114-35.5

COMP 114, Spring 2003
Program 4: Searching, sorting, linked lists, inheritance, and algorithm analysis (oh my)
Due:

April 15, 2003, 4:30 pm est.

Objectives:
● Implement several data storage and search techniques.
● Make a new class from an existing class by inheritance.
● Build a linked list (actually, build a bunch of linked lists).
● Keep track of running time both by operation counting and by timing.

In this program, you will read and store a dictionary file in several forms. Then you will perform a set of searching experiments, keeping track of the number of comparisons required and the actual clock times required.
I. The dictionary file

The dictionary file (dict.txt) is on the web site. Copy it into the same directory as your program. It contains just over 25,000 lines. When you read the file, you should exclude any lines that are empty or that are more than 25 characters long or that contain characters other than letters. You should also convert all letters to lower case (see String method toLowerCase). There are approximately 25,020 valid lines.
You should store the dictionary in the following forms.
a. An array of Strings in the same order as the input file.

b. A linked list of WordNode objects (see below) in the same order as the input file.

c. A sorted array of Strings. Use a quicksort to sort the array.

d. An array of 26 linked list where the ith list contains only those words of length i. The 0th list will be empty.

e. A 26x26 array of linked lists where the [i][j]th list contains words that are length i and have j as their first letter, where ‘a’ is 0; ‘b’ is 1; ‘c’ is 2; …;’z’ is 25. So, for example, the element [5][3] will be a list of 5-letter words that start with ‘d’.
Read the dictionary file only once and set up lists a, b, d, and e on that one pass. Then make a copy of the unsorted array (a) and sort it to get c.

Helpful hints for creating the 1-dimensional and 2-dimensional arrays. When you define an array of objects (as opposed to an array of primitive types), you don’t actually create any objects. You merely create an array of references. You must explicitly create the objects. So for example, to create the array of 26 WordList objects, the code is:

WordList[] wList = new WordList[26]; // Create the array of references.

for (int i=0; i<wList.length; i++)

wList[i] = new WordList();
 // Create WordList objects.

For the 2-dimensional array, things are even trickier. You first create the 26x? array of references. Then create 26 1-dimensional arrays. And finally, create the 676 WordList objects.

final int LSIZE = 26;

WordList[][] wTable=new WordList[LSIZE][]; // Create 26x? array
 // of references.

for(int i=0; i< LSIZE; i++)

 {

wTable[i]=new WordList[LSIZE];// Each element of wTable is a

// reference to an array.

for (int j=0; j< LSIZE; j++)

 wTable[i][j]=new WordList(); // Create WordList object.

}
II. The WordNode class

Start with the Word class from program 3. Inherit it and enhance it to include new data and new methods. If you did not write program 3 or were not happy with your Word class, there will be one on the web for you to use with no penalty.
Word class

Data

private String
The word
Constructors

Word()

Create a new Word object with the empty string as the word.

Word(String s)
Create a new Word object with s as the word.

Public methods

toString()

Returns the word. (String).
setWord(String s)
Sets the word to s. (void).
length()

Returns the word length (int).

equals(Word w)
Returns true if the word is exactly equal to w (boolean).

isPerm(Word w)
Returns true if the parameter w and the word are

permutations of each other (boolean).

isPrefix(Word w)
Returns true is the parameter w is a prefix of word (boolean).

isPrePerm(Word w)
Returns true if the parameter w is a prefix of a permutation

of the word (boolean).

WordNode class extends Word

Data

private WordNode

Reference to a WordNode.

Constructors

WordNode()

Create a new node with empty string and null

next reference.

WordNode(String s)
Create a new node with String s and null next

reference.

WordNode(String s, WordNode w)
Create a new node with String s and

w as next reference.

Methods

getNext()

Return the WordNode that is next in the

linked list (WordNode)

III. The WordList class

The WordList class maintains a linked list of WordNode objects. It should include the following public methods.

Constructor

WordList()
Create an empty WordList object.

Methods

addWord(String s)
Create a WordNode object with content s and add it to the

list (void). Adding the new node to the beginning of the

linked list is easiest. (5)

size()
Return the current size of the WordList (int). (4)

search(String key)Search the linked list and return the number of comparisons

required either to locate the word in the list or to verify that

the word is not in the list (int). Use a simple sequential search

of the linked list. (13)

IV. The program

1. Phase 1: reading the dictionary

The dictionary file is available on the web. Copy it and paste it into your project folder. An example of reading a text file can be found in handout 114-28. The program should ask for the name of the dictionary file. Read the dictionary once and store is in the five forms specified above. Use a quicksort to sort the array. When the dictionary has been read in, display (to both the screen and to a file called outFile.txt
 (see 114-29) the following statistics.

The number of lines read from the dictionary file.

The number of valid words inserted into the dictionary.

The number of words of each length (1…25). Hint: this is just the lengths of the 25

linked lists that hold words of a particular length.

The top 10 length/first letter combinations and the number of words in each category.

For example, my program indicates that the most common length/first letter

combination is six-letter words starting with ‘s’ of which there are 474.

The amount of time required to do the sort. See handout 114-26.

2. The experiments
Next, you will perform the following set of experiments. For each, you will do about 50,000 searches of the dictionary, about half successful (the word will be found) and about half unsuccessful (the word will not be found). To create unsuccessful search keys, write a method that takes a String as its parameter and returns a String that is the same as the parameter, except that that last letter of the string has been changed to a ‘q’. It should not simply add ‘q’ to the end of the word; that would change the word length and mess up the results. So, for example, the

q-modify method should take the parameter “hello” and return the string “hellq”. In most (but not all) cases, the q-modified word will not be in the dictionary. A few words, such as “iran” will generate a valid q-modified word; don’t worry about it.

Use the unsorted array of words (form a) as your set of search keys for all the experiments. If you find that your searches are intolerably slow, you can use an increment other than one. For example:

for (int i=0; i<dictArray.length; i=i+INC)

{

// search for dictArray[i]

// search for q-modified dictArray[i]

}
If you set the constant INC to 1, you’ll do 50,000 searches. If you set INC to 2, you do only

about 25,000 searches. Set INC to 3 and you’ll do only 16,666 searches, etc.
For each experiment, report the following statistics.

The number and name of the experiment.

The number of searches.
The average search length (how many dictionary words, on average, were looked at).

Clock time required.

The experiments differ in the dictionary used and the search strategy. All use the same set of search keys.

Experiment 1. Unsorted array of Strings, sequential search.

Experiment 2. Unsorted linked lists of WordNodes, sequential search.

Experiment 3. Sorted array of String, binary search.

Experiment 4. Sorted array of Strings, sequential search with early stop on unsuccessful search.

Experiment 5. Linked lists of WordNodes by length, sequential search of the appropriate list.

Experiment 6. Linked lists of WordNodes by length and first letter, sequential search of
 the appropriate list.

3. Conclusions

Write to turn in answers to the following questions.

Are the results what you expected? If not, why not?

How much overhead is introduced by the linked list over the array?

(Experiment 1 vs. experiment 2.)
If you were doing only one search, would sorting the array be justified?

How many searches are required to justify sorting?

How can sequential searching be made more efficient without sorting?

For example, let’s say your program were part of an automated dictionary lookup
system. Certain words would be more likely to be searched (e.g. “thing”) than other
words (e.g. “aardvark”). How could this different probability of search be used to
make sequential searching more efficient?

4. Etc.

Use the built-in String methods (equals and compareTo) not the recursive methods you wrote for program 3. The recursive methods will be too slow.
V. Extra challenge; a little extra credit

You will get extra credit for this part only if you have done a good job on the required part of the program.

Perform sorts on dictionaries of differing sizes from 1,000 to the full 25,000 and graph the results. Does this match up with the expected Θ(n log n) behavior?

Perform searches with varying number of search queries from 1,000 to the full 50,000 and graph the results for sequential and binary searches. Do the results match up with the expected behavior?

� Types in parentheses are the type of the returned value. As before, the numbers in parentheses are the number of lines of code in my version of this program. This includes method headers, lines of code, and lines that contain only an opening or closing bracket, but excludes comments, pre and post conditions and other assertions.

� It’s ok to hardwire the name of the output file (but not the input file) into your program.

