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Abstract
The soundness of clustering in the analysis of gene

expression profiles and gene function prediction is
based on the hypothesis that genes with similar expres-
sion profiles may imply strong correlations with their
functions in the biological activities. Gene Ontology
(GO) has become a well accepted standard in orga-
nizing gene function categories. Different gene func-
tion categories in GO can have very sophisticated re-
lationships, such as ’part of ’ and ’overlapping’. Until
now, no clustering algorithm can generate gene clus-
ters within which the relationships can naturally re-
flect those of gene function categories in the GO hier-
archy. The failure in resembling the relationships may
reduce the confidence of clustering in gene function
prediction. In this paper, we present a new cluster-
ing technique, Smart Hierarchical Tendency Preserv-
ing clustering (SHTP-clustering), based on a bicluster
model, Tendency Preserving cluster (TP-Cluster). By
directly incorporating Gene Ontology information into
the clustering process, the SHTP-clustering algorithm
yields a TP-cluster tree within which any subtree can
be well mapped to a part of the GO hierarchy. Our
experiments on yeast cell cycle data demonstrate that
this method is efficient and effective in generating the
biological relevant TP-Clusters.

Keywords: Gene Ontology, Gene expression profiles,
Biclustering, Tendency Preserving.

1 Introduction

The advent of DNA microarray technologies has
revolutionized the experimental study of gene expres-
sion. Thousands of genes are routinely probed in a
parallel fashion. The gene expression data presents
both great opportunities and challenges. They serve
as valuable clues to understand the genetic behaviors

of life. The complexity of the underlying mechanism
underscores the potential complexity in analyzing the
gene expression data.

With the advance of microarray technology, the
data analysis techniques have been intensively stud-
ied as well. Clustering is one of the most popular
approaches of analyzing gene expression data with-
out prior knowledge. Several representative algo-
rithmic techniques have been developed and experi-
mented in clustering gene expression data, which in-
clude but are not limited to hierarchical clustering [7],
self-organizing maps [10], and graphic theoretic ap-
proaches, e.g., CLICK [16]. The applicability of clus-
tering in gene function prediction is based on the hy-
pothesis that similar expression profiles imply a func-
tional relation [4] in the biological activities. As a re-
sult, the quality of the clusters are often evaluated by
their correlations to the known genes’ function groups.
Those algorithms typically generate a small number of
disjoint clusters whose sizes are usually much larger
than that of most function categories in GO.

Although these studies have been successful in
showing that genes participating in the same biolog-
ical process have similar expression profiles, there are
several reasons preventing the traditional clustering
analysis from solving the core issues of modelling bi-
ological ontology relationships (Shatkayet al.[17]).
First, the expression levels of a set of biologically re-
lated genes might only show coherency under a subset
of conditions. Therefore, clustering over all dimen-
sions (conditions) may separate the biologically re-
lated genes from each other. Secondly, grouping genes
into disjoint clusters may preclude genes participating
in multiple biological activities from being grouped
properly [22]. Finally, assume we have a large clus-
ter containing over 200 genes and it includes most of
genes from a small function family, e.g., around 10

1



genes. It is very difficult to tell whether this occurs
by chance or not. Therefore, annotating a large gene
cluster with a small function family is usually infeasi-
ble. Traditional clustering algorithms generating large
sizes of clusters only help with the annotation of rela-
tively larger but less specific function categories.

Biclustering (or subspace clustering) might be an
answer to solve the above problems. Compared with
traditional clustering algorithms, biclustering is capa-
ble of discovering the gene expression pattern embed-
ded in only a subset of conditions. In addition, cluster-
ing under different sets of conditions generates over-
lapping biclusters. Cheng and Church [6] are among
the pioneers in introducing the concept of bicluster-
ing. Their biclusters are based on uniformity crite-
ria, and a greedy algorithm is developed to discover
them. Plaid [11] is another model to capture the ap-
proximate uniformity in a submatrix in gene expres-
sion data and look for patterns where genes differ in
their expression levels by a constant vector. Ben-Dor
et al. [2] discussed approaches for unsupervised iden-
tification of patterns in expression data that distinguish
two subclasses of a tissue on the basis of a supporting
set of genes that offer accurate classification. Tanayet
al. [20] defined a bicluster as a subset of genes that
jointly respond across a subset of conditions. Ben-Dor
et al. introduced the model of OPSM (order preserv-
ing submatrix) [3] to discover a subset of genes iden-
tically ordered among a subset of conditions. Proba-
bilistic models were the basis of the work presented
above. With probabilistic models, only a limited num-
ber of valid clusters may be discovered and a seed usu-
ally has to be selected manually before the generation
of a cluster. Nevertheless, the inability of revealing
the complete set of biclusters hinders the systematic
study of the relationships between the biclusters and
the function categories in biological activities.

In this paper, we present a biclustering algorithm,
Smart Hierarchical Tendency Preserving clustering
(SHTP-clustering), which directly incorporates Gene
Ontology information into clustering process. A clus-
ter is a Tendency Preserving cluster (TP-Cluster) if
it has a maximal subset of genes that have strictly
coherent tendency along a subset of conditions. A
TP-Cluster is a Smart Tendency Preserving cluster
(STP-Cluster) if the enrichments of function cate-
gories within the cluster are statistically significant.
Our goal is to obtain a tree of STP-Clusters whose
hierarchical relationships match the hierarchical orga-
nization of the gene function categories in GO. The

clusters may overlap and may vary in size depend-
ing on their levels in the STP-cluster tree. We design
an algorithm, which automatically constructs a Hierar-
chical Tendency Preserving clustering tree (TP-cluster
tree) in a very compact fashion. We evaluate the map-
ping from the hierarchical GO relationships to that of
the STP-Clusters. The assessment, in turn, is used to
guide the mining of STP-Clusters. Our experiments
demonstrate that, by directly incorporating gene on-
tology information into the clustering process, we are
able to efficiently and effectively discover biologically
relevant TP-Clusters.

The remainder of the paper is organized as follows.
Section 2 introduces some preliminary knowledge on
GO. Section 3 defines the TP-Cluster and its GO an-
notation respectively. Section 4 presents the SHTP-
clustering algorithm in detail. An extensive perfor-
mance study is reported in Section 5. Section 6 con-
cludes the paper and discusses some future work.

2 Preliminaries

The GO Consortium was formed to integrate the ef-
forts to regulate the vocabulary for various genomic
databases of diverse species in such a way that it can
show the essential features shared by all the organisms
[23]. GO has three ontology files corresponding to its
three categories, namely molecular function, biolog-
ical process and cellular component. An acyclic di-
rected graph can be obtained for each category with
GO terms as nodes. Figure 1 presents a screen shot of
the top levels of the gene ontology. At the first level,
known genes are classified into three categories, i.e.,
Molecular Function (MF), Cellular Component (CC)
and Biological Process (BP).

Figure 1. Schema of GO annotation terms.

Formally, GO hierarchy is naturally described as a
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directed acyclic graph (DAG).GO =< V, E >, where
V is a set of gene function description (GO terms) and
E is a binary relation onV such that genes with func-
tions described byvj are a subset of genes with func-
tions described byvi, denotedvj � vi, if and only
if there exists a path(vi, vi+1 , ..., vj−1, vj) such that
(vm−1, vm) ∈ E for m = i + 1, i + 2, ..., j − 1, j.
A term’s relationship with its ancestor is also defined
”part of” or ”specific”, which means that the set of
genes annotated with a GO term is also a subset of
the genes annotated with its ancestor GO term.

Nevertheless, to fit GO into our model, we trans-
form the original directed graph of GO into our desired
form, an ordered tree. Note that the same GO term
may occur several times in an ontology file. From a
biological viewpoint, these occurrences should be con-
sidered distinct because the location of the term in the
hierarchy (i.e., the path from the root to the term) is far
more important than the term itself.

LetD be the universe of the genes and leta : D →
2|V| be a function annotating each gene with a set of
GO-terms at the most specific level of gene ontology.
Given a set of GO termsG = v1, v2, ..., vt, a gene is
called aknown geneif there exists a GO termv, v ∈ G,
such that the set of gene-term pairs{(x, v) |x ∈ D
andu ∈ a(x) andu � v andv ∈ G} is not empty.
Otherwise, the gene is denoted as anunknown gene.
Unknown genes are either the genes without annota-
tion or genes with annotations beyond the scope of the
given GO term setG.

3 TP-Cluster Model and Ontology Interpre-
tation

Let D be the universe of then participating genes
in a microarray experiment and letA be them condi-
tions under which the gene expression levels are mea-
sured. The whole gene expression database can be rep-
resented in a data matrixM, whereMij is the expres-
sion level of genei under conditionj (0 < i ≤ n,
0 < j ≤ m).

3.1 Tendency Preserving Cluster Model

We are interested in the TP-Clusters, in which the
subset of genes inD exhibits a coherent tendency on
the subset of conditionsT of A.

Definition 3.1 Let O be a subset of genes in the
databaseD, O ⊆ D. LetT be a subset of conditions,
T ⊆A. LetR: T ×O× 2|A| → I be the function that

gID a b c d sequence
1 4002 284 4108 228 dbac
2 401 281 120 298 cbda
3 401 292 109 238 cdba
4 280 318 37 215 cdab

Table 1. An example dataset.

assigns the rank of a genei’s conditionj to ber, if the
expression value of the genei under conditionj is the
rth lowest value among that under all the conditions
in T . (O, T ) forms aTP-Cluster (Tendency Pre-
serving Cluster), if ∀ i, j (i, j ∈ O), ∀ a (a ∈ T ),
R(i, a, T ) = R(j, a, T ) and ∀ k (k ∈ D − O),
∀l(l ∈ O), ∃b (b ∈ T ),R(k, b, T ) 6= R(l, b, T ).

Definition 3.1 first defines the rank functionR.
Based on the rank function, a TP-Cluster is defined as
a subset of genes which have consistent ranks along
a subset of conditions. In addition, a TP-Cluster is
defined to be maximal in that adding any additional
gene in the database will violate the rank coherence
within the cluster. This property distinguishes our
model from OPSM model which also searches for a
subset of genes along identically ordered a subset of
condition [3]. An OPSM might not be maximal.

For example, in Table 1, we say that the gene set
{2, 3} forms a TP-Cluster along the subset of condi-
tions{a, c, d}, since the ranks of the three conditions
for both genes are the same, i.e. (3, 1, 2).

Next,we show that each TP-Cluster can be mapped
onto an ordered sequence of condition labels by im-
posing a consistent order of the conditions, such as
monotonically increasing or decreasing.

Definition 3.2 Given a TP-ClusterC with gene setO
and condition setT , we call a sequence of conditions
S representingC in a monotonically increasing order,
if S=π(T ), where functionπ places each conditiona
in T at the positionR(a) in sequenceS.

For example, for cluster{2, 3}×{a, c, d} in Table 1,
the sequence of conditions that represents the mono-
tonically increasing order iscda. For conditionc, its
rank is 1. Therefore, its position in the sequence is 1.

Definition 3.3 Given two TP-ClustersC1 andC2 with
condition setsT1 andT2 respectively, we callC1 is an
ancestor ofC2 if π(T1) is a prefix of sequenceπ(T2).

For example in Table 1, the sequence representing
clusterC1={2, 3}×{a, c, d} is cda. The sequence rep-
resenting clusterC2={2, 3, 4}×{c, d} is cd. Sincecd
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is a prefix ofcda, we callC2 is an ancestor cluster of
C1.

Based on the mapping from the TP-Clusters to the
sequences, we are able to organize the TP-Clusters into
a prefix tree. We will introduce an algorithm which
builds the TP-cluster tree in a very compact fashion in
the Section 4.

The following Lemma illustrates the ’part-of’ rela-
tionships that occur between two TP-Clusters of which
one is an ancestor of the other.

Lemma 3.1 Let C and C′ be two TP-Clusters in the
databaseD. LetO andO′ be the gene set ofC andC′
respectively, ifC′ is an ancestor ofC, thenO ⊆ O′.

Proof 3.1 SinceC′ is an ancestor ofC, π(T ′) must
be a prefix ofπ(T ), based on Definition 3.3.∀g(g ∈
O), g supportsπ(T ). Thus,g must support any prefix
of π(T ), includingπ(T ′). Therefore,g ∈ O′. Since
∀g, g ∈ O impliesg ∈ O′,O ⊆ O′.

Obviously, clustersC1 andC2 in the previous exam-
ple follow this property.C2 is an ancestor ofC1 and
{2, 3, 4}⊇{2, 3}.

3.2 The TP-cluster tree

The TP-cluster tree is generally analogous to a pre-
fix tree of a predefined set of sequences. However,
it is also different because of its unique interpreta-
tion of each node and the parent-child relationship.
Each node in a TP-cluster tree represents a unique TP-
Cluster. The root node corresponds to the null space.
The nodes at levelm correspond tom dimensional
TP-Clusters. The TP-Cluster at a node is related to
its immediate parent by being part of the cluster. Each
TP-Cluster other than the null root is a 1-dimensional
extension of its parent cluster. In order to elucidate
the structure of TP-cluster tree, we give a complete
TP-Cluster tree of three conditions in Figure 2, where
each TP-Cluster is represented by a sequence. This
tree is ’complete’ since there does not exist another
TP-Cluster not included in the tree. The figure con-
tains a three-level tree structure which corresponds to
1-, 2- and 3-dimensional TP-Clusters. Each nodeu
in the TP-cluster tree is represented by the path from
the root of the TP-Cluster tree tou. For example, the
TP-Cluster with two conditions{b, c} ordered increas-
ingly as(bc) will be put at the node−1bc. The gene
set associated with each node in the TP-cluster tree is
omitted in the figure.

a b c

ab ac ba bc cb ca

abc acb bac bca cba cab

  -1

Figure 2. A complete TP-Cluster tree given a
condition space A={a, b, c}.

Definition 3.4 The TP-cluster tree is a hierarchical
arrangement of TP-Clusters with the following prop-
erties: 1) The tree is rooted at level 0 with−1. 2) Each
node at levelm corresponds to an m-dimensional TP-
Cluster represented by a length-m sequence. 3) Each
node at level(m + 1) is a 1-dimensional extension of
its immediate ancestor, which corresponds to a length
(m + 1) sequence.

What we are interested in is the hierarchical rela-
tionship among a set of TP-Clusters. Investigating the
relationships may help us with the prediction of the
behavior of higher dimensional clusters based on the
lower dimensional ones.

3.3 Annotation of a Gene Cluster

In this subsection, we present the annotation of a
gene cluster based on GO. We first introduce the P-
value to assess the significance of a particular function
group within a cluster.

The hypergeometric distribution is used to model
the probability of observing at leastk genes from a
cluster ofn genes by chance in a category containingf
genes from a total genome size ofg genes. The P-value

is given byP = 1 −
∑k

i=0
(f

i)(
g−f
n−i)

(g
n)

. The test mea-

sures whether a cluster is enriched with genes from a
particular category to a greater extent than that would
be expected by chance. For e

xample, if the majority of genes in a cluster have the
same biological function, then it is unlikely that this
happens by chance and the category’s P-value would
be close to 0. Adopting the Bonferroni correction [15]
for multiple independent hypotheses,0.01

Na is used as
the default thresholdθp, to measure the significance of
the P-value.
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To annotate a cluster, the P-value of each category
present in the cluster is computed first. Given a cut-
off P-value thresholdθp, categories whose P-value are
larger thanθp are eliminated without further consider-
ation. The result is a set of significant GO function cat-
egoriesV={v1, v2, ..., vt}. There are two naive ways
to annotate the clusters with the set of the significant
function categoriesV. One method is to keep all sig-
nificant function categories as annotation candidates.
However, the annotation might become ambiguous if
genes in one cluster are assigned with too many func-
tion categories. The other way is to annotate a cluster
with the category that has the least P-value. Choosing
the most significant category to represent the cluster is
reasonable. However, the simplicity is at the expense
of discarding useful information, such as the distribu-
tion of the subcategories of the most significant cate-
gory.

In our method, we adopt a middle way between the
two extremes. We use an appropriate subtree in the
GO tree to annotate a cluster. The subtree is rooted at
the node of the most significant category and includes
all of its significant reachable subcategories. The an-
notation is formally defined as the Ontology SubTree
(OST ) in Definition 3.5

Definition 3.5 Given a clusterC, its significant func-
tion categoriesV = {v1, v2, ...vt}, and the di-
rected ontology treeG=< V, E >, the Ontology
SubTree (OST ) H=< V ′, E ′ > representing clus-
ter C is defined as the following: 1.The root of
H is the function categoryvr, 0 < r≤t, where
P (vr, C)=min0<i≤t(P (vi, C)). 2. ∀v′ ∈V ’, there ex-
ists a pathL (L ⊆ E) leading fromvr to v’. 3.
∀v′1, v′2 ∈ V ′, if ∃e′, e′ ∈ V and e′ connectsv′1 and
v′2, thene′ ∈ E ′.

First, with the hierarchical structure of GO, a gene
of a function family will always be a member in the
function family’s ancestor. Therefore, theOST is
rooted at the most significant category. The less sig-
nificant and less specific ancestor function categories
are omitted.

Secondly, although the children ofvr are not as sig-
nificant asvr in clusterC, it is still possible that further
split of the cluster may signify the coherence of the
more specific categories ofv. Consequently, anOST
representingC is a maximal connected tree rooted at
the most significant category inC.

Figure 3 shows a set of significant function cate-
gories of a cluster organized in a tree structure. To de-
termine theOST representing this cluster, we first find

Cell Growth
log(P-value)=-7

Cell Expansion
log(P-value)=-3

Regulation of 
Cell Growth
log(P-value)=-3

Cell Communication
log(P-value)=-2

Cellular Process
log(P-value)=-3

Figure 3. An example of OST representing a
Cluster. The categories and P-value are shown
at each node. The OST is the subtree under
the curve.

out the location of the most significant function group,
which in this case is cell growth, withlog(P-value)=-7.
We then discard its parent category —cellular process,
and sibling—cell communication, which have higher
P-value. The resultingOST is the subtree rooted at
cell growth.

Definition 3.6 Given a clusterC, we call C is func-
tionally enriched if there exists anOST representing
the cluster, given a P-value thresholdθp.

Definition 3.7 defines the� relationship between
two OSTs.

Definition 3.7 Given twoOSTsH1 andH2, we call
H1 � H2 if the root node ofH1 appears as a node of
H2.

For example, Figure 4 contains two clusters’OSTs.
We callH2 � H1 since we can find the root node
cellular growth ofH2 inH1.

3.4 Mapping the TP-cluster tree onto GO Hierar-
chy

A child-parent relationship in GO hierarchy is
”part-of” and ”more specific than”. Or, in other words,
the genes in the child term should be more similar and
consistent than those in the parent term. Here we as-
sume that the subset of conditions a child term may
stay close on is larger than that for its parent term in the
GO hierarchy. This is exactly the child-parent relation-
ship in a TP-cluster tree. By the same child-parent re-
lationship, we unite the two hierarchies together. Next,
we use the child-parent relationship of gene ontology
to evaluate the child and parent relationship in the TP-
cluster tree.
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Cellular Process
log(P-value)=-6

Cell Death
log(P-value)=-5

Cell Growth
log(P-value)=-4

(A) H1

Cell Growth
log(P-value)=-7

Cell Expansion
log(P-value)=-3

Regulation of 
Cell Growth
log(P-value)=-3

(B) H2

Figure 4. An example of two OST s H1 and H2,
H2 � H1.

Definition 3.8 LetC be a TP-Cluster andC′ be one of
C’s descendants. LetH beC’s OST , and letH′ beC′’s
OST . C′ is a biological descendent ofC if H′ � H.

For instance,C2 represented byH2 in Figure 4 is a
biological descendant ofC1 represented byH1.

Problem Statement Let D be a database with gene
setO and condition setA. Given a thresholdθp for
category enrichment and the GO files, our goal is to
extract a biologically relevant hierarchy of enriched
TP-Clusters.

Since genes and conditions in the expression data
correspond to rows and columns in the expression ma-
trix, we may use the two sets of terms interchangeably
in the following sections.

4 Construction of Biologically Relevant TP-
cluster tree

In this section, we present the algorithm to build
a STP-cluster tree. In order to illustrate the de-
velopment of a STP-cluster tree, we start from the
development of a TP-cluster tree (HTP-clustering).
Ontology-based pruning techniques are then added
into HTP-clustering process to extract the STP-cluster
tree (SHTP-clustering).

4.1 HTP-clustering

The HTP-clustering constructs the TP-cluster tree
by suffix concatenation in conjunction with extracting

only biologically relevant TP-Clusters. The inputs to
the HTP-clustering include the databaseD, GO, and
function enrichment thresholdθp. The TP-cluster tree
is constructed hierarchically in a top-down fashion,
along which the datasetD is partitioned. The HTP-
clustering adopts a depth-first pre-order traversal algo-
rithm in order to build the TP-cluster tree. We pre-
fer the depth-first order over the breadth-first order be-
cause we can minimize the amount of storage needed
for each level to develop clusters at the next level. The
depth-first traversal definitely guarantees the correct-
ness of the result because for each node, the construc-
tion of its subtree is independent of the construction of
its siblings.

The HTP-clustering process can be summarized in
two steps:

1. We first preprocess the data. Each row in the data
matrix will be converted to an ordered sequence
of column labels based on the rank function in
Definition 3.1. Those sequences will be the inputs
to the next step. An initial prefix tree containing
the sequence of every gene in the database will be
constructed.

2. The ontology information of genes is fed into the
TP-cluster tree at the root level. The initial pre-
fix tree is recursively visited and developed in
the depth-first order to reveal all frequent subse-
quences, which represent TP-Clusters. Ontology-
based pruning is performed when visiting each
node.

We focus on the second step which is more chal-
lenging and important during the whole mining pro-
cess. The data structure representing the TP-cluster
tree is defined below.
1. It consists of one root labelled as “-1” and a set of
subtrees as the children of the root;
2. Each node (expect the root) has four entries: entry
value, a link to its first child node, a link to its next sib-
ling node, and the list of gene IDs, each of which has
a suffix corresponding to the path from the root to this
node. In other words, the gene IDs are only recorded at
the node that marks the end of a common subsequence.

We use the dataset in Table 1 in the following ex-
ample to illustrate the suffix concatenation step during
the tree construction process.

Example 4.1 For sequences in Table 1, the initial pre-
fix tree representing the whole database is presented in

6



��

�

�

�

� ��

�

� ��

� �

� �� � ��

�

�

�

(A) Initial tree

��

�

�

�

� ��

�

� ��

� �

� �� � ��

� ��

�

d �

�

� ��

�

� ��� ��

�

(B) First suffix concatenations at level 1

Figure 5. The illustration of suffix tree concate-
nation.

Figure 5 (A) and the suffix concatenation upon visiting
the first node ”-1” is illustrated in Figure 5 (B).

Let’s denote the node currently being visited as the
active node. Given an active node in the TP-cluster
tree construction process, for example, at the root ”-
1” in Figure 5 (B), the suffixes to be inserted to ”-
1”’s subtree are those inside the rectangle box shown
in Figure 5 (A). The concatenation of the suffixes to
the current active node is done by merging the suffix
tree of the active node with the corresponding subtree
one level below the active node. For example, suffix
tree ”-1cd” in (A) is merged with ”-1d”. The gener-
ated subtree is shown as the ”-1d” subtree in (B). (B)
is the subsequent tree after the visit of the node ”-1”.
The same procedure will be applied recursively in the
depth-first order to construct the TP-cluster tree. For
example, after the first node visit at the root ”−1”, the
next node to be visited is ”-1c” and the suffixes in-
side the rectangle box in Figure 5(B) are the next set
of suffixes to be inserted. The TP-Cluster algorithm
without any biological assessment is presented in Al-
gorithmgrowTree.

Algorithm growTree(H,depth)
Input: H: the root of the initial tree,
Output: TP-Cluster existed inH
(∗ Grow patterns on the initial TP-ClusterH ∗)
1. if H = nil
2. return ;
3. Hchild←H’s first child;

4. for any sub-treesubH ofH
5. do insertSubTree(subH,H);
6. growTree(Hchild,depth + 1);
7. growTree(H’s next sibling,depth);
8. return .
9.

The correctness of the construction of TP-cluster
tree is proved in Lemma 4.1.

Lemma 4.1 Given a databaseD, the TP-cluster tree
contains all TP-Clusters embedded in the database.

Rationale: According to Definition 3.2, each TP-
Cluster corresponds to a unique sequence of the condi-
tions. Therefore, the proof of Lemma 4.1 is equivalent
to the proof that the TP-cluster tree contains all fre-
quent subsequences of the set of sequences represent-
ing rows in the database. Given any subsequenceS′,
we want to prove that all sequences containingS′ will
be projected onto the path corresponds toS′. Given
any sequenceS = x1x2x3x4 . . . xn, we want to show
that all subsequences ofS can be found in a path start-
ing from the root. S is inserted into the tree during
the initiation procedure. Then given any subsequence
SS = xixj . . . xs, (1 ≤ i, s ≤ n), we can obtainSS
by the following steps. First, at nodexi, insert suffix
xixi+1 . . . xn. Now in the subtree rooted atxi, node
xj can be found because it should be along the path
xixi+1 . . . xn that is inserted in the first step. Simi-
larly, we insert the suffixxj . . . xn. As a result, we get
the pathxixjxj+1 . . . xn. By repeating the same pro-
cedure until we insert the suffix starting withxs, we
get the pathxixj . . . xs. Since the path representing
a subsequence is unique, all sequences containingS′

fall on the node corresponding toS′. The TP-cluster
tree contains all the subsequences, or, equivalently, all
TP-Clusters embedded in databaseD.

4.2 SHTP-clustering

Based on the above HTP-clustering, we develop the
SHTP-clustering algorithm by incorporating ontology
knowledge into the clustering process. The ontology
information serves for the following two purposes: (1)
the assessment of function enrichments of a cluster. (2)
the guidance to select the subset of conditions critical
to a function category. (Along that subset of condi-
tions, a significant number of genes in that function
category may stay close.) These two functionalities of
ontology information are transformed into two pruning
techniques in the SHTP-clustering algorithm.
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The first pruning technique is based on the distri-
bution of function groups in a cluster. For any clus-
ter C, we expect that there exists at least one function
category inC that is statistically significant. Given a
clusterC and the distribution of categories, we use the
following lemma for early detection of the potential
appearance of significant function categories.

Lemma 4.2 Let C be a cluster, letV={v1, v2, ..., vt}
be a set of function categories and letS be a counter
vector in which each elementsi records the number of
appearances of the genes in categoryvi in C. Let the
minimum number of genes required in a cluster benr

and letθp be P-value threshold.∀vi, vi ∈ V, let Ci’ be
a cluster with sizenr and containsmin(si, nr) genes
in function categoryvi. If ∀ i, P (si, Ci′) > θp, thenC
will not become an enriched cluster.

Proof 4.1 ∀vi, vi ∈ V, we haveP (si, Ci′) ≤ P (si, C)
based on the property of P-value, i.e, the P-value in-
creases as the number of genes in the same cluster in-
creases. According to the condition in the Lemma, we
haveθp ≤ C′i ≤ P (si, C). Hence, according to Defini-
tion 3.6,C will not be functionally enriched in any of
the function categories inV.

The algorithm of this pruning technique takes at
mostO(|V|) by scanning through each of the function
categories inV and computing its smallest P-value that
might occur.

The second technique is to useOST extracted in
a parent cluster to guide the selection of its descen-
dent TP-Cluster clusters, by favoring biological chil-
dren clusters defined in Definition 3.8. Our criterion
is based on the hypothesis that, the TP-Clusters in the
higher dimensional space are enriched in more specific
categories.

Criterion 4.1 Let C and C′ be two clusters and let
C be the parent ofC′ in the TP-Cluster hierarchy.
We say that the development ofC′ is not viable if
OSTC′<OSTC .

The extraction ofOST from a cluster also takes
O|V| if we represent each gene category with a GO
code[12]. At most two scans of the ordered GO codes
are necessary to generate theOST . Combining the
two pruning techniques, we apply the following pro-
cedure at each node of the traversal.

1. Evaluate the prediction potential of the cluster
corresponding to this node. If it has no potential

to become a functionally enriched cluster accord-
ing to Lemma 4.1, stop further development of
this node and its descendants, then go to the next
node in the predefined traversal order. Otherwise,
go to step 2.

2. Extract theOST of the cluster. If theOST is
not biologically viable according to Criterion 4.1,
stop further development of this node and its de-
scendants. Go to the next node in the predefined
traversal order.

We present the SHTP-clustering algorithm of ex-
tracting biologically relevant TP-Clusters in Algo-
rithm smartGrowTree. Its major differences from the
HTP-clustering algorithm are the recursively feeding
and pruning of theOST structure, and the cluster eval-
uation and pruning based on the significance of the
OST .

Algorithm smartGrowTree(H, nc, nr,depth,parentOST)
Input: H: the root of the initial tree.
Output: TP-Cluster existed inH, the originalOST .
(∗ Grow patterns on the initial TP-ClusterH. ∗)
1. if H = nil
2. return ;
3. Hchild←H’s first child;
4. for any sub-treesubH ofH
5. do insertSubTree(subH,H);
6. curOST= extractOST(H);
7. if (curOST is not empty)
8. if (curOST�parentOST )
9. growTree(Hchild, nc, nr, depth + 1,

curOST );
10. else growTree(Hsib, nc, nr, depth + 1,

parentOST );
11. else
12. potential = evalFunction(H, parentOST )
13. if (potential = good)
14. growTree(Hchild, nc, nr, depth + 1,

curOST );
15. else growTree(Hsib, nc, nr, depth,

parentOST );
16. return .

Analysis of HTP-clustering and SHTP-clustering
construction For both HTP-clustering and SHTP-
clustering, only one scan of the entire data matrix is
needed during the clustering. Each row is first con-
verted into a sequence of column labels. The se-
quences are then inserted into the prefix tree. In the
initial tree structure, sequences with the same prefix
naturally fall onto the same path from the root to the
node corresponding to the end of prefix. To be mem-
ory efficient, the row/gene IDs associated with each
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path are only recorded at the node marking the end of
the longest common prefix shared by these sequences.
The depth-first pre-order traversal is then applied to the
prefix tree to generate a TP-cluster tree. Pruning tech-
niques based on ontology knowledge further produce a
STP-cluster tree without generating the complete TP-
cluster tree.

Both the time and space complexities of the two
algorithms are exponential determined by the nature
of being a NP-hard problem. In the worst case sce-
nario, given a gene expression matrix (n × m), the
size of tree is (

∑m
s=1 s!

(
m
s

)
). However, since we use

the depth-first traversal of the tree and the part of
tree that has been traversed will not be needed for fu-
ture mining, they can be deleted and the space can
be reused. At leveli(i 6= 0), we only need to keep
(m − i + 1) nodes. Therefore, the maximal space to
be allocated during the running time will be limited to
O(n

∑m
i=1 m− i + 1) = O(n ∗m2).

The SHTP-clustering will be more space and time
efficient than HTP-clustering since less biologically ir-
relevant TP-Clusters are generated due to the ontol-
ogy guided pruning techniques. The pruning effects
are largely determined by the relationship between a
TP-Cluster and the significance of its underlying func-
tional categories.

5 Evaluation

Our experiments demonstrate the applicability of
SHTP-clustering algorithm in clustering biologically
related genes with effective pruning techniques based
on GO. The results are evaluated through the compar-
ison of HTP-clustering and SHTP-clustering, and the
mapping between the TP-cluster tree to the GO hier-
archy. The algorithm was implemented in C and exe-
cuted on a Linux machine with a 700 MHz CPU and
2G main memory.

Both HTP-clustering and SHTP-clustering algo-
rithms are tested on the yeast cell cycle data of Spell-
manet al. The study monitored the expression levels
of 6,218 S. cerevisiae putative gene transcripts (genes)
measured at 10-minute intervals over two cell cycles
(160 minutes) with 18 time points. Spellmanet al.
identified 799 genes that are cell cycle regulated. We
used the expression levels of the 799 genes across 18
time points as the original input matrix. The clustering
procedure groups together genes on the basis of their
common expression tendency across a subset of time
points.

To assess the biological relevance of the clusters,
we use GO and P-value to evaluate whether the clus-
ter has significant enrichment in one or more func-
tion groups. The ontology of the 799 yeast genes is
downloaded from gene ontology consortium [23] in
Feb, 2004. We use functions from the three categories:
molecular function(MF), cell component(CC) and bi-
ological process(BP). We extract categories between
ontology level 2 and level 5 with a family size of at
least 5. The discovered TP-Clusters in each level of
the hierarchy are evaluated for enrichment with any of
those function categories.

Types #Known
genes

#Categories
(#genes > 5)

#Anno per
gene

MF 370 16 0.77
CC 616 48 3.4
BP 538 38 5.72

Table 2. Statistics for the three categories.
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Figure 6. The performance of the SHTP-
clustering varying nr and θp.

5.1 Performance

The first set of experiments was done using the
SHTP-clustering algorithm and cellular component
ontology category to evaluate the performance by
varying parametersnr andθp. As shown in Figure 6
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Figure 8. The comparison of performance of
SHTP-clustering among three categories.

a), the response time of theSHTP−clustering algo-
rithm decreases as the significance threshold decreases
and as the minimum number of rows increases. Ac-
cording to the pruning strategy Lemma 4.1, high sig-
nificance threshold allows early drop of cluster with
poor functional implication. More early pruning en-
ables shorter response time. Thenr helps to prune
clusters with the size limitation. The application of the
same algorithm to the other two categories exhibits the
same trend when varyingnr andθp.

Figure 6 b) presents the distribution of the gener-
ated clusters in three categories: not enriched cluster,
enriched cluster, and enriched cluster not following its
parent’sOST according to Criterion 4.1. The percent-
age of not enriched cluster increases significantly as

θp decreases. It also explains the performance gain of
SHTP-clustering at the same time. Also the percentage
of clusters being pruned due to Criterion 4.1 drops sig-
nificantly compared to the percentage of the enriched
clusters as the significance threshold decreases. This
may also indicate that the more significant the enrich-
ment of the clusters, the higher the probability that its
OST leads to the right direction of selecting the bio-
logically appropriate biclusters.

The second set of experiment in Figure 7 a) is a
comparison between SHTP-clustering algorithm and
HTP-clustering algorithm. For each algorithm, we
have done two tests with different settings ofnr. We
can observe significant and consistent improvement of
SHTP-clustering algorithm over HTP-clustering espe-
cially whenθp is relatively low. The performance of
SHTP-clustering can be as short as 1/4 of that of the
HTP-clustering algorithm.

Figure 7 b) compares the number of enriched clus-
ters and the total number of clusters for both of
the algorithms HTP-clustering and SHTP-clustering.
Clearly, HTP-clustering algorithm generate a large
number of TP-Clusters, of which only a small percent
are enriched. Compared with HTP-clustering, SHTP-
clustering generates less than half of the number of
TP-Clusters and almost the same number of enriched
TP-Clusters. Overall, SHTP-clustering improves the
performance with minimum loss of the enriched clus-
ters.

Figure 8 gives the comparison of the response times
varying the three available ontology files, i.e, MF, CC,
BF. We can observe a clear trend that the experiments
using biological process category consistently spend
more time than the rest two. This can be explained
by the data in Table 2. The average number of cate-
gories that a gene might have is 5.7, which is much
higher than that of either the cellular component or
the molecular function files. With fewer categories
but more gene annotations, the distribution of func-
tion groups in a cluster has a higher probability be-
ing more concentrated in one or more function groups
rather than being evenly distributed. As a result, fewer
functional clusters might be pruned, and hence, the re-
sponse time is longer. In addition, this may also be
coincident with the hypothesis that similar gene ex-
pression profiles may indicate a function relation in
biological process [4]. As a result, more time will be
taken for generating a larger number of significantly
enriched clusters compared with the rest two ontology
files.
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Overall, our experiment shows that the ontology-
based pruning is effective in reducing the search space
of biclustering. In addition, the response time of our
algorithm is influenced by the two input parameters
and the distribution of genes in each category of the
ontology.

5.2 Mapping between GO and the TP-cluster tree

We present a generic example of hierarchically or-
ganized clusters that map to a hierarchical substructure
of GO.

In Figure 9, (A) presents a three-level hierarchy
of TP-Clusters, while (B) shows the corresponding
OSTs. The gene ontology summarizing the relation-
ships among all the function categories appearing in
(B) is ”Necleoside→ DNA metabolism→ DNA re-
pair”.

The root clusterC01 in (A) is the largest cluster
with 71 genes. However, it has the smallest number
of conditions shared by all genes in its cluster, i.e.
(4, 15, 13, 8). Its OST shown at the top of the hier-
archy in (B) is rooted at the category, Necleoside. As
we go down the hierarchy of clusters in (A), clusters
tend to contain a smaller number of genes but share
a larger number of consistent conditions. In addition,
theOSTs is likely to exist in the subtree of theOST
of its parent cluster. For example, the root clusterC01

is split into two smaller overlapping clustersC11 and
C12 featuring enriched function ”DNA metabolism”,
which is a subcategory ofnecleoside. OSTC11 and
OSTC12 suggest that the two clusters in level one have
more significant grouping at a deeper level in GO hier-
archy than clusterC01. A further clustering of cluster
C12 into C21 with six conditions again signifies the a
even deeper function group, i.e. ”DNA repair”.

This example illustrates the connection between the
ontology hierarchy and the STP-cluster tree. Our ex-
periments demonstrate that it is possible that only a
subset of conditions matter for a ontology category. In
addition, the deeper the level of a category within the
GO hierarchy, the more the conditions under which the
genes in that category have the similar expression pro-
files.

6 Conclusions and Future Work

Clustering of gene expression data has been used
for gene function prediction based on the hypothesis
that similar expression profiles indicate a function rela-
tion in biological activities. However, traditional clus-

tering algorithms are weak in modelling the hierarchy
of GO due to the fact that traditional algorithms can-
not produce a hierarchy of overlapping clusters with
various sizes. To overcome these problems, we pro-
pose to use a hierarchy of TP-Clusters to match the
hierarchy of GO. We present a biclustering algorithm
guided by GO, SHTP-clustering, which efficiently and
effectively extracts the biological relevant gene clus-
ters. Our experiments on yeast gene expression data
demonstrate the effectiveness of the ontology-based
pruning techniques. Our future work will be using the
generated STP-cluster tree for effective classification
of the unknown genes.
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