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ABSTRACT
Finding latent patterns in high dimensional data is an im-
portant research problem with numerous applications. The
most well known approaches for high dimensional data anal-
ysis are feature selection and dimensionality reduction. Be-
ing widely used in many applications, these methods aim to
capture global patterns and are typically performed in the
full feature space. In many emerging applications, however,
scientists are interested in the local latent patterns held by
feature subspaces, which may be invisible via any global
transformation.

In this paper, we investigate the problem of finding strong
linear and nonlinear correlations hidden in feature subspaces
of high dimensional data. We formalize this problem as iden-
tifying reducible subspaces in the full dimensional space. In-
tuitively, a reducible subspace is a feature subspace whose in-
trinsic dimensionality is smaller than the number of features.
We present an effective algorithm, REDUS, for finding the
reducible subspaces. Two key components of our algorithm
are finding the overall reducible subspace, and uncovering
the individual reducible subspaces from the overall reducible
subspace. A broad experimental evaluation demonstrates
the effectiveness of our algorithm.

Categories and Subject Descriptors: H.2.8 [Database
Applications]: Data Mining

General Terms: Algorithm, Performance

Keywords: Reducible Subspace, High Dimensional Data

1. INTRODUCTION
Many real life applications deal with high dimensional

data. In bio-medical domain, for example, advanced mi-
croarray techniques [2, 11, 17] allow to monitor the expres-
sion levels of hundreds to thousands of genes simultaneously.
By mapping each gene to a feature, gene expression data can
be treated as data points distributed in a very high dimen-
sional feature space. To make sense of such high dimensional
data, extensive research has been done in finding the latent
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structures hidden in the large number of features. Two well
known approaches in analyzing high dimensional data are
feature selection and dimensionality reduction.

The goal of feature selection methods [6, 22, 31, 33] is to
find a single representative subset of features that are most
relevant for the data mining task at hand, such as classifi-
cation. The selected features generally have low correlation
with each other but have strong correlation with the target
feature.

Dimensionality reduction [4, 8, 18, 27, 29] is widely used
as a key component of many approaches in analyzing high
dimensional data. The insight behind dimensionality reduc-
tion methods is that a high dimensional dataset may exhibit
interesting patterns on a lower dimensional subspace due to
correlations among the features. Though very successful in
finding the low dimensional structures embedded in a high
dimensional space, these methods are usually performed in
the full feature space. They aim to model the global la-
tent structure of the data and do not separate the impact of
any original features nor identify latent patterns hidden in
some feature subspaces. Please refer to Section 2 for a more
detailed discussion of the related work.

1.1 Motivating Example
In many emerging applications, the datasets usually con-

sist of thousands to hundreds of thousands of features. In
such high dimensional dataset, some feature subsets may be
strongly correlated, while others may not have any corre-
lation at all. In these applications, it is more desirable to
find the correlations that are hidden in feature subspaces.
For example, in gene expression data analysis, a group of
genes having strong correlation is of high interests to bi-
ologists since it helps to infer unknown functions of genes
[11] and gives rise to hypotheses regarding the mechanism
of the transcriptional regulatory network [17]. We refer to
such correlation among a subset of features as a local cor-
relation in comparison with the global correlation found by
the full dimensional feature reduction methods. Since such
local correlations only exist in some subspaces of the full
dimensional space, they are invisible to the full dimensional
reduction methods. In [32], an algorithm is proposed to find
local linear correlations in high dimensional data. However,
in real applications, the feature subspace can be either lin-
early or nonlinearly correlated. The problem of finding lin-
ear and nonlinear correlations in feature subspaces remains
open.

For example, Figure 1 shows a data sets consisting of 12
features, {f1, f2, · · · , f12}, and 1000 data points. Embedded
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Figure 1: An example dataset
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(a) Result of PCA
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(b) Result of ISOMAP

Figure 2: Applying dimensionality reduction meth-
ods to the full dimensional space of the example
dataset

in the full dimensional space, features subspaces {f1, f2, f3}
and {f4, f5, f6} are nonlinearly correlated, {f7, f8, f9} are
linearly correlated. Features {f10, f11, f12} contain random
noises.

Performing dimensionality reduction methods to the full
dimensional space cannot uncover these local correlations
hidden in the full feature spaces. For example, Figure 2(a)
shows the result of applying Principal Component Analy-
sis (PCA)[18] to the full dimensional space of the example
dataset shown in Figure 1. In this figure, we plot the point
distribution on the first 3 principal components found by
PCA. Clearly, we cannot find any pattern that is similar
to the patterns embedded in the dataset. Similarly, Figure
2(b) shows the results of applying ISOMAP [29] to reduce
the dimensionality of the dataset down to 3. There is also
no desired pattern found in this low dimensional structure.

How can we identify these local correlations hidden in the
full dimensional space?

This question is two-fold. First, we need to identify the
strongly correlated feature subspaces, i.e., a subset of fea-

tures that are strongly correlated and actually have low di-
mensional structures. Then, after these locally correlated
feature subsets are found, we can apply the existing dimen-
sionality reduction methods to identify the low dimensional
structures embedded in them.

Many methods have been proposed to address the second
aspect of the question, i.e., given a correlated feature space,
finding the low dimensional embedding in it. The first as-
pect of the question, however, is largely untouched. In this
paper, we investigate the first aspect of the question, i.e.,
identifying the strongly correlated feature subspaces.

1.2 Challenges and Contributions
(1) In this paper, we investigate the problem of finding

correlations hidden in the feature subspaces of high dimen-
sional data. The correlations can be either linear or nonlin-
ear. To our best knowledge, our work is the first attempt to
find local linear and nonlinear correlations hidden in feature
subspaces.

Many methods for modelling correlations can be found
in the literature, such as mutual information [10], Pearson
correlation [26], and rank correlation [19]. However, the
commonly used measurements are for correlations between
two features. In high dimensional data, the correlation may
involve a large number of features, i.e., a high order corre-
lation. Note that a strong high order correlation does not
necessarily imply that there are strong correlations between
feature pairs. For example, the 3 features, {f1, f2, f3} in
Figure 1, are strongly correlated, since the 3-dimensional
Swiss roll structure is actually on a 2-dimensional manifold.
Figures 3(a) to 3(c) show the projections of the Swiss roll
onto the spaces of two features. As we can see from the
figures, there are no clear pairwise correlations between any
two features.

We adopt the concept of intrinsic dimensionality [13] to
model the high dimensional correlation. We formalize this
problem as finding reducible subspaces in the full dimen-
sional space. Informally, a feature subspace is reducible if
its intrinsic dimensionality is smaller than the number of fea-
tures. Various intrinsic dimensionality estimators have been
developed [9, 14, 21]. Our problem formalization does not
depend on any particular method for estimating the intrin-
sic dimensionality. We show two necessary properties that
any estimator should satisfy in order to be a generalization
of the well-defined concepts in linear case.

(2) We develop an effective algorithm REDUS1 to find
the reducible subspaces in the dataset. REDUS consists of
the following two steps.

It first finds the union of all reducible subspaces, i.e., the
overall reducible subspace. The second step is to uncover the
individual reducible subspaces in the overall reducible sub-
space. The key component of this step is to examine if a
feature is strongly correlated with a feature subspace. We
develop a method utilizing point distributions to distinguish
the features that are strongly correlated with a feature sub-
space and those that are not. Our method achieves similar
accuracy to that of directly using intrinsic dimensionality
estimators, but with much less computational cost.

Extensive experiments on synthetic and real life datasets
demonstrate the effectiveness of REDUS.

1REDUS stands for REDUcible Subspaces.
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Figure 3: Pairwise correlations of the Swiss roll in
the example dataset

2. RELATED WORK
Feature Selection Feature selection methods [6, 22,

31, 33] try to find a subset of features that are most rel-
evant for certain data mining task, such as classification.
In order to find the relevant feature subset, these meth-
ods search through various subsets of features and evaluate
these subsets according to some criteria. Feature selection
methods can be further divided into two groups according
to their evaluation criteria: wrapper and filter. Wrapper
models evaluate feature subsets by their predictive accuracy
using statistical re-sampling or cross-validation. In filter
techniques, the feature subsets are evaluated by their infor-
mation content, using statistical dependence or information-
theoretic measures.

Feature selection finds one feature subset for the entire
dataset. The selected feature subset usually contains the
features that have low correlation with each other but have
strong correlation with the target feature. The correlation
measurements are usually defined for feature pairs, such as
mutual information and Pearson correlation. Our work, on
the other hand, is to find the subsets of features, in which the
features are strongly correlated. Moreover, the correlations
are not limited to feature pairs.

Dimensionality reduction Dimensionality reduction
methods can be categorized into linear methods, such as
Multi-Dimensional Scaling (MDS) [8] and Principal Com-
ponent Analysis (PCA)[18], and non-linear methods, such
as Local Linear Embedding (LLE) [27], ISOMAP [29], and
Laplacian eigenmaps [4]. For high dimensional datasets, if
there exist low dimensional subspaces or manifolds embed-
ded in the full dimensional spaces, these methods are suc-
cessful in identifying these low dimensional embeddings.

Dimensionality reduction methods are usually applied on
the full dimensional space to capture the independent com-
ponents among all the features. They are not designed to
address the problem of identifying correlation in feature sub-
spaces. It is reasonable to apply them to the feature spaces
that are indeed correlated. However, in very high dimen-
sional datasets, different feature subspaces may have differ-
ent correlations, and some feature subspace may not have
any correlation at all. In this case, dimensionality reduction
methods should be applied after such strongly correlated
feature subspaces have been identified.

Correlation Clustering The goal of correlation cluster-
ing methods is to find clusters hidden in projected feature
spaces [1, 7, 30]. They can be viewed as combinations of
clustering methods and dimensionality reduction methods.

Both ORCLUS [1] and 4C [7] can be treated as PCA-lized
clustering methods. To find the low dimensional clusters,
ORCLUS and 4C apply PCA on subsets of data points in
the full dimensional space and merge the point subsets hav-
ing similar orientations. Therefore, they do not touch the
problem of finding reducible subspaces. Instead, they im-
plicitly assume the full dimensional space is reducible for
certain subsets of data points. CURLER [30] finds clusters
having non-linear correlations in subspaces. It first applies
EM clustering algorithm to find a large number of micro-
clusters, and then merges clusters with large overlaps. Since
in its first step, micro-clusters are formed by applying EM to
the full dimensional space, CURLER also does not address
the problem of finding the reducible subspaces.

Intrinsic Dimensionality Due to correlations among
features, a high dimensional dataset may lie in a subspace
with dimensionality smaller than the number of features [9,
14, 21]. The intrinsic dimensionality can be treated as the
minimum number of free variables required to define the
data without any significant information loss [13]. For ex-
ample, as shown in Figure 1, in the 3-dimensional space
of {f1, f2, f3}, the data points lie on a Swiss roll, which is
actually a 2-dimensional manifold. Therefore, its intrinsic
dimensionality is 2.

The concept of intrinsic dimensionality has many appli-
cations in the database and data mining communities, such
as clustering [3, 15], outlier detection [24], nearest neigh-
bor queries [23], and spatial query selectivity estimation [5,
12]. Different definitions of intrinsic dimensionality can be
found in the literature. For example, in linear cases, ma-
trix rank [16] and PCA [18] can be used to estimate intrin-
sic dimensionality. For nonlinear cases, estimators such as
box counting dimension, information dimension, and corre-
lation dimension have been developed. These intrinsic di-
mensionality estimators are sometimes collectively referred
to as fractal dimension. Please see [25, 28] for good coverage
of the topics of intrinsic dimensionality estimation and its
applications.

Local Linear Correlation In [32], the CARE algo-
rithm has been proposed for finding local linear correlations.
Adopting a similar criterion used in PCA, the strongly cor-
related feature subsets are formalized as feature subspaces
having small residual variances. However, this work only
focuses on linear correlations. The problem of finding non-
linear local correlations remains uninvestigated.

3. PROBLEM FORMALIZATION
In this section, we utilize intrinsic dimensionality to for-

malize the problem of finding strongly correlated feature
subspaces.

Suppose that the dataset Ω consists of N data points and
M features. Let ΩP = {p1, p2, · · · , pN} denote the point
set, and ΩF = {f1, f2, · · · , fM} denote the feature set in
Ω respectively. We use ID(V ) to represent the intrinsic
dimensionality of the feature subspace V ∈ ΩF .

Intrinsic dimensionality provides a natural way to examine
whether a feature is correlated with some feature subspace:
if a feature fa ∈ ΩF is strongly correlated with a feature sub-
space V ⊆ ΩF , then adding fa to V should not cause much
change of the intrinsic dimensionality of V . The following
definition formalizes this intuition.



Definition 3.1. (Strong Correlation)
A feature subspace V ⊆ ΩF and a feature fa ∈ ΩF have
strong correlation, if

∆ID(V, fa) = ID(V ∪ {fa})− ID(V ) ≤ ε.

In this definition, ε is a user specified threshold. Smaller ε
value implies stronger correlation, and larger ε value implies
weaker correlation. If V and fa have strong correlation, we
also say that they are strongly correlated.

Definition 3.2. (Redundancy)
Let V = {fv1

, fv2
, · · · , fvm} ⊆ ΩF . fvi

∈ V is a redundant
feature of V , if fvi

has strong correlation with the feature
subspace consisting of the remaining features of V , i.e.,

∆ID({fv1
, · · · , fvi−1

, fvi+1
, · · · , fvm}, fvi

) ≤ ε.

We say V is a redundant feature subspace if it has at least
one redundant feature. Otherwise, V is a non-redundant
feature subspace.

Note that in Definitions 3.1 and 3.2, ID(V ) does not de-
pend on a particular intrinsic dimensionality estimator. Any
existing estimator can be applied when calculating ID(V ).
Moreover, we do not require that the intrinsic dimensional-
ity estimator reflects the exact dimensionality of the dataset.
However, in general, a good intrinsic dimensionality estima-
tor should satisfy two basic properties.

First, if a feature is redundant in some feature subspace,
then it is also redundant in the supersets of the feature sub-
space. We formalize this intuition as the following property.

Property 3.3. For V ∈ ΩF , if ∆ID(V, fa) ≤ ε, then ∀U
(V ⊆ U ⊆ ΩF ), ∆ID(U, fa) ≤ ε.

This is a reasonable requirement, since if fa is strongly
correlated with V ⊆ U , then adding fa to U will not greatly
alter its intrinsic dimensionality.

From this property, it is easy to see that, if feature sub-
space U is non-redundant, then all of its subsets are non-
redundant, which is clearly a desirable property for the fea-
ture subspaces.

Corollary 3.4. If U ⊆ ΩF is non-redundant, then for
∀V ⊆ U , V is also non-redundant.

The following property extend the concept of basis [20] in
a linear space to nonlinear space using intrinsic dimension-
ality. In linear space, suppose that V and U contain the
same number of vectors, and the vectors in V and U are all
linearly independent. If the vectors of U are in the subspace
spanned by the vectors of V , then the vectors in V and the
vectors in U span the same subspace. (A span of a set of
vectors consists of all linear combinations of the vectors.)
Similarly, in Property 3.5, for two non-redundant feature
subspaces, V and U , we require that if the features in U
are strongly correlated with V , then U and V are strongly
correlated with the same subset of features.

Property 3.5. Let V = {fv1
, fv2

, · · · , fvm} ⊆ ΩF and
U = {fu1

, fu2
, · · · , fum} ⊆ ΩF be two non-redundant feature

subspaces. If ∀fui
∈ U , ∆ID(V, fui

) ≤ ε, then for ∀fa ∈
ΩF , ∆ID(U, fa) ≤ ε iff ∆ID(V, fa) ≤ ε.

Intuitively, if a feature subspace Y (Y ⊆ ΩF ) is redun-
dant, then Y should be reducible to some subspace, say V

(V ⊂ Y ). Concerning the possible choices of V , we are
most interested in the smallest one that Y can be reduced
to, since it represents the intrinsic dimensionality of Y . We
now give the formal definitions of reducible subspace and its
core space.

Definition 3.6. (Reducible Subspace and Core Space)
Y ⊆ ΩF is a reducible subspace if there exists a non-redundant
subspace V (V ⊂ Y ), such that
(1) ∀fa ∈ Y , ∆ID(V, fa) ≤ ε, and
(2) ∀U ⊂ Y (|U | ≤ |V |), U is non-redundant.
We say V is the core space of Y , and Y is reducible to V .

Criterion (1) in Definition 3.6 says that all features in Y
are strongly correlated with the core space V . The meaning
of criterion (2) is that the core space is the smallest non-
redundant subspace of Y with which all other features of Y
are strongly correlated.

Among all reducible subspaces, we are most interested in
the maximum ones. A maximum reducible subspace is a re-
ducible subspace that includes all features that are strongly
correlated with its core space.

Definition 3.7. (Maximum Reducible Subspace)
Y ⊆ ΩF is a maximum reducible subspace if
(1) Y is a reducible subspace, and
(2)∀fb ∈ ΩF , if fb 6∈ Y , then ∆ID(V, fb) > ε , where V is
the core space of Y .

Let {Y1, Y2, · · · , YS} be the set of all maximum reducible
subspaces in the dataset. The union of the maximum re-
ducible subspaces OR =

⋃S

i=1 Yi is referred to as the overall
reducible subspace.

Note that Definition 3.7 works for the general case where
a feature can be in different maximum reducible subspaces.
In this paper, we focus on the special case where maximum
reducible subspaces are non-overlapping, i.e., each feature
can be in at most one maximum reducible feature subspace.

To find the maximum reducible subspaces in the dataset,
REDUS adopts a two-step approach. The first step is to
find the overall reducible subspace. Then, from the overall
reducible subspace, it identifies the individual maximum re-
ducible subspaces. In the next section, we present the algo-
rithm for finding the overall reducible subspace. In Section
5, we discuss the method for finding individual maximum
reducible subspaces.

4. OVERALL REDUCIBLE SUBSPACE
In this section, we present the algorithm for finding the

overall reducible subspace. We first give a short introduction
to the intrinsic dimensionality estimator. Then we present
the algorithm for finding the overall reducible subspace and
the proof of its correctness.

4.1 Intrinsic Dimensionality Estimator
To find the overall reducible subspace in the dataset, we

adopt correlation dimension [25, 28], which can measure
both linear and nonlinear intrinsic dimensionality, as our
intrinsic dimensionality estimator since it is computation-
ally more efficient than other estimators while its quality
of estimation is similar to others. In practice, we observe
that correlation dimension satisfies Properties 3.3 and 3.5,
although we do not provide the proof here. In what follows,
we give a brief introduction of correlation dimension.



Let Y be a feature subspace of the dataset, i.e., Y ⊆
ΩF . Suppose that the number of points N in the dataset
approaches infinity. Let dis(pi, pj , Y ) represent the distance
between two data points pi and pj in feature subspace Y .
Let BY (pi, r) be the subset of points contained in a ball of
radius r centered at point pi in subspace Y , i.e.,

BY (pi, r) = {pj |pj ∈ ΩP , dis(pi, pj , Y ) ≤ r}.

The average fraction of pairs of data points within distance
r is

CY (r) = lim
N→∞

1

N2

∑

pi∈ΩP

|BY (pi, r)|.

The correlation dimension of Y is then defined as

ID(Y ) = lim
r,r′→0

log[CY (r)/CY (r′)]

log[r/r′]
.

In practice, N is a finite number. CY is estimated us-

ing
1

N2

∑

pi∈YP

|B(pi, r)|. The correlation dimension is the

growth rate of the function CY (r) in log-log scale, since
log[CY (r)/CY (r′)]

log[r/r′]
=

log[CY (r)]− log[CY (r′)]

log r − log r′
. The cor-

relation dimension is estimated using the slope of the line
that best fits the function in least squares sense.

The intuition behind the correlation dimension is follow-
ing. For points that are arranged on a line, one expects to
find twice as many points when doubling the radius. For the
points scattered on 2-dimensional plane, when doubling the
radius, we expect the number of points to increase quadrat-
ically. Generalizing this idea to m-dimensional space, we
have CY (r)/CY (r′) = (r/r′)m. Therefore, the intrinsic di-
mensionality of feature subspace Y can be simply treated as
the growth rate of the function CY (r) in log-log scale.

4.2 Finding Overall Reducible Subspace
The following theorem sets the foundation for the efficient

algorithm to find the overall reducible subspace.

Theorem 4.1. Suppose that Y ⊆ ΩF is a maximum re-
ducible subspace and V ⊂ Y is its core space. We have
∀U ⊂ Y (|U | = |V |), U is also a core space of Y .

Proof. We need to show that U satisfies the criteria
in Definition 3.7. Let V = {fv1

, fv2
, · · · , fvm} and U =

{fu1
, fu2

, · · · , fum}.
Since U ⊂ Y , from the definition of reducible subspace, U

is non-redundant, and for every fui
∈ U , ∆ID(V, fui

) ≤ ε.
For every fa ∈ Y , we have ∆ID(V, fa) ≤ ε. Thus from
Property 3.5, we have ∆ID(U, fa) ≤ ε. Similarly, for every
fb 6∈ Y , ∆ID(V, fb) > ε. Thus ∆ID(U, fa) > ε.

Therefore, U is also a core space of Y .

Theorem 4.1 tells us that any subset U ⊂ Y of size |V | is
also a core space of Y .

Suppose that {Y1, Y2, · · · , YS} is the set of all maximum
reducible subspaces in the dataset and the overall reducible
subspace is OR =

⋃S

i=1 Yi. To find OR, we can apply the
following method. For every fa ∈ ΩF , let RFfa = {fb|fb ∈
ΩF , b 6= a} be the remaining features in the dataset. We
calculate ∆ID(RFfa , fa). The overall reducible subspace
OR = {fa|∆ID(RFfa , fa) ≤ ε}.We now prove the correct-
ness of this method.

Algorithm 1: REDUS

Input: Dataset Ω, input parameters ε, n, and τ ,
Output: Y : the set of all maximum reducible

subspaces

OR = ∅;1

for each fa ∈ ΩF do2

RFfa = {fb|fb ∈ ΩF , b 6= a};3

if ∆ID(RFfa , fa) ≤ ε then4

OR = OR ∪ {fa};5

end6

end7

sample n points P = {ps1
, ps2

, · · · , psn} from Ω.8

for d = 1 to |OR| do9

for each candidate core space C ⊂ OR (|C| = d) do10

T = {fa|fa is strongly correlated with C,11

fa ∈ OR, fa 6∈ C};
if T 6= ∅ then12

Y ← T ;13

update OR by removing from OR the14

features in T ;
end15

end16

end17

return Y.18

Corollary 4.2. OR = {fa|∆ID(RFfa , fa) ≤ ε}.

Proof. Let fy be an arbitrary feature in the overall re-
ducible subspace. From Theorem 4.1, we have ∀fy ∈ Yi ⊆
OR, ∃Vi ⊂ Yi (fy 6∈ Vi), such that Vi is the core space of Yi.
Thus ∆ID(Vi, fy) ≤ ε. Since fy 6∈ Vi, we have Vi ⊆ RFfy .
From Property 3.3, we have ∆ID(RFfy , fy) ≤ ε.

Similarly, if fy 6∈ OR, then ∆ID(RFfy , fy) > ε.
Therefore, we have OR = {fy|∆ID(RFfy , fy) ≤ ε}.

The algorithm for finding the overall reducible subspace
is shown in Algorithm 1 from Line 1 to Line 7. Note that
the procedure of finding overall reducible subspace is linear
to the number of features in the dataset.

5. MAXIMUM REDUCIBLE SUBSPACE
In this section, we present the second component of RE-

DUS, i.e., identifying the maximum reducible subspaces from
the overall reducible subspace found in the previous section.

5.1 Intrinsic Dimensionality Based Method
From Definition 3.7 and Theorem 4.1, we have the follow-

ing property concerning the reducible subspaces.

Corollary 5.1. Let Yi ⊆ OR be a maximum reducible
subspace, and Vi ⊂ Yi be any core space of Yi. We have

Yi = {fa|∆ID(Vi, fa) ≤ ε, fa ∈ OR}.

Therefore, to find the individual maximum reducible sub-
spaces Yi ⊆ OR (1 ≤ i ≤ S), we can use any core space
Vi ⊂ Yi to find the other features in Yi. More specifically,
a candidate core space of size d is a feature subset C ⊂ OR
(|C| = d). From size d = 1 to |OR|, for each candidate core
space, let T = {fa|∆ID(C, fa) ≤ ε, fa ∈ OR, fa 6∈ C}. If
T 6= ∅, then T is a maximum reducible subspace with core
space of size d. The overall reducible subspace OR is then



updated by removing the features in T . Note that the size of
|OR| decreases whenever some maximum reducible subspace
is identified. We now prove the correctness of this method.

Corollary 5.2. Any candidate core space is non-redundant.

Proof. It is easy to see any candidate core space of size
1 is non-redundant. Now, assume that all candidate core
spaces of size d−1 are non-redundant, we show all candidate
core spaces of size d are non-redundant. We prove this by
contradiction.

Let V = {fv1
, fv2

, · · · , fvd
} be an arbitrary candidate core

space of size d. Without loss of generality, assume that fd

is the redundant feature in V . Let V ′ = {f1, f2 · · · , fvd−1
}.

We have ∆ID(V ′, fvd
) ≤ ε. Since |V ′| = d − 1, V ′ is non-

redundant according to the assumption. Moreover, we have
T = {fa|∆ID(V ′, fa) ≤ ε, fa ∈ OR, fa 6∈ V ′} 6= ∅, since
fvd
∈ T . Therefore, fvd

∈ T would have been removed from
OR before the size of the candidate core spaces reaches d.
This contradicts the assumption of fvd

being in the candi-
date core space V . Therefore, we have that any candidate
core space is non-redundant.

Corollary 5.3. Let C be a candidate core space. If ∃fa ∈
OR such that ∆ID(C, fa) ≤ ε, then C is a true core space
of some maximum reducible subspace in OR.

Proof. Let Y = {fy|∆ID(C, fy) ≤ ε, fy ∈ OR}. Fol-
lowing the process of finding OR, we know that Y includes
all and only the features in ΩF that are strongly correlated
with C. Thus ∃C ⊂ Y , such that C satisfies Criterion (1)
in Definition 3.6, and Criterion (2) in Definition 3.7. More-
over, according to Corollary 5.2, C is non-redundant. Hence
C also satisfies Criterion (2) of Definition 3.6. Thus Y is a
maximum reducible subspace with core space C.

In this method, for each candidate core space, we need to
calculate ∆ID(C) and ∆ID(C∪{fa}) for every fa ∈ OR in
order to get the value of ∆ID(C, fa). However, the intrin-
sic dimensionality calculation is computationally expensive.
Since the intrinsic dimensionality estimation is inherently
approximate, we propose in the following section a method
utilizing the point distribution in feature subspaces to dis-
tinguish whether a feature is strongly correlated with a core
space.

5.2 Point Distribution Based Method
After finding the overall reducible subspace OR, we can

apply the following heuristic to examine if a feature is strongly
correlated with a feature subspace. The intuition behind our
heuristic is similar to the one behind the correlation dimen-
sion.

Assume that the number of data points N in the dataset
approaches infinity, and the features in the dataset are nor-
malized so that the points are distributed from 0 to 1 in each
dimension. Let ps ∈ ΩP be an arbitrary point in the dataset,
and 0 < l < 1 be a natural number. Let ξsy represent the in-
terval of length l on feature fy centered at ps. The expected
number of points within the interval ξsy is lN . For d fea-
tures C = {fc1 , fc2 , · · · , fcd

}, let QsC be the d-dimensional
hypercube formed by the intervals ξsci

(fci
∈ C). If the

d features in C are totally uncorrelated, then the expected
number of points in QsC is ldN . Let fm be another feature
in the dataset, and C ′ = {fc1 , fc2 , · · · , fcd

, fm}. If fm is
determined by {fc1 , fc2 , · · · , fcd

}, i.e., fm is strongly corre-
lated with C, then C ′ has intrinsic dimensionality d. The

(a) strongly correlated features

(b) uncorrelated features

Figure 4: Point distributions in correlated feature
subspace and uncorrelated feature subspace

expected number of points in the d-dimensional hypercube,
QsC′ , which is embedded in the (d + 1)-dimensional space
of C ′, is still ldN . If, on the other hand, fm is uncorrelated
with any feature subspace of {fc1 , fc2 , · · · , fcd

}, then C ′ has
dimensionality d + 1, and the expected number of points in
the (d+1)-dimensional hypercube QsC′ is l(d+1)N . The dif-
ference between the number of points in the cubes of these
two cases is ld(1− l)N .

Figure 4(a) and 4(b) show two examples on 2-dimensional
spaces. In both examples, d = 1 and C = {fa}. In Fig-
ure 4(a), feature fb is strongly correlated with fa. Feature
fc is uncorrelated with fa, as shown in Figure 4(b). The
randomly sampled point ps is at the center of the cubes
Qs{fa,fb} and Qs{fa,fc}. The point density in cube Qs{fa,fb}

is clearly much higher than the point density in cube Qs{fa,fc}

due to the strong correlation between fa and fb.
Therefore, for each candidate core space, we can check

if a feature is correlated with it in the following way. We
randomly sample n points P = {ps1

, ps2
, · · · , psn} from the

dataset. Suppose that C = {fc1 , fc2 , · · · , fcd
} is the current

candidate core space. For feature fa ∈ OR (fa 6∈ C), let
C′ = {fc1 , fc2 , · · · , fcd

, fa}. Let δsiC′ represent the number

of points in the cube QsiC′ . P ′ = {psi
|δsiC′ ≥ l(d+1)N} is

the subset of the sampled points such that the cube centered
at them have more points than expected if fa is uncorrelated

with C. We say fa is strongly correlated with C if |P ′|
|P |
≥ τ ,

where τ is a threshold close to 1.



Concerning the choice of l, we can apply the following

reasoning. If we let l = ( 1
N

)
1

d+1 , then the expected number
of points in the cube QsiC′ is 1, if fa is uncorrelated with
C. If fa is correlated with C, then the expected number of
points in the cube QsiC′ is greater than 1. In this way, we
can set l according to the size of the candidate core space.

The second step of REDUS is shown in Algorithm 1 from
Line 8 to Line 18. Note that in the worst case, the al-
gorithm needs to enumerate all possible feature subspaces.
However, in practice, the algorithm is very efficient since
once an individual reducible subspace is found, all its fea-
tures are removed. Only the remaining features need to be
further examined.

6. EXPERIMENTS
To evaluate REDUS, we apply it on both synthetic datasets

and real datasets. REDUS is implemented using Matlab
7.0.4. The experiments are performed on a 2.4 GHz PC
with 1G memory running WindowsXP system.

6.1 Parameter Setting
As shown in Algorithm 1, REDUS generally requires three

input parameters: ε, n, and τ . In the first step of finding the
overall reducible subspace, ε is the threshold to filter out the
irrelevant features. Since features strongly correlated with
some core space can only change intrinsic dimensionality a
small amount, the value of ε should be close to 0. According
to our experience, a good starting point is 0.1. After find-
ing the reducible subspaces, the user can apply the standard
dimensionality reduction methods to see if the are really cor-
related, and the adjust ε value accordingly to find stronger
or weaker correlations in the subspaces. In all our experi-
ments, we set ε between 0.002 to 0.25. In the second step,
n is the point sampling size and τ is the threshold to de-
termine if a feature is strongly correlated with a candidate
core space. In our experiments, n is set to be 10% of the
total number of data points in the dataset, and τ is set to
be 90%.

6.2 Synthetic Datasets

6.2.1 Effectiveness Evaluation
To evaluate the effectiveness of the REDUS, we generate

two synthetic datasets.
Synthetic dataset 1: The first synthetic dataset is as

shown in Figure 1. There are 12 features, {f1, f2, · · · , f12},
and 1000 data points in the dataset. 3 reducible subspaces:
a 2-dimensional Swiss roll, a 1-dimensional helix-shaped line,
and a 2-dimensional plane, are embedded in different 3-
dimensional spaces respectively. The overall reducible sub-
space is {f1, f2, · · · , f9}. Let ci (1 ≤ i ≤ 4) represent con-
stants and rj (1 ≤ j ≤ 3) represent random vectors. The
generating function of the Swiss roll is: t = 3

2
π(1 + 2r1),

s = 21r2, f1 = t cos(t), f2 = s, f3 = t sin(t). The roll is then
rotated 45◦ counter clockwise on feature space {f2, f3}. The
helix-shaped line is generated by: f4 = c1r3, f5 = c2 sin(r3),
f6 = c2 cos(r3). The 2-dimensional plane is generated by
f9 = c3f7 + c4f8. The remaining 3 features {f10, f11, f12}
are random vectors consisting of noise data points.
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(a) a correlation in Y1
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Figure 5: Examples of embedded correlations in syn-
thetic dataset 2

ε Precision Recall
0.06 83% 100%
0.05 91% 100%
0.04 96% 100%
0.03 100% 100%
0.02 100% 100%
0.01 100% 100%
0 100% 90%

Table 1: Accuracy of finding the overall reducible
subspace when varying ε

In the first step, with ε = 0.25, REDUS successfully un-
covers the overall reducible space. The parameter setting for
the second step is τ = 90%, and point sampling size 10%.
We run REDUS 10 times. In all 10 runs, REDUS success-
fully identifies the individual maximum reducible subspaces
from the overall reducible subspace.

Synthetic dataset 2: We generate another larger syn-
thetic dataset as follows. There are 50 features, {f1, f2, · · · , f50}
and 1000 data points in the dataset. There are 3 reducible
subspaces: Y1 = {f1, f2, · · · , f10} reducible to a 2-dimensional
space, Y2 = {f11, f12, · · · , f20} reducible to a 1-dimensional
space, and Y3 = {f21, f22, · · · , f30} reducible to a 2-dimensional
space. The remaining features contain random noises. Fig-
ures 5(a) and 5(b) show two examples of the embedded cor-
relations in 3-dimensional subspaces. Figure 5(a) plots the
point distribution on feature subspace {f1, f2, f9} of Y1, and
Figure 5(b) plots the point distribution on feature subspace
{f11, f12, f13} of Y2.



τ maximum reducible subspaces identified
0.94 {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}

{11, 13, 15, 19}
{12, 14, 16, 17, 18, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30}

0.92 {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}
{11, 12, 13, 14, 15, 16, 17, 18, 19, 20}
{21, 22, 24, 25, 26, 27, 28, 29, 30}

0.90 {1, 2, 3, 4, 5, 6, 7, 9}
{8, 10}
{11, 12, 13, 14, 15, 16, 17, 18, 19, 20}
{21, 22, 24, 25, 27, 28, 29, 30}

0.88 {1, 2, 3, 4, 5, 6, 7, 8}
{9, 10}
{11, 12, 13, 14, 15, 16, 17, 18, 19, 20}
{21, 23, 25, 26, 27, 30}
{24, 29}

(a) varying τ

n/N maximum reducible subspaces identified
20% {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}

{11, 12, 13, 14, 15, 16, 17, 18, 19, 20}
{21, 22, 24, 25, 26, 27, 28, 29, 30}

15% {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}
{11, 12, 13, 14, 15, 16, 17, 18, 19, 20}
{21, 22, 24, 25, 26, 27, 28, 29, 30}

10% {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}
{11, 12, 13, 14, 15, 16, 17, 18, 19, 20}
{21, 22, 24, 25, 26, 27, 28, 29, 30}

5% {1, 2, 3, 4, 5, 6, 7, 9}
{8, 10}
{11, 12, 13, 14, 15, 16, 17, 18, 19, 20}
{21, 22, 24, 25, 27, 28, 29}
{23, 26, 30}

(b) varying n

Table 2: Accuracy of identifying the maximum re-
ducible subspaces from the overall reducible sub-
space when varying τ and n

We apply REDUS on this synthetic dataset using various
parameter settings. Table 1 shows the accuracy of finding
the overall reducible subspace when ε taking different values.
The recall is defined as TP/(TP +FN), and the precision is
defined as TP/(TP +FP ), where TP represents the number
of true positive, FP represents the number of false positive,
and FN represents the number of false negative. As we can
see, REDUS is very accurate and robust to ε.

Tables 2(a) and 2(b) show the identified maximum re-
ducible subspaces when varying τ and n. Table 2(a) shows
results under different settings of τ . The point sampling size
n in this table is the default value, i.e., 10% of the total num-
ber of data points. Although changing τ may cause some
mis-classified features, Table 2(a) still shows that REDUS
achieves reasonably high accuracy under different settings
of τ . The reason for different decompositions of maximum
reducible subspaces is that features in different maximum
reducible subspaces may still have moderate correlations. If
these correlated features are identified, they will be removed
from the overall reducible subspace, since REDUS focuses
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(a) Varying number of points
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(b) Varying number of features

Figure 6: Efficiency evaluation of finding the overall
reducible subspace

on the case where the maximum reducible subspaces are
non-overlapping. If we allow each feature to be in different
maximum reducible subspaces, the findings under different
τ should be more similar to each other. Finding overlap-
ping reducible subspaces is computationally more demand-
ing, and is an interesting problem worth further exploration.

Table 2(b) shows the identified maximum reducible sub-
spaces when varying the number of the sampled points n. τ
is set to be 0.92 in this table. As shown in the table, REDUS
is not sensitive to the size of the sampled data points.

6.2.2 Efficiency Evaluation
To evaluate the efficiency and scalability of REDUS, we

apply it to synthetic dataset 2. The default dataset for effi-
ciency evaluation contains 1000 points and 50 features if not
specified otherwise. The default values for the parameters
are the same as before.

Figure 6(a) shows the runtime of finding the overall re-
ducible subspace when varying the number of data points.
The runtime scales roughly quadratically. This is because
when computing the correlation dimensions, we need to cal-
culate all pairwise distances between the data points, which
is clearly quadratic to the number of points.

Figure 6(b) shows that the runtime of finding the overall
reducible subspace is linear to the number of features. This
is because REDUS only scans every feature once to examine
if it is strongly correlated with the subspace of the remaining
features. This linear scalability is desirable for the datasets
containing a large number of features.

Figures 7(a) and 7(b) show the runtime comparisons be-
tween using the correlation dimension as intrinsic dimen-
sionality estimator and the point distribution heuristic to
identify the individual maximum reducible subspaces from
the overall reducible subspaces. Since the calculation of in-
trinsic dimensionality is relatively expensive, the program
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Figure 7: Efficiency evaluation of identifying maxi-
mum reducible subspaces from the overall reducible
subspace

often cannot finish in a reasonable amount of time. Using
the point distribution heuristics, on the other hand, is much
more efficient and scales linearly to the number of points
and features in the dataset.

6.3 Real Life Datasets

6.3.1 NBA dataset
We apply REDUS on the NBA statistics dataset. The

dataset can be downloaded from http : //sports.espn.go.com/
nba/teams/stats?team = Bos&year = 2007&season = 2.
It contains the statistics of 28 features for 200 players of sea-
son 2006-2007. Since the features have different value scales,
we normalized each feature such that points are distributed
between 0 and 1. We report two interesting correlations
found in the dataset in Figures 8(a) and 8(b). Note that the
features shown in the figures are mean-centered.

The correlation shown in Figure 8(a) says that the fea-
ture subspace of three features: defence rebounds (DEF),
the offense rebounds (OFF), and the total number of re-
bounds (TOT), is strongly correlated and reducible to a 2-
dimensional space. This is an obvious correlation that one
would expect. As shown in the figure, the points are linearly
distributed on a 2-dimensional plane in the 3-dimensional
subspace.

Figure 8(b) shows a nonlinear correlation identified by
REDUS. The feature subspace of three features: field goal
made (FGM), field goal attempted (FGA), and the percent-
age of field goal (FG%) is strongly correlated and reducible
to 2-dimensional space. Clearly, the data points on this 3-
dimensional space are distributed on a 2-dimensional mani-
fold.

(a) a linear correlation
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(b) a nonlinear correlation

Figure 8: Correlations identified in the NBA dataset

Figure 9: A linear correlation in the wage dataset

6.3.2 Wage dataset
The wage dataset from the 1985 Current Population Sur-

vey consists of 11 features in 534 data points. The dataset is
available at http : //lib.stat.cmu.edu/datasets/CPS 85 Wages.
The numerical features are age, years of education, years
of work experience, and wage. We apply REDUS on this
dataset to find the strongly correlated feature subsets.

REDUS identifies one correlation between the features:
age, years of education, and wage. Figure 9 shows the point
distribution of the data points in this 3-dimensional feature
subspace. From this figure, we can see that wage is clearly
a linear function of age and years of education. Therefore,
this 3-dimensional space is reducible to the 2-dimensional
plane embedded in it.
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Figure 10: A correlation in the breast cancer dataset

6.3.3 Breast cancer dataset
We apply REDUS to the breast cancer dataset which is

available at the UCI Machine Learning Archieve. There
are 569 data points and 30 features in this dataset. The
features include the statistics of radius, texture, perimeter,
area, smoothness, compactness concavity, concave points,
symmetry, and fractal dimension. These features are com-
puted from a digitized image of a fine needle aspirate of a
breast mass. They describe characteristics of the cell nuclei
present in the image.

Figure 10 shows one of the nonlinear correlations identi-
fied by REDUS. The three features are the mean of radius,
largest radius, and the mean of texture. From the figure,
we can see these three features are strongly correlated and
reducible to 1-dimensional space.

7. CONCLUSION
In this paper, we investigate the problem of finding strongly

correlated feature subspaces in high dimensional datasets.
The correlation can be linear or nonlinear. Such correla-
tions hidden in feature subspace may be invisible to the
global feature transformation methods, such as PCA and
ISOMAP. Utilizing the concepts of intrinsic dimensionality,
we formalize this problem as the discovery of maximum re-
ducible subspaces in the dataset. An effective algorithm,
REDUS, is presented to find the maximum reducible sub-
spaces. The experimental results show that REDUS can
effectively and efficiently find these interesting local correla-
tions.

Our work reported in this paper focuses on the case where
the maximum reducible subspaces are non-overlapping. For
future work, one interesting direction is to extend current
work to the general case where a feature can be in multiple
maximum reducible subspaces. Another interesting direc-
tion is finding the feature subspaces that are strongly cor-
related on a subset of data points. This is a more general
problem and has wider applications.
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