130-3.

Computer Science 130 -- Files and Databases
Assignments (all assignments are due at the beginning of class on the date indicated)

Reading
Continue in E & N through chapter 6

Be sure to read the exercises in Chapter 5.

Programming exercise

Due:
February 12, 2002

These programs will perform searches on the database we created in class.

The full list will be available on the web soon. Until then, you can use your

own 20 records as a test file. The objective of these programs is to simulate

searches on a database stored on a disk.

Assumptions

1. Five records per disk block.

2. The file index fits onto a single block. The index block must be read once for each search.

3. All searches are by last name. A search ends either when a matching last name is found, or when it is certain that the name is not in the file. We are looking for one record that matches the request, not all records that match the request. Think about how looking for all matching records would change the search results? For some file organizations and search strategies, the change from one to all results in very minor performance change; for others, the performance change is substantial.

4. There will be two classes of search requests: the name file records themselves will be the insider requests. There will be an equal number of outsider requests, that is, requests for names that are not in the database. To make the outsider requests, just make up names that are not in the database. An easy way to do this is to append a special character (e.g. '*' or the letter 'q') to the end of each real name. This will guarantee that the name is not in the database. Don’t put the special character at the beginning of the name and don’t use the same name repeatedly. (Why not? Hint: doing so will mess up the results for one of the experiments.)

Statistics to report for each experiment

1. Number of requests

2. Number of requests that were successful (name found)

3. Number of requests that were unsuccessful (name not found)

4. Best case: the fewest number of disk blocks required to handle a request

5. Worst case: the largest number of disk blocks needed to handle a request

6. Average number of disk blocks accessed per request

7. For the hash experiments, indicate the percent of insert operations that produced a collision.

Programming style

Your programs will be judged both on correctness and on style, although

style will not count as heavily as it did in COMP 14 or 114. You need not include
assertions, preconditions, and postconditions, although doing so may well help
you get the program right. You should, however, include appropriate program

documentation.

Turn in a copy of your program(s) and the statistical results for the each

experiment.

Teamwork

You can work alone, or in pairs. If you work as a team, turn in just one set

of programs and one set of experimental results. You will both get the

same score.

Experiments

The experiments differ in the ordering of the file, the requests (insider only or
insider plus outsider), and in the search strategy used.

1. File in original (unsorted) order; sequential search; insider requests only

2. File in original order; sequential search; insider and outsider requests.

3. File sorted by last name; sequential search; insider requests only.

4. File sorted by name; sequential search; insider and outsider requests

(In experiment 4, be sure your sequential search algorithm takes advantage

of the sorting.)

5. Hash search; insider requests only

6. Hash search; insider and outsider requests.

Clarification of sequential searches (experiments 1-4)

These are all simulated. You have to do the search, but you don't have to construct

an index. Basically, you do a sequential search counting the number of comparisons

either to find what you are looking for or to determine that the search key is not in the

file. Then divide by 5 (the number of records per block), take the ceiling function

(to get the number of blocks searched), add one (to account for the index block)

and that's the number of blocks accessed for this search. Average this over all

searches in the experiment. For these experiments, you are assuming that the

index provides information on the file location but does not contains any content

information.

Additional requirements for the hash searches (experiments 5-6)

Choose whatever hash function and overflow technique you want.

Use the hash function to install the records in the appropriate buckets and

then to do the searches.

Run each hash experiment three times:

0% extra space (not counting overflow area, if you choose to use

an overflow area)

30% extra space

50% extra space

Warning
I’ve tried to specify the assignments carefully and unambiguously. But ambiguities and other problems might remain. Start working on the assignment early so that if problems arise, they can be addressed before the last minute.

� The ceiling function of x, generally denoted as (x(, is the smallest integer greater than or equal to x. Hence (3.1(, (3.5(, (3.9(, (4(are all equal to 4.

