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Abstract

As gene order evolves through a variety of chromosomal
rearrangements, conserved segments provide important in-
sight into evolutionary relationships and functional roles of
genes. However, gene loss within otherwise conserved seg-
ments, as typically occurs following large-scale genome du-
plication, has received limited algorithmic study. This has
been a major impediment to comparative genomics in cer-
tain taxa, such as plants and fish.

We propose a heuristic algorithm for the inference of an-
cestral gene order in a set of related genomes that have
undergone large-scale duplication and gene loss. First,
approximately conserved (i.e. homologous) segments are
identified using pairwise local genome alignment. Second,
homologous segments are iteratively clustered under the
control of two parameters, (1) the minimal required num-
ber of shared genes between two clusters and (2) the max-
imal allowed number of rearrangement breakpoints along
the lineage leading to each descendant segment. Finally, we
compute an estimated ancestral gene order for each cluster
that is optimal in some sense.

We evaluate the performance of this algorithm on simu-
lated data that models a genome evolving by large-scale du-
plication, duplicate gene loss, transposition, translocation,
and inversion. The results suggest that long segments of an-
cestral gene order may be reconstructed following moderate
levels of rearrangement with only minor loss of accuracy.

1. Introduction

In previous work, we provided a mathematical frame-
work and algorithm for identifying homologous segments
in a pairwise genome alignment [3]. However, application
of this approach is difficult when genomes are distantly re-
lated, in large part due to the occurrence of lineage-specific
genomic duplication (i.e. polyploidy) and gene loss (i.e.
diploidization) events. Such events are now known to have
occurred regularly in eukaryotic genome evolution [8].

The loss of one or the other copy of a large fraction of
duplicated gene pairs following segmental or global dupli-
cation serves to obscure the presence of many segmental
homologs [4]. Such highly diverged homologs, which lack
a sufficient number or density of shared genes and there-
fore are hard to identify by local genome alignment, have
been referred to as ghosts [6]. A number of strategies for
the identification of ghosts have been proposed. One is
to identify homologs from multiple, rather than pairwise,
genome alignment [6, 7]. Another is to incorporate recon-
structed ancestral genomes directly into genome alignment
algorithms [1, 2]. However, methods for inferring ancestral
gene order have not been well studied and little is known
about the accuracy of the reconstructions that can be ob-
tained.

In the present work, we study the problem of recon-
structing ancestral marker (i.e. gene) order in the presence
of global duplication, marker loss and other rearrangement
events that permute marker order. We have developed an
algorithm for solving this problem called eAssembler (for
evolutionary Assembler). Our approach differs from pre-
vious work in this area [1, 2] by taking advantage of the
overlap among different pairs of segmental homologs, thus
reconstructing ancestral segments that contain more distinct
markers than any single pair. We assess the performance of
the algorithm with simulation experiments.

2. eAssembler Overview

The eAssembler algorithm is designed to infer the ances-
tral order of markers in a set of descendant genome blocks.
In the first step, a clustering algorithm is used to determine
which segments are to be assembled and in what order. Ini-
tially, the algorithm places each pair of homologous seg-
ments in a separate cluster. The algorithm iteratively joins
two existing clusters P and Q that satisfy two conditions,
governed by parameters t and k. First, P and Q must share
at least k markers. Second, there must exist a median m (a
permutation of all markers in either P or Q) such that the
distance between every segment in the two clusters and m is
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Figure 1. Comparison of output from pairwise genome
alignment using FISH (light gray) and after further analysis
by eAssembler (dark gray). Left: distribution of normalized
BP distances, in unit of BP/marker. Right: length distribu-
tion of segments/contigs, in number of markers. Mean nor-
malized BP distance: 0.260 (FISH) and 0.316 (eAssembler)
Mean length of segment: 10.6 and contig: 19.9.

no greater than t. We use the induced breakpoint distance to
measure the dissimilarity between two marker strings with
possibly unequal contents [5]. If there are multiple such
joins available among the current clusters, a join with the
maximal number of shared markers is chosen. The clus-
tering algorithm stops when no further joins are possible.
An important consequence of this clustering procedure is
that a join may occur even in cases where pairs of individ-
ual segments lack sufficient overlap to be joined by them-
selves. This contrasts with previously published approaches
in which clusters can consist of only two segments [1, 6]. In
the second step, the algorithm computes the optimal median
for each cluster. This is defined as one of the (potentially
large number of) medians that satisfies the distance con-
straint and also has minimal sum of distances. The optimal
median is taken to be the estimate of the ancestral marker
string. By analogy with sequence assembly, we refer to the
optimal median of each cluster as a contig.

3. Experimental Study

We simulated genomes evolving over time and analyzed
the final products using eAssembler in order to assess the
quality of the reconstructions obtained. Our model of evo-
lution in a multiple-chromosome genome combines global
duplication and single-marker deletion with three types of
operations acting on gene order alone (inversion, transposi-
tion, and reciprocal translocation).

We used two assessments, coverage and normalized
breakpoint distance, to measure the quality of the recon-
structions. We calculate coverage as the ratio of the number
of distinct markers in all contigs to the number of mark-
ers in the original genome. For a contig, the normalized
breakpoint distance (hereafter referred to simply as the BP
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Figure 2. Normalized BP distance and coverage under
varying numbers of rearrangement events, using represen-
tative parameters. The three lines show results for differ-
ent fixed proportions of deletion : inversion : transposition
: translocation. 12:6:1:1(solid), 11:3:3:3 (dashed), 9:9:1:1
(dot-dashed) Ten genomes were simulated and assembled
for each point. Vertical bars show one standard deviation.

distance) is defined as the ratio of its induced breakpoint
distance to its length in markers.

We compared the quality of eAssembler contigs to those
produced by pairwise genome alignment (using FISH [3]).
The result is presented in Figure 1. The sensitivity of
eAssembler to the total number of rearrangements is pre-
sented in Figure 2.

4 Discussion

The simulation results show that long contigs with only
minor rearrangements from the ancestral order can be ob-
tained using the eAssmbler algorithm. Such contigs can be
used to substantially improve the detection sensitivity of lo-
cal genome alignment algorithms [2].
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