleSize = 30
Members = 128-255
PinnedNodes = 128-137

}

Figure 4. AMPL Configuration File

called from within source-level instrumentation, as com-
pute nodes on architectures like BlueGene do not currently
support multiple processes, threads, or any other OS-level
concurrency. All analyses and communication of data are
driven by calls to AMPL’s data-collection hooks.

3.4 Usage

To monitor an application, an analyst first compiles the
application using the AMPL-enabled TAU. This automati-
cally links the resulting executable with our library. AMPL
runtime configuration and sampling parameters can be ad-
justed using a configuration file. See Figure 4.

This configuration file uses the TIMESTEP procedure
to delineate sample windows. During the execution of
TIMESTEP, summary data is collected from monitored
processes. The system adaptively updates the sample size
every 4 windows, based on the variance of data collected in
the intervening windows. Subset sampling is used to send
updates.

The user has specified two groups, each to be sampled in-
dependently. The first group, labeled Adaptive, consists
of the first 128 processes. This group’s sample size will be
recalculated dynamically to yield a confidence of 90% and
error of 3%, based on the variance of floating-point instruc-
tion counts. Wall-clock times of instrumented routines will
be reported but not guaranteed within confidence or error
bounds.

The explicit SampleSize directive causes the second
group to be monitored statically. AMPL will monitor ex-
actly 30 processes from the second 128 processes in the job.
The PinnedNodes directive tells AMPL that nodes 128
through 137 should always be included in the sample set,
with the remaining 20 randomly chosen from the group’s
members. Fine-grained control over adaptation policies for
particular call sites is also provided, and this can be speci-
fied in a separate file.

4 Experimental Results

To assess the performance of the AMPL library and its
efficacy in reducing monitoring overhead and data volume,
we conducted a series of experiments using three well-
known scientific applications. Here, we describe our tests.
Our environment is covered in §4.1 - §4.2. We measure the
cost of exhaustive tracing in §4.3, and in §4.4 , we verify
the accuracy of AMPL’s measurement using a small-scale
test. In §4.5 - §4.7, we measure AMPL’s overhead at larger
scales. We provide results varying sampling parameters and
system size. Finally, we use clustering techniques to find
strata in applications, and we show how stratified sampling
can be used to further reduce monitoring overhead.

4.1 Setup

Our experiments were conducted on two systems. The
first is an IBM Blue Gene/L system with 2048 dual-core,
700 MHz PowerPC compute nodes. Each node has 1 GB
RAM (512 MB per core). The interconnect consists of a
3-D torus network and two tree-strucutured networks. On
this particular system there is one I/O node per 32 compute
nodes. I/O nodes are connected via gigabit ethernet to a
switch, and the switch is connected via 8 links to an 8-node
file server cluster using IBM’s General Parallel File Sys-
tem (GPFS). All our experiments were done in a file system
fronted by two servers. We used IBMs xlC compilers and
IBM’s MPI implementation.

Our second system is a Linux cluster with 64 dual-
processor, dual-core Intel Woodcrest nodes. There are a
total of 256 cores, each running at 2.6 GHz. Each node
has 4 GB RAM, and Infiniband 4X is the primary intercon-
nect. The system uses NFS for the shared file system, with
an Infiniband switch connected to the NFS server by four
channel-bonded gigabit links. We used the Intel compil-
ers and OpenMPI. OpenMPI was configured to use Infini-
band for communication between nodes and shared mem-
ory within a node.

4.2 Applications

We used the following three scientific applications to test
our library.

sPPM. ASCI sPPM [1] is a gas dynamics benchmark de-
signed to mimic the behavior of classified codes run at De-
partment of Energy national laboratories. sPPM is part of
the ASCI Purple suite of applications, and is written in For-
tran 77. The sPPM algorithm solves a 3-D gas dynamics
problem on a uniform Cartesian mesh. The problem is stat-
ically divided (i.e., each node is allocated its own portion
of the mesh), and this allocation does not change during ex-
ecution. Thus, computational load on sPPM processes is
typically well-balanced because each processor is allocated
exactly the same amount of work.

ADCIRC. The Advanced Circulation Model (ADCIRC)
is a finite-element hydrodynamic model for coastal re-
gions [11]. It is currently used in the design of levees and
for predicting storm-surge inundation caused by hurricanes.
It is written in Fortran 77. ADCIRC requires its input mesh
to be pre-partitioned using the METIS [7] library. Static
partitioning with METIS can result in load imbalances at
runtime, and, as such, behavior across ADCIRC processes
can be more variable than that of sPPM.

Chombo. Chombo[3] is a library for block-structured
adaptive mesh refinement (AMR). It is used to solve a broad
range of partial differential equations, particularly for prob-
lems involving many spatial scales or highly localized be-
havior. Chombo provides C++ classes and data structures
for building adaptively refined grids. The Chombo pack-
age includes a Godunov solver application[4] for modeling
magnetohydrodynamics in explosions. Our tests were con-
ducted using this application and the explosion input set
provided with it.

4.3 Exhaustive Monitoring

We ran several tests using sPPM on BlueGene/L to mea-
sure the costs of exhaustive tracing. First, we ran sPPM
uninstrumented and unmodified for process counts from 32
to 2048. Next, to assess worst-case tracing overhead, we
instrumented all functions in sPPM with TAU and ran the
same set of tests with tracing enabled. In trace mode, TAU
records timestamps for function entries and exits, as well as
runtime information about MPI messages. Because perfor-
mance engineers do not typically instrument every function
in a code, we ran the same set of tests with only the SPPM
and RUNHYD subroutines instrumented.

Figure 5(a) shows timings for each of our traced runs.
It is clear from the figure that trace monitoring overhead

 100

 1000

 10000

32 64 128
256

512
1024

2048

To
ta

l t
im

e
fo

r d
ou

bl
e

tim
es

te
p

Number of processes

Uninstrumented sPPM
Only SPPM instrumented

Full Instrumentation

(a) Timings.

 100000

 1e+06

 1e+07

 1e+08

 1e+09

32 64 128
256

512
1024

2048

D
at

a
vo

lu
m

e
(in

 b
yt

es
)

Number of processes

Only SPPM instrumented
Full Instrumentation

(b) Data volume.

Figure 5. Data volume and timing for sPPM on Blue Gene/L using varied instrumentation

scales linearly with the number of processes after 128 pro-
cesses.

Figure 5(b) shows the data volume for the traced runs.
As expected, data volume increases linearly with the num-
ber of monitored processes. For runs with only sPPM in-
strumented, approximately 11 megabytes data were pro-
duced per process, per double-timestep. For exhaustive
instrumentation, each process generated 92 megabytes of
data. For 2048 processes, this amounts to 183 gigabytes of
data for just two timesteps of the application. Extrapolating
linearly, a full two-step trace on a system the size of Blue-
Gene/L at LLNL would consume 6 terabytes.

4.4 Sample Accuracy

AMPL uses the techniques described in §2 as a heuris-
tic for the guided sampling of vector-valued event traces.
Since we showed in §4.3 that it is impossible to collect an
exhaustive trace from all nodes in a cluster without severe
perturbation, we ran the verification experiments at small
scale.

As before, we used TAU to instrument the SPPM and
RUNHYD subroutines of sPPM. We measured the elapsed
time of SPPM, and we used the return from RUNHYD to
delineate windows. RUNHYD contains the control logic
for each double-timestep that sPPM executes, so this is
roughly equivalent to sampling AMPL windows every two
timesteps.

We ran SPPM on 32 processes of our Woodcrest cluster
with AMPL tracing enabled and with confidence and error
bounds set to 90% and 8%, respectively. To avoid the ex-
treme perturbation that occurs when the I/O system is sat-
urated, we ran with only one active CPU per node and we
recorded trace data to the local disk on each node. Instead
of disabling tracing on unsampled nodes, we recorded full
trace data from 32 processes, and we marked the sample

set for each window of the run. This way, we know which
subset of the exhaustive data would have been collected by
AMPL, and we can compare the measured trace to a full
trace of the application. Our exhaustive traces were 20 total
timesteps long, and required a total of 29 gigabytes of disk
space for all 32 processes.

Measuring trace similarity is not straightforward, so we
used a generalization of the confidence measure to evaluate
our sampling. We modeled each collected trace as a poly-
line, as per Lu and Reed in [10], with each point on the line
representing the value being measured. In this case, this is
the time taken by one invocation of the SPPM subroutine.

Let pi(t) be the event traces collected from each process
in the system. We define the mean trace for M processes,
p̄(t) to be:

p̄(t) =
1
M

∫
p0(t) + p1(t) + ...+ pM (t)dt

We define the trace confidence, ctrace, for a given run to be
the percentage of time the mean trace of sampled processes,
p̄s(t) is within an error bound, d, of the mean trace over all
processes, p̄exh(t),

ctrace =
1
T

∫ T

0

X(t)dt

X(t) =

{
1 if err(t) > d,
0 if err(t) ≤ d.

, err(t) =
∣∣∣∣ p̄s(t)− p̄exh(t)

p̄exh(t)

∣∣∣∣
where T is the total time taken by the run.

We calculated ctrace for the full set of 32 monitored
processes and for the samples that AMPL recommended.
Figure 6 shows the first two seconds of the trace. p̄exh(t)
is shown in black, with p̄s(t) superimposed in gray. The
shaded region shows the error bound around p̄exh(t). Ac-
tual error is shown at bottom. For the first two seconds of

Figure 6. Mean trace (black) and sample
mean trace (blue) for two seconds of a run
of sPPM on a 32-node Woodcrest system.

the trace, the sampled portion is entirely within the error
bound.

We measured the error for all 20 timesteps of our sPPM
run, and we calculated ctrace to be 95.499% for our error
bound of 8%. This is actually better than the confidence
bound we specified for AMPL. We can attribute this high
confidence to the fact that AMPL intentionally oversamples
when it predicts very small samples (10 or fewer processs),
and to sPPM’s general lack of inter-node variability.

4.5 Data Volume and Runtime Overhead

We measured AMPL overhead as a function of sampling
parameters. As in §4.4, we compiled all of our test appli-
cations to trace with TAU, and we enabled AMPL for all
runs. In these experiments with a fixed number of proces-
sors, we varied confidence and error constraints from 90%
confidence and 8% error at the lowest to exhaustive mon-
itoring (100% confidence and 0% error). Only those pro-
cesses in the sample set wrote trace data. Processes disabled
by AMPL did not write trace data to disk until selected for
tracing again.

For both sPPM and ADCIRC, we ran with 2048 pro-
cesses on our BlueGene/L system. We ran Chombo with
128 processes on our smaller Woodcrest cluster.

Instrumentation

The routines instrumented varied from code to code, but we
attempted to choose routines that would yield useful metrics
for performance tuning. For sPPM, we instrumented the
main timestep loop and the SPPM routine, and we measured
elapsed time for each. Sample updates were set for every 2
time steps, and we ran a total of 20 time steps.

For ADCIRC, we added instrumentation only to the
TIME-STEP routine and MPI calls. ADCIRC sends MPI

messages frequently and its time step is much shorter
than sPPM, so we set AMPL’s window to 800 ADCIRC
timesteps, and we used the mean time taken for calls to
MPI Waitsome() during each window to guide our sam-
pling. MPI Waitsome() is a good measure of load bal-
ance, as a large value indicates that a process is idle and
waiting on others.

For Chombo, we instrumented the coarse timestep loop
in the Godunov solver. This timestep loop is fixed-length,
though the timestep routine subcycles smaller time steps
when they are necessary to minimize error. Thus, the num-
ber of floating point instructions per timestep can vary. We
used PAPI[2] to measure the number of floating point in-
structions per coarse timestep, and we set AMPL to guide
the sample size using on this metric.

Discussion

Figures 7(a) and 7(b) show the measured time and data over-
head, respectively. Total data volume scales linearly with
the total processes in the system. In the presence of an I/O
bottleneck, total time scales with the data volume, The ex-
periments illustrate that AMPL is able to reduce both.

The elapsed time of the sPPM routine varies little be-
tween processes in the running application. Hence, over-
head for monitoring SPPM with AMPL is orders of magni-
tude smaller than the overhead of monitoring exhaustively.
For 90% confidence and 8% error, monitoring a full 2048-
node run of sPPM adds only 5% to the total time of an unin-
strumented run. For both 99% confidence and 3% error, and
95% confidence and 5% error, overheads were 8%. In fact,
for each of these runs, all windows but the first have sample
sizes of only 10 out of 2048 processes. Moreover, AMPL’s
initial estimate for sample size is conservative. It chooses
the worst-case sample size for the requested confidence and
error, which can exceed the capacity of the I/O bottleneck
on BlueGene/L. If these runs were extended past 20 time
windows, all of the overhead in Figure 7 would be amor-
tized over the run.

For large runs, AMPL can reduce the amount of col-
lected data by more than an order of magnitude. With a
90% confidence interval and 8% error tolerance, AMPL col-
lects only 1.9 GB of performance data for 2048 processes,
while sampling all processes would require over 21 GB of
space. Even with a 99% confidence interval and a 3% error
bound, AMPL never collects more than half as much data
from sPPM as would exhaustive tracing techniques.

As sampling constraints are varied, the time overhead re-
sults for ADCIRC changes are similar to the sPPM results.
Using AMPL, total time for 90% confidence and 8% error
is over an order of magnitude less than that of exhaustive
monitoring. Data reduction is even greater. Using AMPL
with 90% confidence and 8% error, data volume for AD-

 0.01

 0.1

 1

 10

 100

 1000

90 / 8
95 / 5

95 / 3
98 / 3

99 / 3
100 / 0

O
ve

rh
ea

d
(%

 o
f t

ot
al

 ti
m

e)

Confidence / Error bound

Chombo (128 procs, Woodcrest)
sPPM (2048 procs, BlueGene/L)

ADCIRC (2048 procs, BlueGene/L)

(a) Percent of total execution time.

 100000

 1e+06

 1e+07

 1e+08

 1e+09

90 / 8
95 / 5

95 / 3
98 / 3

99 / 3
100 / 0

Si
ze

 o
f t

ra
ce

 (i
n

by
te

s)

Confidence / error bound

Chombo (128 procs, Woodcrest)
sPPM (2048 procs, BlueGene/L)

ADCIRC (2048 procs, BlueGene/L)

(b) Output data volume.

Figure 7. AMPL trace overhead for three applications, varying confidence and error bounds.

CIRC is 28 times smaller than an exhaustive trace.
Data overhead for ADCIRC is higher than for sPPM be-

cause ADCIRC is more sensitive to instrumentation. An
uninstrumented run with 2048 processes takes only 155 sec-
onds, but the shortest instrumented ADCIRC run took 355
seconds. With sPPM, we did not see this degree of pertur-
bation. In both cases, we instrumented only key routines,
but ADCIRC makes more frequent MPI calls and is more
sensitive to TAU’s MPI wrapper library. Since sPPM makes
less frequent MPI calls, its running time is less perturbed by
instrumentation.

For Chombo, the Woodcrest cluster’s file system was
able to handle the smaller load of 128 processor traces well
for all our tests, and we do not see the degree of I/O seri-
alization that was present on our BlueGene/L runs. There
was no significant variation in the runtimes of the Chombo
runs with AMPL, and even running with exhaustive tracing
took about the same amount of time. However, the overhead
of instrumentation in Chombo was high. In general, instru-
mented runs took approximately 15 times longer due to the
large number of MPI calls Chombo makes. This overhead
could be reduced if we removed instrumentation for more
frequently invoked MPI calls.

Data overhead for the 128-processor Chombo runs scales
similarly to trace volume for ADCIRC and SPPM. Com-
pared to exhaustive monitoring, we were able to reduce
trace data volume by 15 times compared to an exhaustively
traced run with 128 processes. As with both ADCIRC and
sPPM, the sample size and data volume both climb gradu-
ally as we tighten the confidence and error bounds.

4.6 Projected Overhead at Scale

§4.5 shows that AMPL’s overhead can be tuned with
user-defined sampling parameters, and it illustrates that
AMPL can effectively improve trace overhead on relatively

small systems. However, we would like to know how
AMPL will perform on even larger machines.

We configured ADCIRC with TAU and AMPL as in
§4.5, but in these experiments we fixed the sampling param-
eters and varied only the process count. Figure 8(a) shows
the sample size and the amount of data collected by AMPL
for each run expressed as a fraction of the exhaustive case.
Although the sample size increases as the system grows, the
relative data volume decreases. For 2048 nodes, total vol-
ume is less than 10 percent of the exhaustive case. As men-
tioned in §2, sample size is constant in the limit, so we can
expect this curve to level off after 2048 processes, and we
can expect very large systems to require that increasingly
smaller subsets of processes be sampled.

Figure 8(b) shows sample size and data volume for
Chombo tracing as system size is increased. As with AD-
CIRC, we see that the fraction of data collected decreases
for larger systems, as the minimum required sample size
scales more slowly than the size of the system. For larger
systems, we can thus expect to see comparatively smaller
overhead and trace volume, just as we did for ADCIRC and
sPPM.

4.7 Stratification

We now turn to an examination of AMPL’s performance
with stratification. As discussed in §2.3, if we know which
groups of processes will behave similarly, we can sample
each group independently and, in theory, reduce data vol-
ume. We use simple clustering algorithms to find groups
in our performance data, and we observe further reductions
in data volume achieved by using these groups to stratify
samples taken with AMPL runs.

Clustering algorithms find sets of elements in their in-
put data with minimal dissimilarity. Here we used a well
known algorithm, k-medoids[8], to analyze summary data

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

32 64 128
256

512
1024

2048
 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

Pe
rc

en
ta

ge

Sa
m

pl
e

si
ze

 (#
 o

f p
ro

ce
ss

es
)

Total size (# of processes)

Data Volume (% of exhaustive)
Sample Size (% of total)

Average Sample Size

(a) Data volume for ADCIRC on BlueGene/L.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

8 16 32 64 128
 0

 10

 20

 30

Pe
rc

en
ta

ge

Sa
m

pl
e

si
ze

 (#
 o

f p
ro

ce
ss

es
)

Total size (# of processes)

Data Volume (% of exhaustive)
Sample Size (% of total)

Average Sample Size

(b) Data volume for Chombo on our Woodcrest with Infiniband.

Figure 8. Scaling runs of Chombo and ADCIRC on two different machines. Note that in both in-
stances, data volume and sample size decrease proportionally, but sample size increases absolutely.

 0

 2e+06

 4e+06

 6e+06

 8e+06

 1e+07

 0 1 2 3 4 5 6 7 8 9 10

D
at

a
vo

lu
m

e
(p

ro
po

rti
on

 o
f m

ax
im

um
)

Sa
m

pl
e

si
ze

 (i
n

pr
oc

es
se

s)

Number of clusters

Data Volume (bytes)
Avg. Total Sample Size

(a) Data overhead and average total sample size.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 0 1 2 3 4 5 6 7 8 9 10

Ti
m

e
(s

ec
on

ds
)

Number of clusters

ADCIRC

(b) Percent total execution time.

Figure 9. Time and data volume vs. clus-
ters for stratified ADCIRC trace, measuring
MPI Waitsome().

from ADCIRC and to subdivide the population of processes
into groups.

K-medoids requires that the user have a dissimilarity
metric to compare the elements being clustered, and that
the user specify k, the number of clusters to find. In our
experiment, the elements are ADCIRC processes. Comput-
ing dissimilarity is slightly less straightforward. We config-
ured ADCIRC as in §4.6 and recorded summary data for all
1024 processes in the run. After each window, processes the
mean time for all calls to MPI Waitsome() to a local log
file. The logged data thus consisted of time-varying vec-
tors of local means. For simplicity, we used the Euclidian
distance between these vectors as our similarity measure.

We ran k-medoids on our 1024-process ADCIRC data
for cluster counts from 1 to 10, and we used the output to
construct a stratified AMPL configuration file. We then re-
ran ADCIRC with stratified sampling for each of these con-
figuration files. The single-cluster case is identical to the
non-stratified runs above. Figures 9(a) and 9(b) show data
overhead for different cluster counts and execution time, re-
spectively.

Figure 9(a) shows that a further 25% reduction in data
volume was achieved on 1024-node runs of ADCIRC by
stratifying the population into two clusters. On the Blue-
Gene/L, we see a 37% reduction in execution time. Surpris-
ingly, for k = 3 and k = 4, dividing the population actually
causes a significant increase in both data volume and ex-
ecution time, while 5-10 clusters perform similarly to the
2-cluster case. Since tracing itself can perturb a running ap-
plication, it may be that we are clustering on perturbation
noise for the 3 and 4-cluster cases. This is a likely culprit
for the increases in overhead we see here, as our samples
are chosen randomly and the balance of perturbation across
nodes in the system is nondeterministic. Because we used

off-line clustering we do not accurately capture this kind
of dynamic behavior. This could be improved by using an
online clustering algorithm and adjusting the strata dynam-
ically.

For the remainder of the tests, our results are consistent
with our expectations. With 5-clusters, the AMPL-enabled
run of ADCIRC behaves similarly to the 2-cluster case.
Data and time overhead of subsequent tests with more strat-
ification gradually increase, but they do not come close to
exceeding the overhead of the 2-cluster test. There is, how-
ever, a slow rise in overhead from 5 clusters and on, and this
can be explained by one of the weaknesses of k-medoids
clustering. K-medoids requires that the user to specify k in
advance, but the user may have no idea how many equiva-
lence classes actually exist in the data. Thus, the user can
either guess, or he can run k-medoids many times before
finding an optimal clustering. If k exceeds the actual num-
ber groups that exist in the data, the algorithm can begin to
cluster on noise.

5 Related Work

Mendes et al. [12] used statistical sampling to monitor
scalar properties of large systems. We have taken these
methods and applied them to monitoring trace data at the
application level, while Mendes measures higher-level sys-
tem properties at the cluster and grid level.

Noeth et al. [15] have developed a scalable, lossless MPI
trace framework capable of reducing data volumes of large
MPI traces for very regular applications by orders of mag-
nitude. This framework collects compressed data at runtime
and aggregates it at exit time via a global trace-reduction op-
eration. The approach does not support the collection of ar-
bitrary numerical performance data from remote processes;
only an MPI event trace is preserved. In contrast, AMPL
can measure a trace of arbitrary numerical values over the
course of a run, and is more suited to collecting application-
level performance data and timings. We believe that the
two approaches are complementary, and that Noeth’s scal-
able MPI traces could be annotated intelligently with the
sort of data AMPL collects based on information learned
by AMPL at runtime. We are considering this for future
work.

Roth et al.have developed MRNet [17] as part of the
ParaDyn project [18]. MRNet uses tree-based overlay net-
works to aggregate performance data in very large clusters,
and it has been used at Lawrence Livermore Laboratory
with Blue Gene/L. MRNet allows a random sample to be
taken from monitored nodes, but it does not guide the sam-
pling or handle reductions of trace data directly. AMPL
could benefit by using MRNet to restructure communica-
tion operations as reduction trees separate from the mon-
itored application, in place of the embedded PMPI calls it

currently uses. Such a modification could potentially reduce
the perturbation problems we saw in our experiments with
stratification.

Nikolayev et al. [14] have used statistical clustering to
reduce data overhead in large applications by sampling only
representatives from clusters detected at runtime. The ap-
proach is entirely online: clusters are generated on-the-fly
based on data observed at runtime. Nikolayev’s method
assumes that one representative from each cluster will be
enough to approximate its behavior, and it does not offer the
statistical guarantees that AMPL provides. AMPL could,
however, benefit from the sort of online clustering done in
this work.

6 Conclusions and Future Work

We have shown that the techniques used in AMPL can
reduce the data overhead and the execution time of instru-
mented scientific applications by over an order of magni-
tude on small systems. Since the overhead of our moni-
toring methods scales sub-linearly with the number of con-
current processes in a system, AMPL, or similar sampling
frameworks, will be for monitoring petascale machines
when they arrive. Further, we have shown that, in addi-
tion to estimating global, aggregate quantities across a large
cluster, populations of processes can be stratified and mon-
itored as such with our tool. This will allow for further re-
ductions in data volume and execution time.

The ideas presented here are implemented in a library
that is easily integrated with existing tools. We were able to
integrate AMPL easily with the TAU performance toolkit,
and we believe that our techniques are widely applicable to
many other domains of monitoring.

Building on this work, we are currently developing more
sophisticated performance models and low-overhead, on-
line analysis of distributed applications. We plan to apply
the techniques we have developed to other monitoring tools,
and to use them to facilitate online, real-time analysis of
scalable applications at the petascale and beyond.

References

[1] ASCI. The ASCI Purple sPPM benchmark code [on-
line]. 2002. Available from: http://www.llnl.gov/asci/
platforms/purple/rfp/benchmarks/limited/sppm.

[2] S. Browne, J. Dongarra, N. Garner, G. Ho, and P. J.
Mucci. A portable programming interface for perfor-
mance evaluation on modern processors. The Interna-
tional Journal of High Performance Computing Appli-
cations, 14(3):189–204, Fall 2000.

[3] P. Colella, D. T. Graves, D. Modiano, D. B. Ser-
afini, and B. v. Straalen. Chombo software package

http://www.llnl.gov/asci/platforms/purple/rfp/benchmarks/limited/sppm
http://www.llnl.gov/asci/platforms/purple/rfp/benchmarks/limited/sppm

for AMR applications. Technical Report (Lawrence
Berkeley National Laboratory), 2000. Available from:
http://seesar.lbl.gov/anag/chombo.

[4] R. Crockett, P. Colella, R. Fisher, R. I. Klein, and
C. McKee. An unsplit, cell-centered Godunov method
for ideal mhd. Journal of Computional Physics,
Vol.203:422–448, 2005.

[5] A. Gara, M. A. Blumrich, D. Chen, G. L.-T. Chiu,
P. Coteus, M. E. Giampapa, R. A. Haring, P. Heidel-
berger, D. Hoenicke, G. V. Kopcsay, T. A. Liebsch,
M. Ohmacht, B. D. Steinmacher-Burow, T. Takken,
and P. Vranas. Overview of the Blue Gene/L system
architecture. IBM Journal of Research and Develop-
ment, 49(2/3), 2005.

[6] IBM. MareNostrum: A new concept in linux su-
percomputing [online]. February 15 2005. Avail-
able from: http://www-128.ibm.com/developerworks/
library/pa-nl3-marenostrum.html.

[7] G. Karypis and V. Kumar. A fast and high qual-
ity multilevel scheme for partitioning irregular graphs.
SIAM Journal on Scientific Computing, 20(1):359–
392, 1999.

[8] L. Kaufman and P. J. Rousseeuw. Finding Groups in
Data: An Introduction to Cluster Analysis. Wiley Se-
ries in Probability and Statistics. Wiley-Interscience,
2nd edition, 2005.

[9] Lawrence Livermore National Laboratory. Liver-
more computing resources. [online]. 2007. Available
from: http://www.llnl.gov/computing/hpc/resources/
OCF resources.html.

[10] C.-d. Lu and D. A. Reed. Compact application sig-
natures for parallel and distributed scientific codes,
November, 2002 2002.

[11] R. Luettich, J. Westerink, and N. Scheffner. ADCIRC:
an advanced three-dimensional circulation model for
shelves coasts and estuaries, Report 1: theory and
methodology of ADCIRC-2DDI and ADCIRC-3DL,
1992 1992.

[12] C. L. Mendes and D. A. Reed. Monitoring large
systems via statistical sampling. International Jour-
nal of High Performance Computing Applications,
18(2):267–277, 2004.

[13] H. Meuer, E. Strohmaier, J. Dongarra, and S. Horst.
Top500 supercomputer sites [online]. Available from:
http://www.top500.org.

[14] O. Y. Nikolayev, P. C. Roth, and D. A. Reed. Real-
time statistical clustering for event trace reduction.
The International Journal of Supercomputer Applica-
tions and High Performance Computing, 11(2):144–
159, 1997.

[15] M. Noeth, F. Mueller, M. Schulz, and B. R. de Supin-
ski. Scalable compression and replay of communica-
tion traces in massively parallel environments. In In-
ternational Parallel and Distributed Processing Sym-
posium (IPDPS), March 26-30 2007.

[16] R. Ross, J. Moreira, K. Cupps, and W. Pfeiffer. Par-
allel I/O on the IBM Blue Gene/L system. Blue
Gene/L Consortium Quarterly Newsletter, First Quar-
ter, 2006. Available from: http://www-fp.mcs.anl.gov/
bgconsortium/file%20system%20newsletter2.pdf.

[17] P. C. Roth, D. C. Arnold, and B. P. Miller. MRNet: A
software-based multicast/reduction network for scal-
able tools. In Supercomputing 2003 (SC03), 2003.

[18] P. C. Roth and B. P. Miller. On-line automated perfor-
mance diagnosis on thousands of processors. In ACM
SIGPLAN Symposium on Principles and Practice of
Parallel Programming (PPoPP’06), New York City,
2006.

[19] R. L. Schaeffer, W. Mendenhall, and R. L. Ott. Ele-
mentary Survey Sampling. Wadsworth Publishing Co.,
Belmont, CA, 6th edition, 2006.

[20] S. Shende and A. Maloney. The TAU parallel per-
formance system. International Journal of High Per-
formance Computing Applications, 20(2):287–331,
2006.

[21] J. S. Vetter, S. R. Alam, T. H. Dunigan, Jr., M. R. Fa-
hey, P. C. Roth, and P. H. Worley. Early evaluation of
the Cray XT3. In Proc. 20th IEEE International Par-
allel and Distributed Processing Symposium (IPDPS),
2006.

http://seesar.lbl.gov/anag/chombo
http://www-128.ibm.com/developerworks/library/pa-nl3-marenostrum.html
http://www-128.ibm.com/developerworks/library/pa-nl3-marenostrum.html
http://www.llnl.gov/computing/hpc/resources/OCF_resources.html
http://www.llnl.gov/computing/hpc/resources/OCF_resources.html
http://www.top500.org
http://www-fp.mcs.anl.gov/bgconsortium/file%20system%20newsletter2.pdf
http://www-fp.mcs.anl.gov/bgconsortium/file%20system%20newsletter2.pdf

	Introduction
	Statistical Sampling Theory
	Estimating Mean Values
	Sampling Performance Metrics
	Stratified Sampling

	The AMPL Library
	AMPL Architecture
	Modular Communication
	Tool Integration
	Usage

	Experimental Results
	Setup
	Applications
	Exhaustive Monitoring
	Sample Accuracy
	Data Volume and Runtime Overhead
	Projected Overhead at Scale
	Stratification

	Related Work
	Conclusions and Future Work

