
Gremlin: Systematic Resilience Testing of Microservices

Victor Heorhiadi
UNC Chapel Hill
victor@cs.unc.edu

Shriram Rajagopalan
IBM T. J. Watson Research

shriram@us.ibm.com

Hani Jamjoom
IBM T. J. Watson Research

jamjoom@us.ibm.com

Michael K. Reiter
UNC Chapel Hill
reiter@cs.unc.edu

Vyas Sekar
Carnegie Mellon University

vsekar@andrew.cmu.edu

Abstract—Modern Internet applications are being disaggre-
gated into a microservice-based architecture, with services
being updated and deployed hundreds of times a day. The
accelerated software life cycle and heterogeneity of language
runtimes in a single application necessitates a new approach
for testing the resiliency of these applications in production in-
frastructures. We present Gremlin, a framework for systemat-
ically testing the failure-handling capabilities of microservices.
Gremlin is based on the observation that microservices are
loosely coupled and thus rely on standard message-exchange
patterns over the network. Gremlin allows the operator to
easily design tests and executes them by manipulating inter-
service messages at the network layer. We show how to use
Gremlin to express common failure scenarios and how develop-
ers of an enterprise application were able to discover previously
unknown bugs in their failure-handling code without modifying
the application.

1. Introduction
Many modern Internet applications are moving toward a

microservice architecture [15], to support rapid change and
respond to user feedback in a matter of hours. In this archi-
tecture, the application is a collection of web services, each
serving a single purpose, i.e., a microservice. Each microser-
vice is developed, deployed and managed independently;
new features and updates are delivered continuously [10],
hundreds of times a day [20]–[22], making the applications
extremely dynamic. Microservice applications are typically
polyglot: developers write individual microservices in the
programming language of their choice, and the communica-
tion between services happens using remote API calls.

As cloud-native applications, microservices are designed
to withstand infrastructure failures and outages, yet struggle
to remain available when deployed. Table 1 summarizes
some recent failures experienced by microservice-based ap-
plications. The postmortem reports point to missing or faulty
failure-recovery logic, indicating that unit and integration
tests are insufficient to catch such bugs. The application
deployment needs to be subjected to resiliency testing—
testing the application’s ability to recover from failures
commonly encountered in the cloud. Specifically, we argue
that resiliency testing needs to be systematic and feedback-
driven: allow operators (developers or testers) to orchestrate
a specific failure scenario and obtain quick feedback about
how and why the application failed to recover as expected.
This feedback makes systematic testing more valuable than
randomized fault injection by better enabling developers to
quickly locate and fix faulty failure-handling logic, redeploy,

Company Downtime Postmortem findings

Parse.ly,
2015 [25]

13 hours Cascading failure due to message bus
overload

CircleCI,
2015 [19]

17 hours Cascading failure due to database over-
load

BBC,
2014 [18]

48 hours Cascading failure due to database over-
load

Spotify,
2013 [26]

Several
hours

Cascading failure due to degradation of a
core internal service

Twilio,
2013 [28]

10 hours Database failure caused billing service to
repeatedly bill customers

TABLE 1: A subset of recent outages experienced by popular,
highly available Internet services. Postmortem reports revealed
missing or faulty failure-handling logic.

and test again.
Microservices and their development model, however,

pose new challenges for systematic resiliency testing:

• Microservices’ polyglot nature requires the testing tool
to be agnostic to each service’s language and runtime.

• Rapidly evolving code requires tests that are fast and
focus on the failure-recovery logic, not business logic.

Existing works on resilience testing of general distributed
systems and service-oriented architectures (SOAs) are un-
suitable for microservice applications, since they do not
address the challenges mentioned above (see Section 8
for details). In contrast, our work is designed to provide
systematic, application-agnostic testing on live services.

To achieve this goal, we make the following observations
about microservice applications:

• Interactions between microservices happen solely over
the network; and

• Microservices use standard application protocols (e.g.,
HTTP) and communication patterns (e.g., request-
response, publish-subscribe).

Our key insight is that failures can be staged by manipu-
lating the network interactions between microservices; the
application’s ability (or lack of thereof) to recover from fail-
ures can be evaluated by observing the network interactions
between microservices during the failure.

Based on this insight, we present Gremlin, a systematic
resiliency testing framework for microservices. Gremlin’s
design is inspired by software-defined networks (SDN): the
operator interacts with a centralized control plane, which
in turn configures the data plane. The operator provides
Gremlin with a recipe—Python-based code describing a
high-level outage scenario, along with a set of assertions on
how microservices should react during such an outage. The
control plane translates the recipe into a fixed set of fault-



injection rules to be applied to the network messages ex-
changed between microservices. Gremlin’s data plane con-
sists of network proxies that intercept, log, and manipulate
messages exchanged between microservices. The control
plane configures the network proxies for fault injection
based on the rules generated for a recipe. After emulating the
failure, the control plane analyzes the observation logs from
the network proxies to validate the assertions specified in the
recipe. Gremlin recipes can be executed and checked in a
matter of seconds, thereby providing quick feedback to the
operator. This low-latency feedback enables the operator to
create correlated failure scenarios by conditionally chaining
different types of failures and assertion checks.

Our case study shows that Gremlin requires a minimal
learning curve: developers at IBM found unhandled corner-
case failure scenarios in a production enterprise application,
without modifying the application code. Furthermore, Grem-
lin correctly identified the lack of failure handling in an ac-
tively used library designed specifically for abstracting away
failure-handling code. Controlled experiments indicate that
Gremlin is fast, introduces low overhead, and is suitable for
resiliency testing of operational microservice applications.

Fault-injection ideas from Gremlin and their software-
defined architecture have been integrated into IBM’s cloud
offerings for microservice applications. Integration of other
parts, such as validation of assertions, is planned for the
future. The source code for Gremlin is publicly available in
GitHub at https://github.com/ResilienceTesting.

In summary, our contributions are as follows:

• A systematic resiliency-testing framework for creating
and executing recipes that capture a rich variety of high-
level failure scenarios and assertions in microservice-
based applications.

• A framework that can be integrated easily into production
or production-like environments (e.g., shadow deploy-
ments) without modifications to application code.

• Recipes capable of tolerating the rapid evolution of mi-
croservice code by taking advantage of the standardized
interaction patterns between services.

2. Background and Motivation
Large-scale Internet applications such as Netflix, Face-

book, Amazon store, etc., have demonstrated that in order to
achieve scalability, robustness and agility, it is beneficial to
split a monolithic web application into a collection of fine-
grained web services, called microservices [15]. Figure 1
illustrates the architecture of a typical microservice-based
web application deployed in a cloud platform, such as
Amazon AWS, IBM Bluemix, Microsoft Azure, etc. Each
microservice is a simple REST [6] based web service that
interacts with other services using HTTP. Modern applica-
tions leverage both managed services offered by the hosting
cloud platform (e.g., relational databases, key-value stores)
and third party services (e.g., Facebook, Twitter).

When compared to traditional service-oriented archi-
tectures, microservices are very loosely coupled with one
another—they can be updated and deployed independently

Users

MicroserviceA

B

C

D E

Application

F

!

RDBMS

Message 

Bus
NoSQL

Cloud Platform Services

…

3rd party 

Internet Services

Facebook

Mobile Push 

Notification

Figure 1: Typical architecture of a microservice-based applica-
tion. The application leverages services provided by the hosting
cloud platform, (e.g., managed databases, message queues, data
analytics), and integrates with Internet services, such as social
networking, mobile backends, geolocation, etc.

of other microservices as long as the APIs they expose are
backward compatible. To achieve loose coupling, microser-
vices use standard application protocols such as HTTP to
facilitate easy integration with other microservices. Organi-
zationally, each microservice is owned and operated by an
independent team of developers. The ability to immediately
integrate updates into the production deployment [5] has
led to a continuous software delivery model [10], where
development teams incrementally deliver features while in-
corporating user feedback.

2.1. Designing for Failure: Current Best Practices
To remain available in the face of infrastructure outages

in the cloud, a microservice must guard itself from failures
of its dependencies. Best design practices advocate incorpo-
rating resiliency design patterns such as timeouts, bounded
retries, circuit breakers, and bulkheads [9], [16].

• Timeouts ensure that an API call to a microservice com-
pletes in bounded time, to maintain responsiveness and
release resources associated with the API call in a timely
fashion.

• Bounded retries handle transient failures in the system,
by retrying the API calls with the expectation that the
fault is temporary. The API calls are retried a bounded
number of times and are usually accompanied with an
exponential backoff strategy to avoid overloading the
callee microservice.

• Circuit breakers prevent failures from cascading across
the microservice chain. When repeated calls to a mi-
croservice fail, the circuit breaker transitions to open
mode and the caller service returns a cached (or default)
response to its upstream microservice. After a fixed time
period, the caller attempts to re-establish connectivity
with the failed downstream service. If successful, the
circuit is closed again, resuming normal operation. The
definition of success is implementation dependent (e.g.,
response times within a threshold, absence of errors in a
time period, etc.)



• Bulkheads provide fault isolation within a microservice.
If a shared thread pool is used to make API calls to
multiple microservices, thread pool resources can be
quickly exhausted when one of the downstream services
degrades. Resource exhaustion renders the service inca-
pable of processing new requests. The bulkhead pattern
mitigates this issue by assigning an independent thread
pool for each type of dependent microservice being
called.
Our study of the postmortem reports of recent outages

(recall Table 1) shows that while developers may have
implemented failure-recovery measures in their application
logic, they remain unaware whether their microservice can
tolerate failures, until the failure actually occurs. To our
knowledge, there are no tools that provide systematic feed-
back indicating whether failure-recovery measures work as
expected in a microservice application.

2.2. Challenges in Resiliency Testing of Microservices
A microservice-based application is fundamentally a

distributed application. However, it differs from distributed
file systems, databases, co-ordination services, etc. The latter
group of applications have complex distributed state ma-
chines with a large number of possible state transitions.
Existing tools for resiliency testing cater to the needs of
these traditional low-level distributed applications [4], [7],
[8], [11]. We find these tools to be unsuitable for use in
web/mobile focused microservice applications, due to the
following challenges:

C1. Runtime heterogeneity. An application may be com-
posed of microservices written in different program-
ming languages. Microservices may also be rewritten
at any time using a different programming language, as
long as they expose the same set of APIs to other ser-
vices. Consequently, approaches that rely on language
specific capabilities (e.g., dynamic code injection in
Java) for fault injection and verification [7], [11] are
infeasible in such heterogeneous environments, since
few runtimes provide these capabilities.

C2. High code churn. Microservices are autonomously
managed by independent teams. New versions of mi-
croservices are deployed 10-100 times a day, inde-
pendently of other services. Exhaustive checkers [13]
cannot keep up with this time scale.

C3. Automatic validation. The key to the agility
of a microservice-based architecture is automation.
Resiliency-testing tools such as Netflix’s Chaos Mon-
key [34] inject unpredictable faults automatically. How-
ever, manual validation that the microservices survived
the failure as expected is still required. When services
fail to recover, it could result in lengthy troubleshooting
sessions.

A useful resiliency-testing tool must be automated, sys-
tematic, and agnostic to the application’s runtime platform.
Furthermore, it is crucial that both the fault injection and
behavior validation are automated.

3. Gremlin Overview
To tackle the challenges described earlier, we propose a

systematic resiliency-testing framework called Gremlin. The
key observations behind Gremlin’s approach are as follows:

O1. Touch the network, not the app. Irrespective of
the runtime heterogeneity (C1), all communication in
the application happens entirely over the network.
Multiple microservices work in coalition to generate
the response to an end user’s request. There are two
important ramifications of this increased reliance on
the network. First, common types of failures can be
easily emulated by manipulating the network inter-
actions. For example, appearance of an overloaded
service can be created by delaying requests between
two microservices. Second, the failure recovery of a
microservice can be observed from the network. For
example, by observing the network interactions, we can
infer whether a microservice handles transient network
outages by retrying its API calls to the destination
microservice. We leverage this network observability
property to automatically validate (C3) the recovery
behavior of collection of microservices.

O2. Volatile code with standard interactions. Despite
the rapid rate at which the microservice application
evolves in a daily fashion (C2), the interaction be-
tween different microservices can be characterized us-
ing a few simple, standard patterns such as request-
response, publish-subscribe, etc. The semantics of these
application-layer transport protocols and the interaction
patterns are well understood. Therefore, it is possible
to elicit a failure-related reaction from any microser-
vice, irrespective of its application logic or runtime, by
manipulating these interactions directly. For example,
an overloaded server can be emulated by intercepting
the client’s HTTP request and responding to it with the
HTTP status code 503 Service unavailable.

Gremlin’s design leverages these observations to provide
a resiliency-testing tool that is purely network-oriented and
agnostic to the application code and runtime.

3.1. Fault Model
In a microservice-based application, response to a user

request is a composition of responses from different mi-
croservices that communicate over the network. We confine
our fault model to failures that are observable from the
network by other microservices. Gremlin supports emulation
of fail-stop/crash failures, performance/omission failures,
and crash-recovery failures [1]—the most common types
of failures encountered in modern-day cloud deployments.
We do not formally prove coverage of these failure types.
We also do not test the resilience of the application against
malicious attacks.

From the perspective of a microservice making an API
call, failures in a remote microservice or the network man-
ifests in the form of delayed responses, error responses
(e.g., HTTP 404, HTTP 503), invalid responses, connection
timeouts and failure to establish the connection. The failure



incidents described in Table 1 (in Section 1) can be emulated
by the failure modes currently supported by Gremlin, even
though our system does not cover emulating OS-level errors,
such as failed system calls.

3.2. Using Gremlin
Before we delve into the design of Gremlin, we provide

the reader with a sample of Gremlin’s capabilities. In Grem-
lin, the human operator (e.g., developer or tester) writes a
Gremlin recipe: a test description, written in Python, which
consists of the outage scenario to be created and assertions
to be checked. Assertions specify expected behavior of
microservices during the outage. An operator can orchestrate
elaborate failure scenarios and validate complex application
behaviors in short and easy-to-understand recipes.

Consider a simple application consisting of two HTTP-
based microservices, namely ServiceA and ServiceB, where
ServiceA makes API calls to ServiceB. An operator might
wish to test the resiliency of ServiceA against any degrada-
tion of ServiceB, with the expectation that ServiceA would
retry failed API calls no more than five times. With Gremlin,
she can conduct this resiliency test using the following
recipe (boilerplate code omitted for brevity):

Example 1: Overload test
1 Overload(ServiceB)
2 HasBoundedRetries(ServiceA, ServiceB, 5)

In line 1, Gremlin emulates the overloaded state of
ServiceB, without actually impacting ServiceB. When traffic
is injected into the application, ServiceA would experience
delayed responses from ServiceB, or receive an HTTP
error code (503 Service unavailable). The operator’s
expectation (when ServiceA encounters such behavior, it
should restrict the number of retries to five attempts) is
expressed using the assertion in line 2.

4. Design
A high-level view of Gremlin architecture is shown in

Figure 2. Gremlin takes an approach similar to a software-
defined network (SDN) for emulating failures. Broadly, the
framework is divided into data plane and a control plane.
We describe each layer in greater detail below.

4.1. The Data Plane
The data plane consists of network proxies, called Grem-

lin agents. Microservices are configured to communicate
with each other via these agents. In addition to proxying
the API calls, Gremlin agents can manipulate the arguments,
return values, and timing of the calls, thus acting as fault
injectors. As shown in Table 2, the data plane supports
three primitive fault injection actions: Abort, Delay, and
Modify. Using these primitives, we can construct complex
failure scenarios that emulate real-world outages. Like SDN
switches, Gremlin agents expose a well-defined interface
to the control plane. The control plane uses the interface
to send rules to the agents, instructing them to inspect the
messages and perform fault-injection actions if a message
matches a given criteria.
Identifying message boundaries. The question of how to
delineate message boundaries arises, given that the Gremlin

Data Plane

Failure 

Orchestrator

fault-injection rules

Control Plane

Real traffic

Assertion 

Checker

Observations (Event logs)

Results

A B

Gremlin 
Agents

Datastore

Gremlin Recipes

Test traffic

Operator

Microservice

Recipe 

Translator

Figure 2: High-level overview of the Gremlin framework. The
Recipe Translator breaks down high-level failure scenarios into
fault-injection rules and assertions using the logical application
graph. The Failure Orchestrator programs the Gremlin agents in
the physical deployment to inject faults on matching request flows.
The Assertion Checker executes assertions in the translated recipe
against event logs provided by Gremlin agents.

Interface Mandatory
Parameters

Description

Abort Src, Dst,
Error,
Pattern

Abort messages from Src to Dst, where
messages match pattern Pattern. Return
an application-level Error code to Src

Delay Src, Dst,
Interval,
Pattern

Delay forwarding of messages from Src
to Dst, that match pattern Pattern, by
specified Interval

Modify Src, Dst,
ReplaceBytes,
Pattern

Rewrite messages from Src to Dst,
that match pattern Pattern and replace
matched bytes with ReplaceBytes

TABLE 2: Interface exposed by the data plane (Gremlin agents)
to the control plane. Messages in this context are application
layer payloads (Layer 7), without TCP/IP headers. Non-mandatory
parameters (with default values) not shown.

agents are agnostic to the application. We leverage earlier
observation (O2) of common application-layer protocols,
which can be easily decoded by the Gremlin agent. The
semantics of fault-injection primitives (Abort, Delay, and
Modify) also depend on the application protocol being used.
For example, with HTTP, the Abort primitive would return
HTTP error codes such as 503 Service unavailable.
Other protocols can also be supported, given that the imple-
mentation is augmented accordingly.

Injecting faults on specific request flows. To aid monitor-
ing and troubleshooting, a common practice in microservice
applications is to generate a globally unique request ID per
user request and propagate that ID to downstream services
by embedding it in the message headers. The flow of a
user’s request across different microservices can be traced
using this unique request ID [3], [17], [29]. Gremlin agents
can limit fault injection and logging to specific flows by
matching request IDs.

Logging observations. During a test, Gremlin agents log
the API calls made by the microservices and report them to
the control plane. Each Gremlin agent records the following



information about an API call:

• Message timestamp and request ID
• Parts of the message (e.g, status codes, request URI)
• Fault actions applied to the message, if any
This information is used by the control plane to check the
assertions in a Gremlin recipe.

4.2. The Control Plane
The control plane has three components: a Recipe Trans-

lator, a Failure Orchestrator and an Assertion Checker. The
individual components are described in greater detail below.
Recipe Translator. The Recipe Translator exposes a Python
interface to the operator, which enables her to compose
high-level failure scenarios and assertions from pre-existing
recipes or directly from low-level primitives for fault injec-
tion (shown in Table 2) and assertions (shown in Table 3).
The operator is also expected to provide a logical appli-
cation graph: a directed graph describing the caller/callee
relationship between different microservices. Internally, the
translator breaks down the recipe into a set of fault-injection
rules to be executed on the application’s logical graph—
a dependency graph between various microservices. Recall
Example 1 from Section 3.2 and its Overload failure. In
this case, Overload is internally decomposed into Abort
and Delay actions, parameterized and passed to the Failure
Orchestrator.
Failure Orchestrator. The Failure Orchestrator sends
fault-injection actions to the Gremlin data plane agents
through an out-of-band control channel. Since an ap-
plication might have multiple instances of any given
service, the Failure Orchestrator locates and config-
ures all physical instances of the Gremlin agents.

A

10.1.1.2

A

10.1.1.1
B

10.1.1.4

B

10.1.1.3

Figure 3: Multiple
instances

In our example, the physical deploy-
ment is shown in Figure 3, with both
ServiceA and ServiceB having two
instances. When applying the fault-
injection rules, the Failure Orches-
trator affects communication between
every pair of instances of ServiceA and ServiceB, by config-
uring Gremlin agents located at 10.1.1.1 and 10.1.1.2.
Assertion Checker. This component is responsible for val-
idating the assertions provided in the recipe. It does so by
querying a centralized data store that contains event logs
collected from the data plane (i.e., Gremlin agents) and
performing a variety of processing steps. To aid the operator
in querying the event logs, Gremlin provides abstractions
(listed in Table 3) for fetching and analyzing the data. The
queries (such as GetRequests and GetReplies) return
a filtered list of observations from the Gremlin agents,
sorted by time, referred to as RList. NumRequests and
ReplyLatency operate on that list to compute basic statis-
tics on the requests (or replies), without requiring knowledge
of the log-record structure.

Using the queries, we develop a layer of base assertions
that allows building of more complex checks, and also act as
convenience methods. Unlike queries, base assertions return
a boolean value so they can be chained. For example:

def AtMostRequests(RList, Tdelta, withRule, Num):
return NumRequests(RList, Tdelta, withRule) <= Num

Here, AtMostRequests can subsequently be used in com-
bination with other base assertions (as we show below).

Base assertions have two important features. First, they
allow us to combine observations of service behavior with
Gremlin’s fault injection during analysis. Consider our ear-
lier example with ServiceA and ServiceB. Gremlin was
emulating an Overload of ServiceB. Setting the withRule
parameter to True causes the ReplyLatency query to
calculate delayed reply timings from ServiceB, as ServiceA
would have observed them (due to Gremlin agents’ actions).
This is necessary to construct accurate preconditions when
validating behavior of ServiceA. On the other hand, if the
operator is also interested in the actual behavior of Ser-
viceB without Gremlin’s interference (e.g., during multiple
injected faults), specifying withRule=False will return
such untampered observations.

Second, base assertions can be chained using a special
Combine operator to evaluate a sequence of operations.
Consider the following combination:

Combine(RList, (CheckStatus, 503, 5, True),
(AtMostRequests, ’1min’, False , 0))

This assertion can validate the initial behavior of a circuit-
breaker design pattern—upon seeing five API call failures,
the caller service should backoff for a minute, before issuing
more API calls to the same callee. Note that Combine
automatically “discards” requests that have triggered the first
assertion before passing RList to the second.

We have also built a number of pattern checks into the
assertion checker, using the base assertions. In our example,
HasBoundedRetries can be implemented as follows:

1 def HasBoundedRetries(Src, Dst, MaxTries):
2 RList = GetRequests(Src, Dst)
3 Combine(RList, (CheckStatus, 503, 5, True),
4 (AtMostRequests, ’1min’, False, MaxTries))

Here, if five replies with error codes are observed by Src,
then Src should send at most MaxTries more requests to
Dst within the next minute.
Chained failures. The operator can take advantage of
Python and its constructs to create complex test scenarios
by interacting with the control plane. Once again, consider
Example 1, which could be expanded into a multi-step test
as follows:

1 Overload(ServiceB)
2 if not HasBoundedRetries(ServiceA, ServiceB, 5):
3 raise ’No bounded retries’
4 else:
5 Crash(ServiceB)
6 HasCircuitBreaker(ServiceA, ServiceB, ...)

First, this introduces an Overload failure of ServiceB. If
ServiceA implements a bounded-retry pattern, the operator
can proceed to emulate a different type of failure, namely a
Crash, to determine if ServiceA has a circuit breaker.



Call Description

GetRequests (Src, Dst, ID) Return all observed requests between Src and Dst services filtered by the request ID pattern.
GetReplies (Src, Dst, ID) Return all observed replies between Src and Dst services filtered by the request ID pattern.
NumRequests (RList, Tdelta,
withRule)

Compute the number of requests in the given request (or reply list). Optional Tdelta limits the
time window for which the computation is performed. withRule is a boolean parameter specifying
whether Gremlin actions (such as Abort or Delay) should be taken into account.

Q
ue

ri
es

ReplyLatency (RList, withRule) Compute the time for replies to arrive for each reply in RList. withRule is a boolean (see above).

AtMostRequests (RList, Tdelta,
withRule, Num)

Check that at most Num requests have been sent within time window Tdelta. withRule is a boolean
(see above).

CheckStatus (RList, Status,
NumMatch, withRule)

For given request list RList, check that at least NumMatch requests have returned status Status.
withRule is a boolean (see above).

RequestRate (RList) Compute and return the rate of requests (req/sec) in the given list RList.B
as

e
as

se
rt

io
ns

Combine (RList, (Assertion,
args). . . )

Combine multiple base assertions, wherein each assertion “consumes” portion of requests when it
is True, in the style of a state machine.

HasTimeouts (Src, MaxLatency) Check that Src replies to it’s upstream services within MaxLatency.
HasBoundedRetries (Src, Dst,
MaxTries)

Check that Src implements a bounded-retry pattern when making API calls to Dst.

HasCircuitBreaker (Src, Dst,
Threshold, Tdelta,
SuccessThreshold)

Check that Src implements a circuit breaker when making API calls to Dst. Threshold failed
requests triggers absence of calls for Tdelta time. SuccessThreshold requests should close the
circuit breaker.

Pa
tte

rn
ch

ec
ks

HasBulkHead (Src, SlowDst, Rate) Check that a service has a bulkhead—ensures that service request rate is at least Rate to dependents
other than SlowDst.

TABLE 3: Subset of the interface exposed by the Assertion Checker. Base assertions can be composed using the Combine operation to
build more complex assertions. The Assertion Checker also provides checks to validate presence of recommended resiliency patterns (see
Section 2.1).

5. Example recipes
In this section, we demonstrate how to create reusable

recipes and emulate outages similar to those that affected
microservice applications in the past.

We show a few examples of service failures that are
built on top of the previously described Abort, Delay
and Modify primitives. For instance, consider a disconnect
primitive, which returns a HTTP error code when Service1
sends a request to Service2:

1 def Disconnect(Service1, Service2):
2 Abort(Service1, Service2, Error=503,
3 Pattern=’test-*’, On=’request’, Probability=1)

Internally, this instructs the Gremlin agent of Service1 to
abort all (Probability=1) test requests (based on ID pat-
tern) and return the 503 error code. A network partition is
implemented using a series of Abort operations with a TCP-
level reset along the cut of an application graph (not shown
for brevity). A Crash failure of a service can be created by
aborting requests from all dependent services to the service
in question (for brevity, we assume existence of functions
such as dependents and services that return dependents
of a service and the list of all services, respectively):

1 def Crash(Service1):
2 for s in dependents(Service1):
3 Abort(s, Service1, Error=-1, Pattern=’test-*’,
4 On=’request’, Probability=1)

The Error=-1 instructs the agents to terminate the connec-
tion at the TCP level, and return no application error codes
to service Src, thus emulating an abrupt crash. Transient
crashes can be simulated by reducing the probability, while
software hangs are simulated using long delays (e.g., 1
hour):

1 def Hang(Service1):
2 for s in dependents(Service1):
3 Delay(s, Service1, Interval=’1h’,
4 Pattern=’test-*’, On=’request’)

An overload of a service can be simulated using a combi-
nation of Delay and Abort:
1 def Overload(Service1):
2 for s in dependents(Service1):
3 Abort(s, Service1, Error=503, Pattern=’test-*’,
4 On=’request’, Probability=.25)
5 Delay(s, Service1, Interval=’100ms’,
6 Pattern=’test-*’, On=’request’,
7 Probability=.75)

Here, Gremlin delays 75% of requests between Service1
and its neighboring services by 100 milliseconds and aborts
25% of requests with an error code. The Modify operation
can be used for input validation. For instance, if Service1
returns a key=value pair and a success status (i.e., 200),
Gremlin can modify the key to trigger unexpected behavior
in services that depend on Service1:
1 def FakeSuccess():
2 for s in dependents(Service1):
3 Modify(s, Service1, Pattern=’key’,
4 ReplaceBytes=’badkey’)

Next we show Gremlin’s applicability to emulating real-
world outages, by modeling a subset of them that occurred
in the last 3 years (recall Table 1 in Section 1). Where
applicable, we describe the assertions that could have caught
the unexpected behavior. For clarity of explanation, we make
some simplifying assumptions about the application graph.
Cascading failures caused by middleware. In October
2013, Stackdriver experienced an outage [27], when its Cas-
sandra cluster crashed. Data published by various services



into a message bus was being forwarded to the Cassandra
cluster. When the cluster failed, the failure percolated to the
message bus, filling the queues and blocking the publishers,
causing the entire application to fail. Example recipe:
1 Crash(’cassandra’)
2 for s in dependents(’messagebus’):
3 if not HasTimeouts(s, ’1s’)
4 and not HasCircuitBreaker(s, ’messagebus’, ...)):
5 raise ’Will block on message bus’

Data store overload. In July 2014, BBC Online experienced
a very long outage of several of its popular online services
including the BBC iPlayer [18]. When the database backend
was overloaded, it started to throttle requests from various
services. Services that had not cached the database responses
locally began timing out and eventually failed completely.
Example recipe:
1 Overload(’database’)
2 for s in dependents(’database’):
3 if not HasCircuitBreaker(s, ’database’, ...)
4 raise ’Will overload database’

A very similar overload scenario has caused a Joyent outage
[23] in July 2015, when an overloaded PostgreSQL database
caused multiple delayed and canceled requests. We note that
the same recipe can be reused for different applications by
changing the application graph.

6. Implementation
Data plane. To implement the Gremlin agent, we leverage
a service proxy [15]. The service proxy acts as a Layer-7
router, handling outbound calls from a microservice. It is
well-suited for Gremlin, as the proxy already has natural
access to the messages passing through the application.
There are several ways of implementing the service-proxy
capabilities. The first is called a sidecar approach used by
companies such as AirBnB [24] and Yelp. In this model,
the service proxy runs as a standalone process in the same
Docker [30] container or virtual machine as the microser-
vice. Communication between the microservice and the
service proxy occurs over the loopback network interface,
reliably and with low overhead. The second approach, fol-
lowed by companies like Netflix and Spotify, is to provide
language-specific libraries [33]. In either case, the service
proxy remains immune to the evolution of the application
logic. The control plane can interact with any service-proxy
element that supports the primitives described in Table 2.

Our Gremlin agent, written in Go, is a reference service
proxy based on the sidecar approach and supports fault-
injection interfaces described earlier. It can be configured
via a REST API by the control plane and can be run
alongside unmodified microservices that use the sidecar-
style service proxy. In this model, microservices specify
their external dependencies to the service proxy in the
form of a configuration file containing a list of map-
pings in the form of localhost:<port> - (list of
<remotehost>[:<remoteport>]) corresponding to each
dependent microservice. Such mappings can be statically
specified, or be fetched dynamically from a service registry.

Users

Web App

Graph 
Engine

GitHub 
Search

Stack Overflow 
Search

stackoverflow.comgithub.com

MongoDB

Ruby

Ruby Node.js Node.js

3rd party Internet Services

Enterprise application 
deployment

Figure 4: Architecture of the enterprise application in our case
study. The user interacts with the Web App, which in turn depends
on several backend services, both internal and external to IBM.

Control plane. We have implemented the Gremlin Recipe
Translator, the Failure Orchestrator and the Assertion
Checker as reusable Python libraries. Gremlin recipes are
written as Python programs that leverage our libraries. We
chose standard logging pipelines, such as logstash [32], to
collect logs from the Gremlin agents and store them in
Elasticsearch [32]. The Assertion Checker’s GetRequests
and GetReplies are queries to Elasticsearch to obtain
records required for recipes’ assertions. Further computation
on the log records is specific to each assertion.

Test input generation. Our current implementation does
not address the task of injecting test load that will traverse
through the desired chain of microservices. We assume that
the developer is aware of specific types of user requests
that would traverse the microservices she is trying to test.
Alternatively, standard load-generation tools can be used
to easily inject arbitrary load into the system. To validate
behavior of user-facing services, we assume that test load
can be injected via a Gremlin agent, thus allowing us to log
the behavior of edge services.

7. Evaluation
In this section we show that Gremlin is effective in

testing existing real-world applications with no source-
code modifications, and is capable of triggering previously
unknown bugs. In addition, we benchmark different as-
pects of Gremlin to demonstrate its suitability for testing
microservice-based applications.

7.1. Case Studies
Enterprise Application. We used Gremlin to test a propri-
etary application developed at IBM and deployed in the IBM
Container Cloud platform. The architecture of the applica-
tion is shown in Figure 4. At a high level, the application
enables developers to search for web services with specific
capabilities, such as mobile payments, location services, etc.
The user-facing Web App shows the web services matching
the search criteria (e.g., PayPal API, Google Maps API),
characteristics shared across the other similar services, and
development activities surrounding them, such as open-
source projects from github.com and questions and an-



1.5 2.0 2.5 3.0 3.5 4.0 4.5
Time (s)

0.0
0.2
0.4
0.6
0.8
1.0

C
D

F

Injected delay
1s 2s 3s 4s

Figure 5: CDFs of response times from WordPress, based on
injected delay between WordPress and Elasticsearch. Quickest
response times were dictated by the delay, indicating absence of a
timeout pattern.

1 2 3 4 5 6
Time (s)

0.0
0.2
0.4
0.6
0.8
1.0

C
D

F

Aborted Delayed

Figure 6: CDFs of response times from WordPress: first for
aborted, then immediately delayed requests. None of the delayed
requests returned without delay, indicating absence of a tripped
circuit breaker after 100 consecutive failed requests.

swers from forums like stackoverflow.com. The appli-
cation consists of two Ruby-based microservices and two
Node.js microservices. Additionally, the application makes
API calls to github.com and stackoverflow.com.

The development teams of various microservices agreed
to use Gremlin to write recipes that tested for various
failure scenarios. The developers were able to quickly de-
sign Gremlin recipes for various outage scenarios, using
Gremlin’s built-in failure patterns and assertions. Our case
study with the enterprise application developers resulted in
the following outcomes: 1) We confirmed that developers
require a minimal learning curve to start using Gremlin in
their production applications; 2) One team found bugs in
their microservice’s failure-handling logic prior to running
tests, simply by virtue of writing a recipe; and 3) Developers
discovered a previously unknown bug in the timeout failure
handler, after running a Gremlin recipe. This indicates that
systematic testing and Gremlin in particular are of value to
microservice developers.

Elaborating on the last outcome, developers of the Web
App microservice relied heavily on the Unirest [35] library
for abstracting boilerplate failure-handling logic. Emulating
network instability between the Web App and backend mi-
croservices led to the discovery that the Unirest library’s
implementation of the timeout resiliency pattern did not
gracefully handle corner cases involving TCP connection
timeout; instead the errors percolated to other parts of the
microservice. We consider this to be a serious issue, given
that the Unirest library is actively used (with over 38,000
downloads) for abstracting away common failure-handling
behavior in Ruby applications.
WordPress. We used Gremlin to conduct a test of a Word-
Press plugin called ElasticPress [31]. The plugin enhances

3 7 15 31
Number of services

0.00

0.05

0.10

0.15

Ti
m

e
(s

)

Orchestration Assertion

Figure 7: Time to orchestrate an outage and run assertions as a
function of number of services in the application.

search capabilities of WordPress by using Elasticsearch for
indexing and querying published data, therefore enabling
additional features (e.g., fuzzy search).

Our deployment consisted of three unmodified services:
WordPress (with ElasticPress enabled), Elasticsearch, and
MySQL database (required for Wordpress). We injected
basic Delay and Abort failures between WordPress and
Elasticsearch to examine the plugin’s behavior. We found
that ElasticPress handled failure gracefully and fell back to
the default (MySQL-powered) search method when Elastic-
search instance was unreachable or returned an error.

However, the plugin had no circuit-breaker or timeout
support. In addition to failing the respective Gremlin as-
sertions, the lack of these resiliency patterns impacted the
response times of WordPress. Figure 5 shows CDFs of
response times from WordPress, for different delays injected
between WordPress and Elasticsearch. Response times were
always offset by the injected delay, indicating that the plu-
gin implemented no timeout patterns. We also crafted an
Overload test of an Elasticsearch instance, where Gremlin
aborted 100 consecutive requests from WordPress to Elas-
ticsearch, then immediately delayed the next 100 by three
seconds. If a correct implementation of a circuit breaker
were present, a portion of the requests would have returned
immediately. Figure 6, however, shows that all delayed
requests completed only after three seconds.

7.2. Benchmarks

Setup. Since many microservice applications use Docker for
deployment, we packaged a naive Python-based application
along with the Gremlin agent into a Docker container. We
then deployed the containers in different configurations by
constructing binary trees of various depths and using them
as the application graph.

Orchestration and assertions. We measured the time to
setup an outage and run assertions on the collected data.
We setup an outage for different application graphs scenario
that impacts all services (for consistency, we use the Delay
fault). We then injected 100 test requests into the system,
followed by execution of an assertion for every service in
the system. Figure 7 shows the time to execute a test as a
function of the number of services in the application. Time
is broken up into two components: failure orchestration, and
assertions. This shows that the orchestration and assertion
parts of the test induced low overhead. Even counting the
time to inject 100 requests, the test was completed in under



50 100 150 200
Time (ms)

0.0
0.2
0.4
0.6
0.8
1.0

C
D

F

Number of rules
0 1 5 10

Figure 8: Worst case overhead of rule matching, wherein a request
was compared against all available rules, but matched none.

one second, easily allowing the operator to run multiple tests
and support chained failure/assertion pairs.

Proxy benchmarks. The rule matching process of the
Gremlin agent introduces some overhead to the application
because the proxy must process requests in-line with the
data path. We evaluated the proxy overhead in a controlled
manner by using the Apache Benchmark tool. We mea-
sured the time to complete a series of HTTP requests to
a server through the service proxy with different number
of rules installed. Figure 8 shows the CDF for completing
10000 requests in the worst case scenario: request IDs were
compared against all rules without a match, prior to being
forwarded. Since the proxy is not the main contribution of
this work, the measurements do not reflect the optimizations
that could be implemented to reduce this overhead, such as
using more efficient regular expression engines, or structured
(e.g., prefix-based or numeric) request IDs.

8. Related Work
There is a rich set of literature on testing the resiliency of

distributed systems. We compare and contrast our work with
other software and hardware-based techniques for failure
injection and behavior validation.

8.1. Fault Injection in Service Oriented Architectures
Gremlin shares similarities with WS-FIT [14], a tool

for dependability testing of SOAP RPC-based web services.
Both frameworks inject faults by manipulating messages
at the application layer between web services. However,
WS-FIT lacks the ability to analyze the behavior of the
application after the test is completed. Genesis2 [12] and
PUPPET [2] focused on model-based testbed generation for
conducting fault-injection experiments. The testbed consists
of stubs representing application services and infrastructure
components. In contrast, Gremlin operates on live services,
enabling developers to test real services whose behavior may
deviate arbitrarily from their stub counterparts.

Chaos Monkey is a randomized fault-injection tool from
Netflix, being used at large scale in production [34]. It is
capable of staging unforeseen faults that were not captured
by systematic testing, and has the ability to kill an entire
availability zone or a region of the application. However, the
tool lacks support for automatically analyzing application
behavior, which is necessary to quickly zero in on imple-
mentation bugs. Moreover, faults injected by Chaos Monkey
cannot be constrained to a subset of requests or services.

8.2. Resiliency Testing using Code Injection
Setsudo [11] is a perturbation-based testing framework

for Java-based distributed systems. It provides a policy
language for specifying high-level failures, and minimal
facilities for verifying application behavior. Failure injec-
tion happens on the I/O path between components of the
distributed system. Similarly, In FATE and DESTINI [7],
the authors describe a system to dynamically inject low-
level I/O related failures into Java-based distributed systems
and execute assertions. Our work differs from these systems
in two key aspects: 1) Gremlin’s approach is suitable for
polyglot microservice deployments, unlike aforementioned
systems, which are constrained to Java-based systems in
order to take advantage of AspectJ for injecting faulty code.
2) Gremlin does not require knowledge of microservice
internals nor modifications to the source code.

8.3. Low-level Fault-Injection
Doctor [8] provides a framework to inject CPU, memory

and network faults, and a way to analyze the generated error
logs. It relies on dedicated hardware for testing. Orches-
tra [4] injects protocol-level faults in a distributed system
built on top of the x-kernel, along with the ability to script
various types of faults at a high level. While Gremlin does
not provide the ability to inject system-level faults pertaining
to CPU, memory, or disk I/O, it is capable of simulating
a wide variety of faults in modern distributed applications
in an OS-agnostic manner, without the need for dedicated
hardware.

9. Discussion & Future Work
State cleanup. Unlike unit testing, there is no straight-
forward way to re-initialize an operational application, to
ensure that each test is performed on a fresh copy of the
application. Even when faults are injected only on synthetic
test requests, implementation bugs could cause the microser-
vice to crash, affecting real users. Other side effects can
include data-store values that Gremlin itself cannot clear.
We do not see this limitation as a barrier to adoption as
other frameworks for integration testing of applications in
production are being widely used without significant issues,
despite sharing similar limitations. One possible solution is
the use of canaries—copies of a microservice dedicated to
handling test requests.
Automating recipe generation. A key area for further ex-
ploration is automatic generation and execution of Gremlin
recipes. Given semantic annotations to the application graph,
it might be possible to automatically identify microservices
and resiliency patterns in need of testing, then construct and
run appropriate recipes. We leave detailed exploration of
these ideas to future work.

10. Conclusion
While designing for failures is critical in microservice

architectures, we argue that it is equally important to test the
recovery capabilities of the application. The heterogeneous
development environment necessitates a runtime-agnostic
testing framework that can withstand the rapid pace of



application development. To this end, we presented Grem-
lin, a purely network-oriented, systematic resiliency-testing
framework inspired by SDN. We described the design and
use cases of Gremlin, and demonstrated its suitability to
microservice applications. Our case studies show that Grem-
lin has a minimal learning curve and helps uncover bugs
in failure-recovery code. Our benchmarks show it has low
overhead, making Gremlin a valuable tool for resiliency
testing of microservice applications.

Acknowledgments
The authors thank Mandana Vaziri, Chris Young,

Saurabh Sinha, and Tamar Eilam from IBM Research, and
Alexey Lapitsky from Spotify, for their feedback and com-
ments on the drafts of this paper. This work was partially
supported by the NSF Graduate Research Fellowship.

References
[1] M. K. Aguilera, W. Chen, and S. Toueg, “Failure Detection and

Consensus in the Crash-Recovery Model,” Distributed computing,
vol. 13, no. 2, 2000.

[2] A. Bertolino, G. De Angelis, and A. Polini, “A QoS Test-Bed
Generator for Web Services,” in Proc. of International Conference
on Web Engineering, 2007.

[3] M. Chow, D. Meisner, J. Flinn, D. Peek, and T. F. Wenisch, “The
Mystery Machine: End-to-End Performance Analysis of Large-Scale
Internet Services,” in Proc. of ACM Symposium on Operating Systems
Principles (SOSP), 2014.

[4] S. Dawson, F. Jahanian, T. Mitton, and T.-L. Tung, “Testing of Fault-
Tolerant and Real-Time Distributed Systems via Protocol Fault Injec-
tion,” in Proc. of IEEE International Symposium on Fault-Tolerant
Computing (FTCS), 1996.

[5] P. M. Duvall, S. Matyas, and A. Glover, Continuous Integration:
Improving Software Quality and Reducing Risk, 1st ed. Addison-
Wesley Professional, June 2007.

[6] R. T. Fielding, “Architectural Styles and the Design of Network-based
Software Architectures,” Ph.D. dissertation, 2000.

[7] H. S. Gunawi, T. Do, P. Joshi, P. Alvaro, J. M. Hellerstein, A. C.
Arpaci-Dusseau, R. H. Arpaci-Dusseau, K. Sen, and D. Borthakur,
“FATE and DESTINI: A Framework for Cloud Recovery Testing,”
in Proc. of USENIX Symposium on Networked Systems Design &
Implementation (NSDI), 2011.

[8] S. Han, K. G. Shin, and H. A. Rosenberg, “Doctor: An Integrated
Software Fault Injection Environment for Distributed Real-Time Sys-
tems,” in Proc. of International Computer Performance and Depend-
ability Symposium, 1995.

[9] A. Homer, J. Sharp, L. Brader, M. Narumoto, and T. Swanson,
Cloud Design Patterns: Prescriptive Architecture Guidance for Cloud
Applications. Microsoft, 2014.

[10] J. Humble and D. Farley, Continuous Delivery: Reliable Software
Releases through Build, Test, and Deployment Automation, 1st ed.
Addison-Wesley Professional, July 2010.

[11] P. Joshi, M. Ganai, G. Balakrishnan, A. Gupta, and N. Papakonstanti-
nou, “SETSUDO: Perturbation-based Testing Framework for Scalable
Distributed Systems,” in TRIOS: Conference on Timely Results in
Operating Systems, 2013.

[12] L. Juszczyk and S. Dustdar, “Programmable Fault Injection Testbeds
for Complex SOA,” in Service-Oriented Computing, 2010, pp. 411–
425.

[13] Lin, Haoxiang and Yang, Mao and Long, Fan and Zhang, Lintao
and Zhou, Lidong, “MODIST: Transparent Model Checking of Un-
modified Distributed Systems,” in Proc. of USENIX Symposium on
Networked Systems Design & Implementation (NSDI), 2009.

[14] N. Looker, M. Munro, and J. Xu, “WS-FIT: A Tool for Dependability
Analysis of Web Services,” in Proc. of IEEE Computer Software and
Applications Conference, 2004.

[15] S. Neuman, Building Microservices: Designing Fine-Grained Sys-
tems. O’Reilly Media, February 2015.

[16] M. T. Nygard, Release It! Design and Deploy Production-Ready
Software. The Pragmatic Programmers, 2007.

[17] B. H. Sigelman, L. A. Barroso, M. Burrows, P. Stephenson, M. Plakal,
D. Beaver, S. Jaspan, and C. Shanbhag, “Dapper, A Large-Scale
Distributed Systems Tracing Infrastructure,” Google research, 2010.

[18] “BBC Online Outage on Saturday 19th July 2014,”
http://www.bbc.co.uk/blogs/internet/entries/a37b0470-47d4-3991-
82bb-a7d5b8803771, July 2014, [ONLINE].

[19] “CIRCLECI. DB performance issue,” http://status.circleci.com/
incidents/hr0mm9xmm3x6, July 2015, [ONLINE].

[20] “GRUBHUB. Enabling Continuous (Food) Delivery at GrubHub,”
DockerCon (2015).

[21] “HUBSPOT. How We Deploy 300 Times a Day,”
http://product.hubspot.com/blog/how-we-deploy-300-times-a-day,
November 2013, [ONLINE].

[22] “ORBITZ. Enabling Microservices at Orbitz,” DockerCon (2015).

[23] “Postmortem for july 27 outage of the manta service,” https://www.
joyent.com/blog/manta-postmortem-7-27-2015, July 2015, [ON-
LINE].

[24] “AIRBNB. SmartStack: Service Discovery in the Cloud,” http://nerds.
airbnb.com/smartstack-service-discovery-cloud/, October 2013, [ON-
LINE].

[25] “PARSE.LY. Kafkapocalypse: a postmortem on our service outage,”
http://blog.parsely.com/post/1738/kafkapocalypse/, March 2015, [ON-
LINE].

[26] “SPOTIFY. Incident Management at Spotify,” https://labs.spotify.com/
2013/06/04/incident-management-at-spotify/, June 2013, [ONLINE].

[27] “STACKDRIVER. Report on October 23 Stackdriver Outage,” http:
//www.stackdriver.com/post-mortem-october-23-stackdriver-outage/,
October 2013, [ONLINE].

[28] “TWILIO. Billing Incident Post-Mortem: Breakdown, Analysis and
Root Cause,” https://www.twilio.com/blog/2013/07/billing-incident-
post-mortem-breakdown-analysis-and-root-cause.html, July 2013,
[ONLINE].

[29] “TWITTER. Distributed Systems Tracing with Zipkin,” https://blog.
twitter.com/2012/distributed-systems-tracing-with-zipkin, June 2012,
[ONLINE].

[30] “Docker Containers - Build, Ship, and Run Any App, Anywhere,”
https://www.docker.com/, [ONLINE].

[31] “ElasticPress Plugin: Integrate Elasticsearch with WordPress,” https:
//wordpress.org/plugins/elasticpress/, [ONLINE].

[32] “An Introduction to the ELK Stack,” https://www.elastic.co/webinars/
introduction-elk-stack, [ONLINE].

[33] “HYSTRIX. Latency and Fault Tolerance for Distributed Systems.”
https://github.com/Netflix/Hystrix/, [ONLINE].

[34] “Netflix - Chaos Monkey Released Into The Wild,”
http://techblog.netflix.com/2012/07/chaos-monkey-released-into-
wild.html, July 2012, [ONLINE].

[35] “Unirest for Ruby - Simplified, lightweight HTTP request library,”
http://unirest.io/ruby.html, [ONLINE].


