
A Fast Approximation to Multidimensional
Scaling

Tynia Yang1, Jinze Liu1, Leonard McMillan1, and Wei Wang1

University of Chapel Hill at North Carolina, Chapel Hill NC 27599, USA

{tynia, liuj, mcmillan, weiwang}@cs.unc.ed

Abstract. We present an approximation algorithm for Multidimensional

Scaling (MDS) for use with large datasets and interactive applications.

MDS describes a class of dimensionality reduction techniques that takes

a dissimilarity matrix as input. It is often used as a tool for understand-

ing relative measurements when absolute measurements are not avail-

able. MDS is also used for visualizing high-dimensional datasets. At the

core of MDS is an eigendecomposition on an n×n symmetric matrix. For

large n, this eigendecomposition becomes unwieldy. Our method employs

a divide-and-conquer approach, dividing the matrix into submatrices of

reasonable size to perform MDS, and then stitching the subproblem so-

lutions back together for a complete solution for the n × n matrix. It

requires Θ(n lg n) steps and is easily parallelized.

1 Introduction

The objective of this work is to describe a fast approximation to classical mul-
tidimensional scaling (MDS) [11] that enables it to be applied to large datasets
at interactive speeds. MDS describes a class of dimensionality reduction tech-
niques that operate on pairwise dissimilarities between points and generates a
low-dimensional embedding. In this paper, we focus on classical metric MDS,
which assumes a Euclidean distance as the dissimilarity measure. MDS is com-
monly used as a subroutine in feature selection methods [9], face recognition
applications [1], and non-linear dimensionality reduction tools such as Isomap
[10]. MDS is also an effective tool for visualizing and exploring the structure of
high-dimensional datasets. However, the applications of MDS are limited by its
poor scalability with regard to the dataset’s size.

Several approximations to MDS have been developed to support large datasets.
Before we present these other MDS approximation approaches in the next sec-
tion, and compare them to our approach, we provide a brief overview of classical
MDS.

1.1 Classical Multidimensional Scaling

Multidimensional scaling (MDS) is a well-known statistical method for mapping
pairwise relationships to coordinates. The coordinates that MDS generates are

2 Tynia Yang et al.

an optimal linear fit to the given dissimilarities between points, in a least squares
sense, assuming the distance used is metric. An MDS solution is unique down to
a rigid-body transformation, with a possible reflection. MDS takes as input an
n × n matrix D containing pairwise dissimilarities between all n data objects.
A valid dissimilarity matrix must satisfy both of the following constraints: (i)
self-similarity (dii = 0) and (ii) symmetry (dij = dji). A dissimilarity matrix
is metric if (i) and (ii) hold and the dissimilarities obey the triangle inequality:
dij ≤ dik + dki for all k.

The objective of MDS is to find coordinates for each point that preserve
the given pairwise dissimilarities as faithfully as possible. However, MDS is also
useful when coordinates are given for high-dimensional datasets. Since MDS only
takes a scalar dissimilarity matrix as input, its performance is independent of
the dataset’s dimensionality. Its performance depends only on the number of
objects. In the case where the dissimilarity is Euclidean distance, MDS gives a
solution that is identical to principal component analysis (PCA).

There are two stages in computing classical MDS. The first is to convert the
input matrix D into a matrix of dot products, or a Gram matrix B. This is done
by multiplying D2 on both sides with a “centering matrix” H, which subtracts
out the row and column average of each entry and adds back the overall matrix
average.

B = −HD2H
2

hij = δij − 1
n

(1)

The second stage is the bottleneck in MDS. Since B is symmetric, it can be
eigendecomposed into USUT , where U is a matrix of eigenvectors and S is a
diagonal matrix containing the corresponding eigenvalues. MDS derives its lower-
dimensional coordinates by taking successive columns from U

√
S. A complete

eigendecomposition of B using QR decomposition takes O(n3) time, resulting in
an O(n3) time for MDS.

2 Related Work

Several approximations to classical MDS have been proposed to address its poor
scalability. One class of algorithms is based on a spring-mass model [2][6]. These
methods calculate lower-dimensional coordinates by iteratively minimizing a
cost, or stress, function that is proportional to the distance between the cur-
rent coordinates and the given dissimilarities. Chalmers [2] has developed a fast
Θ(n2) approximation to the spring-based approach that considers a set of near
neighbors to each point and a second set of far points that are selected at ran-
dom on each iteration. Morrison et al. [6] introduced a sampling-based variant
to Chalmers’ algorithm that achieves Θ(n lg n) performance, but is limited to
embeddings in two-dimensions. Williams et al. have suggested an improvement
to Chalmers’ approach, and added user control to speed up performance [13]. A
disadvantage of spring-based models, in general, is that they are subject to local

A Fast Approximation to Multidimensional Scaling 3

minima, and that they require an a priori assumption of the dataset’s underlying
dimensionality.

FastMap [5], MetricMap [12], and Landmark MDS (LMDS) [4] approximate
classical MDS by solving MDS for a subset of the data and fit the remainder
to the solution. Platt, in [8], shows how all three algorithms belong to a class
of methods called Nyström algorithms, which approximates the solution to the
eigenproblem of a large matrix and concludes that LMDS is the fastest and most
accurate of the three.

Landmark MDS designates a set of m points as “landmarks”, where m << n.
It then extracts the m rows from D that contain the distances from the m land-
marks to every other point, resulting in a submatrix Dm×n of size m×n . LMDS
then applies MDS to the m×m matrix Dlandmarks, which contains the pairwise
distances between just the landmarks. The result is a set of coordinates in Rdlow

for just the landmarks. The algorithm then uses a distance-based triangulation,
taking the distances from Dm×n, to determine coordinates for the remaining
points. LMDS runs in O(Cmn+dlowmn+m3) where C is the cost of computing
and accessing each entry of Dm×n. In practice, m is Θ(

√
n) to get an acceptable

approximation.
FastMap [5] approximates classical MDS by constructing a dlow-dimensional

embedding one dimension at a time. It iteratively selects the two farthest points
in the data to be the axis, and uses the distances from the n-2 remaining points
to the two chosen points to compute the embedding coordinates. As pointed out
in [4], FastMap essentially is an iterated form of LMDS in the simplest case of
two landmarks.

In this paper, we propose an algorithm that solves MDS for all of the input,
but in a piecewise manner. We then take a sampling-based approach to fit the
pieces back together.

3 Sampling-based FastMDS

Algorithm Overview. Our FastMDS approach is based on the observation that
a submatrix along the diagonal of a dissimilarity matrix is itself a dissimilarity
matrix. Instead of running MDS on the full n×n matrix D, we partition D along
the diagonal into p submatrices D1, D2, . . . Dp, each of size n

p ×
n
p . Throughout

this paper, we will refer to a submatrix as Di, where 1 ≤ i ≤ p.
We then compute the MDS solution for each submatrix Di. We stitch these

individual MDS solutions together by sampling s points from each submatrix Di

and putting them into an alignment matrix Malign of size sp×sp. In principle, s
should be at least 1 + the estimated dimensionality of the dataset. In practice, we
oversample by a factor of 2 or more, to ensure that we capture the data’s inherent
dimensionality. We run MDS on Malign to get dlow-dimensional coordinates for
the sampled points. We now have two MDS solutions for each of the sampled
points; one from performing MDS on Di and one from performing MDS on
Malign. The next step is to compute an affine mapping Ai between these two

4 Tynia Yang et al.

sets of solutions to line them up in a common coordinate system. This is a linear
least squares problem:

AidMDSi = mMDSi (2)

where dMDSi is the MDS solution for the sample points from Di and mMDSi

is the solution from Malign that corresponds to sampled points from Di. Solving
for Ai gives us a mapping between Di and Malign, which we apply to the rest
of Di to get dlow-dimensional coordinates for all n

p points. In solving for Ai, we
minimize the least squares error between our approximation of MDS and the
real MDS solution.

We apply this process recursively, until the size of Di is optimal to run MDS
on. We find this stopping condition as follows. Let l × l be the largest matrix
that allows MDS to be executed efficiently. There are two issues that impact the
performance of FastMDS on an n×n matrix. (i) the size of Di after subdivision
and (ii) p, the number of submatrices that we stitch together at each conquer
step. Ideally, the size of each submatrix after division should be as large as
possible without exceeding l × l. By the same token, the size of the alignment
matrix Malign should also be bounded by l × l. The number of submatrices to
be stitched together, p, should be the largest number such that sp ≤ l.

In our examples, we define our peak error ε to be the maximum distance
between the FastMDS and the real MDS solutions for two corresponding points,
after aligning the two solutions, as shown in (3). Because MDS returns a unique
solution only down to a translation, rotation, and possible reflection, we first need
to align the FastMDS solution with the MDS solution before evaluating ε. We
compute an affine mapping A between M = (m1 . . .mn)T and F = (f1 . . . fn)T .
We then apply A to F, in order to line the two solutions up, and set ε equal
to the maximum distance between two corresponding points. M contains the
dlow-dimensional coordinates from MDS and F contains the dlow-dimensional
coordinates from FastMDS.

Assuming D can be embedded in dlow dimensions, regular MDS guarantees
an optimal embedding in Rdlow space. So there exists a dlow-dimensional coor-
dinate for each point represented in D. We use a matrix of size sp (Malign) to
find the dlow-dimensional coordinates for a subset of points, which we then use
to align the remaining points. Assuming we sampled enough points from each
submatrix Di, the subset of points in Malign should be enough to capture the
structure in the original point set.

ε ≡ n
max
i=1

‖mi −Afi‖ (3)

Computational Complexity. We can characterize the steps in our FastMDS
algorithm with the following recurrence relation:

T (n) = pT (
n

p
) +MDS(sp) + pAFF(s) + pZ(

n

p
) (4)

A Fast Approximation to Multidimensional Scaling 5

where p is the number of partitions, and s is the number of samples per subma-
trix. MDS(sp) is the cost of running MDS on Malign. Because both s and p are
constant with respect to n, we treat this as a constant-time operation. AFF(s)
is the process of computing the affine map Ai between the s sample points in Di

and Malign. Solving a linear least squares problem for an s× s matrix involves
calculating a pseudoinverse and takes O(s2). Because s is invariant with respect
to n, and is always small compared to n, we treat AFF(s) as a constant-time
operation as well. Z(n

p) is a function that applies Ai to a matrix of size n
p ×

n
p .

This amounts to a simple matrix multiplication, which is a linear-time operation
and takes O(n) time. So we can simplify (4) into (5) and solve to get (6):

T (n) = pT (
n

p
) + Z(n) (5)

T (n) = Θ(n lg n) (6)

4 Examples

To demonstrate FastMDS and how it can be applied to real data, we ran it on
images taken from the MNIST database of handwritten digits [7], which contains
a training set of 60,000 examples and a test set of 10,000 examples of handwritten
digits from 0-9. All images are 28× 28 in size and are in grayscale. We ran our
algorithm on a set of 974 “8”s from the test set (Figure 1) and projected the
data down to two dimensions.

We can see in Figure 1 that the “8”s separate into round, full shapes in the
lower left corner of the figure, and narrow, spindly shapes towards the upper right
corner. They also vary in the slant direction, with the top left corner showing a
strong slant towards the right, but decreasing the amount of slant as we move
towards the non-slanted “8”s in the lower left corner of the figure.

We also demonstrate FastMDS’s accuracy in approximating real MDS. We
ran both MDS and FastMDS on random sets of 10-dimensional points, ranging
in size from 1000 to 5000 points. The results are displayed below in Table 4.
For the first four experiments, as we double the input size, computation time
for MDS increases by a factor of eight. In contrast, FastMDS roughly triples its
computation time, but returns a set of coordinates that is no more than ε away
from MDS’s. For 5000 points, MDS runs out of memory and crashes.

To illustrate the similarity between solutions, we plot the points from the
first experiment (1000 points) in Figure 2. The MDS solution is displayed as
blue squares (), and FastMDS is displayed as red Xs (x). As shown in the
figure, the two sets of points overlap, with ε = 1.26x10-7.

5 Conclusion and Future Work

We have developed a fast approximation to MDS that is well suited for large
datasets. Our method has the same asymptotic performance as the best previous

6 Tynia Yang et al.

Table 1. Timing results for MDS vs. FastMDS on random points. After 4000 points,

MDS runs out of memory and we are unable to compute a solution

No. of points MDS run time (sec) FastMDS run time (sec) ε

1000 6.28 0.45 1.2665e-007

2000 47.67 1.125 1.5944e-007

3000 158.62 1.875 1.9542e-007

4000 377.50 3.141 1.8128e-007

5000 n/a 4.515 n/a

Fig. 1. FastMDS plot of 974 handwritten “8”s from the MNIST database, projected

onto 2 dimensions. We can see noticeable trends in the patterns, from round, non-

slanted “8”s in the bottom left corner to the thinner, more stretched-out “8”s in the

top right corner. Most of the “8”s on the top of the figure are slanted towards the right,

while they straighten out towards the bottom of the figure.

A Fast Approximation to Multidimensional Scaling 7

Fig. 2. 2-dimensional coordinates for 1,000 10-dimensional points. Our algorithm finds

a solution with ε = 1.2665x10-7.

MDS approximation algorithm [6], and it allows for arbitrary low-dimensional
solutions as long as dlow << s and dlow << n

p . We have used our method in in-
teractive applications and on large data sets. In practice, our method’s solutions
are in close agreement with classical MDS for low-dimensional embeddings.

There is still an element of art in the optimal selection of p, or more accurately
n
p . We have observed, and attribute to cache effects, non-monotonic behaviors
as the value of p is varied. This leads to sweet spots (i.e. certain submatrix sizes
where the small MDS solutions are particularly fast). We suspect that these
effects are likely to be implementation and platform dependent. Nonetheless, it
is common for some numeric algorithms (FFTs in particular) to search for an
optimal subproblem size as a precursor to solving large problems. We expect a
similar idea could be used for FastMDS.

Finally, we would like to derive a bound on the expected errors of our Fast-
MDS approximation. There is some hope for this based on the relationship of
the MDS mapping from a dissimilarity to a Gram matrix. The Gram matrix is
constructed by subtracting the appropriate row and column average from and
adding the matrix average to each element of the dissimilarity matrix. If the
submatrix dissimilarity matrices of FastMDS can maintain the same statistics
as the full dissimilarity matrix, we expect identical solutions. In practice we ran-
domize the points (or rows and columns of the given dissimilarity matrix) in an
effort to achieve similar row, column, and matrix averages for all submatrices

8 Tynia Yang et al.

References

1. Bronstein, A., Bronstein, M., Kimmel, R. “Expression-invariant 3D face recogni-

tion,” in Proc. Audio and Video-based Biometric Person Authentication, pp. 62-69,

2003.

2. Chalmers, M. “A linear iteration time layout algorithm for visualizing high dimen-

sional data,” Proc. IEEE Visualization, pp. 127-132. 1996.

3. V. de Silva and J.B. Tenenbaum. “Global versus local methods in nonlinear di-

mensionality reduction,” Advances in Neural Information Processing Systems 15

S. Becker, S. Thrun, and K. Obermayer (eds). Cambridge, MIT Press, 705-712,

2002.

4. V. de Silva and J.B. Tenenbaum. “Sparse multidimensional scaling using landmark

points” June 2004.

5. Faloutsos, C., Lin, K. “FastMap: a fast algorithm for indexing, data-mining, and

visualization,” Proc. of ACM SIGMOD, pp. 163-174, 1995.

6. Morrison, A., Ross, G., Chalmers, M. “Fast Multidimensional Scaling through

Sampling, Springs, and Interpolation,” Information Visualization 2(1), pp. 68-77,

March 2003.

7. The MNIST Database of handwritten digits. http://yann.lecun.com/exdb/mnist/

8. Platt, J.C. “FastMap, MetricMap, and Landmark MDS are all Nyström Algo-

rithms,” 10th International Workshop on Artificial Intelligence and Statistics, pp.

261-268, 2005

9. Shashua, A. Wolf, L. “Kernel Feature Selection with Side Data using a Spectral

Approach,” Proc. of the European Conference on Computer Vision (ECCV), May

2004, Prague, Czech Republic

10. Tenenbaum, J.B., de Silva, V., Langford, J.C. “A global framework for nonlinear

dimensionality reduction,” Science 290 (5500), 2319-2323.

11. Torgerson, W.S. “Multidimensional Scaling: Theory and Method,” Psychometrika,

vol 17, pp. 401-419, 1952.

12. Wang, J.T-L., Wang, X., Lin, K-I., Shasha, D., Shapiro, B.A., Zhang, K. “Evalu-

ating a class of distance-mapping algorithms for data mining and clustering,”Proc

of ACM KDD, pp. 307-311, 1999.

13. Williams, M., Munzner, T. “Steerable, Progressive Multidimensional Scaling,” IN-

FOVIS 2004, pp. 57-64, October 2004

