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Abstract of life. The complexity of the underlying mechanism

The soundness of clustering in the analysis of geneunderscores the potential complexity in analyzing the
expression profiles and gene function prediction is gene expression data.
based on the hypothesis that genes with similar expres- jth the advance of microarray technology, the
sion profiles may imply strong correlations with their gata analysis techniques have been intensively stud-
functions in the biological activities. Gene Ontology jed as well. Clustering is one of the most popular
(GO) has become a well accepted standard in orga- gpproaches of analyzing gene expression data with-
nizing gene function categories. Different gene func-out prior knowledge. Several representative algo-
tion categories in GO can have very sophisticated re- rithmic techniques have been developed and experi-
lationships, such as 'part of” and "overlapping’. Until  mented in clustering gene expression data, which in-
now, no clustering algorithm can generate gene clus- clude but are not limited to hierarchical clustering [7],
ters within which the rela.tionShipS can natura”y re- Self-organizing maps [10]’ and graphic theoretic ap-
flect those of gene function categories in the GO hier- proaches, e.g., CLICK [16]. The applicability of clus-
archy. The failure in resembling the relationships may tering in gene function prediction is based on the hy-
reduce the confidence of clustering in gene functionpothesis that similar expression profiles imply a func-
prediction. In this paper, we present a new cluster- tjonal relation [4] in the biological activities. As a re-
ing technique, Smart Hierarchical Tendency Preserv- gyjt, the quality of the clusters are often evaluated by
ing clustering (SHTP-clustering), based on a bicluster their correlations to the known genes’ function groups.
model, Tendency Preserving cluster (TP-Cluster). By Those algorithms typically generate a small number of
directly incorporating Gene Ontology informationinto gisjoint clusters whose sizes are usually much larger

the Clustel’ing pI’OCGSS, the SHTP‘CIUStering algorithm than that Of most function Categories in GO.
yields a TP-cluster tree within which any subtree can

be well mapped to a part of the GO hierarchy. Our
experiments on yeast cell cycle data demonstrate tha
this method is efficient and effective in generating the
biological relevant TP-Clusters.

Keywords: Gene Ontology, Gene expression profiles,
Biclustering, Tendency Preserving.

Although these studies have been successful in
lshowing that genes patrticipating in the same biolog-
ical process have similar expression profiles, there are
several reasons preventing the traditional clustering
analysis from solving the core issues of modelling bi-
ological ontology relationships (Shatkagt al[17]).
First, the expression levels of a set of biologically re-

_ lated genes might only show coherency under a subset
1 Introduction of conditions. Therefore, clustering over all dimen-
sions (conditions) may separate the biologically re-

The advent of DNA microarray technologies has lated genes from each other. Secondly, grouping genes
revolutionized the experimental study of gene expres-into disjoint clusters may preclude genes patrticipating
sion. Thousands of genes are routinely probed in ain multiple biological activities from being grouped
parallel fashion. The gene expression data presentproperly [22]. Finally, assume we have a large clus-
both great opportunities and challenges. They serveter containing over 200 genes and it includes most of
as valuable clues to understand the genetic behaviorgenes from a small function family, e.g., around 10



genes. It is very difficult to tell whether this occurs clusters may overlap and may vary in size depend-
by chance or not. Therefore, annotating a large gendng on their levels in the STP-cluster tree. We design
cluster with a small function family is usually infeasi- an algorithm, which automatically constructs a Hierar-
ble. Traditional clustering algorithms generating large chical Tendency Preserving clustering tree (TP-cluster
sizes of clusters only help with the annotation of rela- tree) in a very compact fashion. We evaluate the map-
tively larger but less specific function categories. ping from the hierarchical GO relationships to that of
the STP-Clusters. The assessment, in turn, is used to

Biclustering (or subspace clustering) might be an guide the mining of STP-Clusters. Our experiments

answer to solve the above problems. Compared Withd trate that. by directly i i
traditional clustering algorithms, biclustering is capa- emonstrate that, by directly incorporating gene on-

ble of discovering the gene expression pattern embed-mlogy infqrmation into the (_:Iuster_ing process, we are
ded in only a subset of conditions. In addition, cluster- able to efficiently and effectively discover biologically
ing under different sets of conditions generates Over_relevant TP-Clusters.

lapping biclusters. Cheng and Church [6] are amongS T?e rezmaindder of the paper if o_rganizked a‘T‘ fgllows.
the pioneers in introducing the concept of bicluster- Gg: |gn t'm rg dui?s S(?[Lne_IE)Fr)ecl:rlmntary ndoy;/ eG%e on
ing. Their biclusters are based on uniformity crite- - Section 5 detines the Te-Liuster and s an-

ria, and a greedy algorithm is developed to discovernOtation respectively. Section 4 presents the SHTP-

them. Plaid [11] is another model to capture the ap- clustering alg_orithm in d(_etail. An extensiv:_e perfor-
proximate uniformity in a submatrix in gene expres- mance study is reportgd in Section 5. Section 6 con-
sion data and look for patterns where genes differ in ¢Ud€s the paper and discusses some future work.
their expression levels by a constant vector. Ben-Dor
et al. [2] discussed approaches for unsupervised iden-
tification of patterns in expression data that distinguish

two subclasses of a tissue on the basis of a supportin . .
PP g?orts to regulate the vocabulary for various genomic

set of genes that offer accurate classification. Tatay . . :
al. [20] defined a bicluster as a subset of genes thatd""t""baseS of d|v_erse Species in such a way that 't. can
show the essential features shared by all the organisms

jointly respond across a subset of conditions. Ben-Dor . ) )
et al. introduced the model of OPSM (order preserv- [23]. GO has _three ontology files correspo_ndlng_to Its
three categories, namely molecular function, biolog-

ing submatrix) [3] to discover a subset of genes iden-. S
ical process and cellular component. An acyclic di-

tically ordered among a subset of conditions. Proba- ; X
ey gasu " rected graph can be obtained for each category with

bilistic models were the basis of the work presented GO des. Fi 1 hot of
above. With probabilistic models, only a limited num- terms as nodes. Figure 1 presents a screen shot o
the top levels of the gene ontology. At the first level,

ber of valid clusters may be discovered and a seed usu

ally has to be selected manually before the generatiork/lnci\'vn Igenli_as are CIaI\SASF'f'eg 'Tltci thréae categorleé,é.e.,
of a cluster. Nevertheless, the inability of revealing Molecular Function (MF), Cellular Component (CC)

the complete set of biclusters hinders the systematic2nd Biological Process (BP).
study of the relationships between the biclusters and

2 Preliminaries

The GO Consortium was formed to integrate the ef-

the function categories in biological activities. 60: 0003673 & Gene Ontolozy (130309) @
. ) . . £ ® 60:0008150 : bhiological process (78842) @
In this paper, we present a biclustering algorithm, B © Co:000610 + behavior (071) ©
. . . . « 0 H : bioclogical process 0T
Smart Hierarchical Tendency Preserving clustering B @ go: 7 : cellular process (2055T) W
. . . . @ GO:000T164 @ cell communication (8197)
(SHTP-clustering), which directly incorporates Gene ® G0:000BZ13 : cell death (1388)
. . . f @ GO:0030164 @ cell differentiation (1605)
Ontology information into clustering process. A clus- © G0:0008151 : coll growth and/or maintenance (21215)
. . . @ GO:0006928 @ cell motility (1478)
ter is a Tendency Preserving cluster (TP-Cluster) if E] © 600006944 s nembrane Fusion (178)
it has a maximal subset of genes that have strictly B o e opppaili# reculation of cellular process [879)
coherent tendency along a subset of conditions. A Bl & S0:000857] + cheolote biological prosese (200)
TP-Cluster is a Smart Tendency Preserving cluster B oMt : resaliun of bivlughual srvones (11700

0:0006575 : cellular component (GB865)
0: 0003674 : molecular function (88474}

(STP-Cluster) if the enrichments of function cate-
gories within the cluster are statistically significant.
Our goal is to obtain a tree of STP-Clusters whose Figure 1. Schema of GO annotation terms.
hierarchical relationships match the hierarchical orga-

nization of the gene function categories in GO. The Formally, GO hierarchy is naturally described as a
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a b c d | sequence
4002 | 284 | 4108 | 228 dbac
401 | 281 | 120 | 298 cbda
401 | 292 | 109 | 238 cdba
280 | 318 | 37 | 215 cdab

directed acyclic graph (DAGYzO =< V, € >, where

Y is a set of gene function description (GO terms) and

£ is a binary relation oV such that genes with func-

tions described by; are a subset of genes with func-

tions described by;, denotedv; < v;, if and only

if there exists a patlw;, vit1 ,...,vj-1,v;) such that

(Um—1,0m) € Eform =i+ 1,01+ 2,...,5 — 1, 7.

A term’s relationship with its ancestor is also defined _ N _

"part of” or "specific’, which means that the set of aSS|gns'the rank of a genis conditionj to l_)er,_lf the

genes annotated with a GO term is also a subset ofXPression value of the genender conditiory is the

the genes annotated with its ancestor GO term. r lowest value among that under all the conditions
Nevertheless, to fit GO into our model, we trans- N 7- (O, T) forms aTP-Cluster (Tendency Pre-

form the original directed graph of GO into our desired S€"ving Cluster), it Vi, j (i,j € O), V a (a € 7),

form, an ordered tree. Note that the same GO term2(1:a.7) = R(j,a,7) andV k (k € D — 0),

may occur several times in an ontology file. From a Vit € 0), I (b € T), R(k,b,T) # R(L,b, T).

biological viewpoint, these occurrences should be con-  pefinition 3.1 first defines the rank functioR.

sidered distinct because the location of the term in thegased on the rank function, a TP-Cluster is defined as

hierar_chy (i.e., the path from the rootto the term) is far 5 gpset of genes which have consistent ranks along
more important than the term itself. a subset of conditions. In addition, a TP-Cluster is
WI|_etD be the universe of the genes anddetD —  gefined to be maximal in that adding any additional
21 be a function annotating each gene with a set of gape in the database will violate the rank coherence
GO-terms at the most specific level of gene ontology. within the cluster. This property distinguishes our
Given a set of GO term§ = vy, vy, ..., v1, @ geNe is  model from OPSM model which also searches for a

INFREN =
w)

Table 1. An example dataset.

called aknown gendf there existsa GO term, v € G, gypset of genes along identically ordered a subset of
such that the set of gene-term paftis, v) [z € D congdition [3]. An OPSM might not be maximal.
andu € a(z) andu = vandv € G} is not empty. For example, in Table 1, we say that the gene set

Otherwise, the gene is denoted asuknown gene (9 31 forms a TP-Cluster along the subset of condi-

Unknown genes are either the genes without annotayjons {4, ¢, d}, since the ranks of the three conditions
tion or genes with annotations beyond the scope of theroy poth genes are the same, i.e. (3, 1, 2).

given GO term seg. Next,we show that each TP-Cluster can be mapped

onto an ordered sequence of condition labels by im-

3 TP-Cluster Model and Ontology Interpre-  nosing a consistent order of the conditions, such as
tation monotonically increasing or decreasing.

Let D be the universe of the participating genes Definition 3.2 Given a TP-Cluste€ with gene se®©
in a microarray experiment and lgt be them condi- ~ and condition sef’, we call a sequence of conditions
tions under which the gene expression levels are mea representing’ in a monotonically increasing order,
sured. The whole gene expression database can be reH—SzW(T)a where functionr places each condition
resented in a data matrixt, wherel;; is the expres- 1N 7 atthe positiorR(a) in sequences.
sion level of genea under conditionj (0 < ¢ < n,

For example, for clustel2, 3 ,c,d}inTable 1,
pliatey p 62,3} x {a. . d)

the sequence of conditions that represents the mono-
tonically increasing order isda. For conditione, its

3.1 Tendency Preserving Cluster Model rank is 1. Therefore, its position in the sequence is 1.

We are interested in the TP-Clusters, in which the Definition 3.3 Given two TP-Cluster§; and (s with
subset of genes i exhibits a coherent tendency on condition sets7; and 7; respectively, we calf; is an
the subset of conditiorig of A. ancestor of’; if 7(77) is a prefix of sequence(7s).

Definition 3.1 Let © be a subset of genes in the  For example in Table 1, the sequence representing
databaseD, O C D. LetT be a subset of conditions, clusterC,={2,3} x{a, ¢, d} is cda. The sequence rep-
TCA. LetR: T x O x 2 — T be the function that  resenting cluste€,={2, 3,4} x{c, d} is cd. Sincecd



is a prefix ofcda, we callCs is an ancestor cluster of 1

Ci.
Based on the mapping from the TP-Clusters to the
sequences, we are able to organize the TP-Clusters into a b ¢
a prefix tree. We will introduce an algorithm which
builds the TP-cluster tree in a very compact fashion in ab ac ba bc cb ca

the Section 4.

The following Lemma illustrates the ’part-of’ rela-
tionships that occur between two TP-Clusters of which
one is an ancestor of the other.

abc acb bac bca cba cab

Figure 2. A complete TP-Cluster tree given a

. diti A={a,b,c}.
Lemma 3.1 Let C and C’ be two TP-Clusters in the condition space { }

databaseD. Let© and O’ be the gene set afand(’
respectively, it is an ancestor of, then©O C O'.
Definition 3.4 The TP-cluster tree is a hierarchical
Proof 3.1 SinceC’ is an ancestor of, 7(7’) must  arrangement of TP-Clusters with the following prop-
be a prefix ofr(7"), based on Definition 3.3vVg(g € erties: 1) The tree is rooted at level O withl. 2) Each
0), g supportsr (7). Thus,g must support any prefix node at leveln corresponds to an m-dimensional TP-
of 7(T), includingw(7"). Thereforeg € O'. Since  Cluster represented by a length-sequence. 3) Each
Vg,g9 € Oimpliesg € O', 0 C O'. node at levelm + 1) is a 1-dimensional extension of
its immediate ancestor, which corresponds to a length
Obviously, clusterg; andCs in the previous exam-  (m + 1) sequence.
ple follow this property.C, is an ancestor of; and

{2,3,4}2{2,3}. What we are interested in is the hierarchical rela-
tionship among a set of TP-Clusters. Investigating the
3.2 The TP-cluster tree relationships may help us with the prediction of the

behavior of higher dimensional clusters based on the
The TP-cluster tree is generally analogous to a pre-lower dimensional ones.

fix tree of a predefined set of sequences. However,
it is also different because of its unique interpreta- 3.3 Annotation of a Gene Cluster
tion of each node and the parent-child relationship.
Each node in a TP-cluster tree represents a unique TP- |n this subsection, we present the annotation of a
Cluster. The root node corresponds to the null spacegene cluster based on GO. We first introduce the P-
The nodes at leveln correspond tan dimensional  value to assess the significance of a particular function
TP-Clusters. The TP-Cluster at a node is related togroup within a cluster.

its immediate parent by being part of the cluster. Each  The hypergeometric distribution is used to model
TP-Cluster other than the null root is a 1-dimensional the probability of observing at leagt genes from a
extension of its parent cluster. In order to elucidate c|yster ofn, genes by chance in a category containfng

the structure of TP-cluster tree, we give a complete genes from a total genome sizegajenes. The P-value
TP-Cluster tree of three conditions in Figure 2, where N

each TP-Cluster is represented by a sequence. Thi 9ven byP =1 — i GO The test mea-
tree is ‘complete’ since there does not exist anothersures whether a cluster is enriched with genes from a
TP-Cluster not included in the tree. The figure con- particular category to a greater extent than that would
tains a three-level tree structure which corresponds tobe expected by chance. For e

1-, 2- and 3-dimensional TP-Clusters. Each nade xample, if the majority of genes in a cluster have the
in the TP-cluster tree is represented by the path fromsame biological function, then it is unlikely that this
the root of the TP-Cluster tree ta For example, the happens by chance and the category’s P-value would
TP-Cluster with two condition$b, ¢} ordered increas-  be close to 0. Adopting the Bonferroni correction [15]
ingly as(bc) will be put at the node-1bc. The gene  for multiple independent hypothese%,%l is used as
set associated with each node in the TP-cluster tree ishe default threshold,, to measure the significance of
omitted in the figure. the P-value.



To annotate a cluster, the P-value of each category Cellular Process
. . . K log(P-value)=-3

present in the cluster is computed first. Given a cut-
off P-value threshold,,, categories whose P-value are
larger tharg,, are eliminated without further consider-
ation. The resultis a set of significant GO function cat-
egoriesV={vy, ve, ..., v: }. There are two naive ways
to annotate the clusters with the set of the significant
function categorie$’. One method is to keep all sig-
nificant function categories as annotation candidates.
However, the annotation might become ambiguous if
genes in one cluster are assigned with too many func-
tion categories. The other way is to annotate a cluster
with the category that has the least P-value. Choosing
the most significant category to represent the cluster is
reasonable. However, the simplicity is at the expense
of discarding useful information, such as the distribu-
tion of the subcategories of the most significant cate-
gory.

In our method, we adopt a middle way between the

I Cell Growth 1

i log(P-value)=-7

Cell Expansion Regulation of
log(P-value)=-3 Cell Growth
log(P-value)=-3

Figure 3. An example of OST representing a

Cell Communication
log(P-value)=-2

Cluster. The categories and P-value are shown
at each node. The OST is the subtree under
the curve.

out the location of the most significant function group,
which in this case is cell growth, witlag(P-value)=-7.
We then discard its parent category —cellular process,

two extremes. We use an appropriate subtree in th and sibling—cell communic_ation, which have higher
GO tree to annotate a cluster. The subtree is rooted a ~value. The resulting ST is the subtree rooted at
the node of the most significant category and includesCeII growth.

all of its significant reachable subcategories. The an-pefinition 3.6 Given a clusterC, we callC is func-

notation is formally defined as the Ontology SubTree tionally enriched if there exists af ST representing

(OST) in Definition 3.5 the cluster, given a P-value threshalgl
Definition 3.5 Given a clustelC, its significant func- Definition 3.7 defines thex relationship between
tion categoriesV = {vi,vy,..v¢}, and the di- o OS9Ts. -

rected ontology treeG=< V,& >, the Ontology

SubTree QST) H=< V',& > representing clus- Definition 3.7 Given twoOST's H; andHz, we call
ter C is defined as the following: 1.The root of H; < H; if the root node of{; appears as a node of
H is the function category,, 0 < r<t, where  Ha.

P(vy,C)=ming<;<;(P(v;,C)). 2. Yo' €V, there ex- : :
iSt(SUTa F))ag]lglo(z’ﬁtg( gl Ie)a)ding f::)mv,, o V. 3. For example, Figure 4 contains two clustepsST's.

Vol v, € V', if 3¢/,¢’ € V and e’ connectsy, and We call Hy < H; si_nce we can find the root node
v}, thene’ € &', cellular growth ofHs in H;.

First, with the hierarchical structure of GO, a gene 3.4 Mapping the TP-cluster tree onto GO Hierar-
of a function family will always be a member in the chy
function family’s ancestor. Therefore, theST is
rooted at the most significant category. The less sig- A child-parent relationship in GO hierarchy is
nificant and less specific ancestor function categories’part-of” and "more specific than”. Or, in other words,
are omitted. the genes in the child term should be more similar and
Secondly, although the children of are not as sig-  consistent than those in the parent term. Here we as-
nificant asv,. in clusterC, it is still possible that further  sume that the subset of conditions a child term may
split of the cluster may signify the coherence of the stay close onis larger than that for its parent term in the
more specific categories of Consequently, a ST GO hierarchy. This is exactly the child-parent relation-
representing is a maximal connected tree rooted at ship in a TP-cluster tree. By the same child-parent re-
the most significant category (h lationship, we unite the two hierarchies together. Next,
Figure 3 shows a set of significant function cate- we use the child-parent relationship of gene ontology
gories of a cluster organized in a tree structure. To de-to evaluate the child and parent relationship in the TP-
termine theD ST representing this cluster, we firstfind cluster tree.
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[t |
I Cellular Process |

| log(P-value)=-6 |

Cell Death Cell Growth
log(P-value)=-5 log(P-value)=-4

(A) H1

I
ell Growth |
g(P-value)=-7 |

e

Cell Expansion
log(P-value)=-3

Regulation of
Cell Growth
log(P-value)=-3

Figure 4. An example of two OST's H1 and Ho,
Ho =X Hj.

Definition 3.8 LetC be a TP-Cluster and’ be one of
C’'s descendants. L&{ beC’'s OST, and letH’ beC”’s
OST. C'is a biological descendent 6fif H' < H.

For instance(s represented b¥{, in Figure 4 is a
biological descendant @f; represented b¥t;.

Problem Statement Let D be a database with gene
setO and condition sefd. Given a threshold), for
category enrichment and the GO files, our goal is to
extract a biologically relevant hierarchy of enriched
TP-Clusters.

Since genes and conditions in the expression data

only biologically relevant TP-Clusters. The inputs to
the HTP-clustering include the databaBe GO, and
function enrichment thresholg). The TP-cluster tree
is constructed hierarchically in a top-down fashion,
along which the datasé? is partitioned. The HTP-
clustering adopts a depth-first pre-order traversal algo-
rithm in order to build the TP-cluster tree. We pre-
fer the depth-first order over the breadth-first order be-
cause we can minimize the amount of storage needed
for each level to develop clusters at the next level. The
depth-first traversal definitely guarantees the correct-
ness of the result because for each node, the construc-
tion of its subtree is independent of the construction of
its siblings.

The HTP-clustering process can be summarized in
two steps:

1. We first preprocess the data. Each row in the data
matrix will be converted to an ordered sequence
of column labels based on the rank function in
Definition 3.1. Those sequences will be the inputs
to the next step. An initial prefix tree containing
the sequence of every gene in the database will be
constructed.

. The ontology information of genes is fed into the
TP-cluster tree at the root level. The initial pre-
fix tree is recursively visited and developed in
the depth-first order to reveal all frequent subse-
guences, which represent TP-Clusters. Ontology-
based pruning is performed when visiting each

node.

correspond to rows and columns in the expression ma-
trix, we may use the two sets of terms interchangeably \\e focus on the second step which is more chal-
in the following sections. lenging and important during the whole mining pro-
cess. The data structure representing the TP-cluster
tree is defined below.
1. It consists of one root labelled as “-1” and a set of
subtrees as the children of the root;

In this section, we present the algorithm to build 2. Each node (expect the root) has four entries: entry
a STP-cluster tree. In order to illustrate the de- value, a link to its first child node, a link to its next sib-
velopment of a STP-cluster tree, we start from the ling node, and the list of gene IDs, each of which has
development of a TP-cluster tree (HTP-clustering). a suffix corresponding to the path from the root to this
Ontology-based pruning techniques are then addechode. In other words, the gene IDs are only recorded at
into HTP-clustering process to extract the STP-clusterthe node that marks the end of a common subsequence.
tree (SHTP-clustering). We use the dataset in Table 1 in the following ex-
ample to illustrate the suffix concatenation step during
the tree construction process.

4 Construction of Biologically Relevant TP-
cluster tree

4.1 HTP-clustering

The HTP-clustering constructs the TP-cluster tree Example 4.1 For sequences in Table 1, the initial pre-
by suffix concatenation in conjunction with extracting fix tree representing the whole database is presented in

6



for any sub-tregubH of H

doinsertSubTreeubH, H);
growTreeH cpi1q.depth + 1);
growTreef{’s next siblingdepth);
return.

©CoNoO A

The correctness of the construction of TP-cluster
tree is proved in Lemma 4.1.

Lemma 4.1 Given a databas®, the TP-cluster tree
contains all TP-Clusters embedded in the database.

Rationale: According to Definition 3.2, each TP-
Cluster corresponds to a unigue sequence of the condi-
tions. Therefore, the proof of Lemma 4.1 is equivalent
to the proof that the TP-cluster tree contains all fre-
guent subsequences of the set of sequences represent-
ing rows in the database. Given any subsequefice
we want to prove that all sequences containsgyill
be projected onto the path correspondsSto Given
any sequencé = xjrox314 ... x,, We want to show
_ _ , ... thatall subsequences 6fcan be found in a path start-
Figure 5 (A) and the suffix concatenation upon visiting ing from the root. S is inserted into the tree during

the first node ™-1"is illustrated in Figure 5 (B). the initiation procedure. Then given any subsequence

Let's denote the node currently being visited as the gst: ?gﬁﬂ oo Ls g[l < i;:‘? St ”?[ WZ;"’I.” Obia'rﬂﬁs
active node. Given an active node in the TP-cluster Y tN€ T01lOWING StEpS. FIrst, at nods, insert Sultix

tree construction process, for example, at the root *- %i%i+1 - - - n- NOW in the subtree rooted af, node

1" in Figure 5 (B), the suffixes to be inserted to "~ *J can be found k_)ec_:ause I s_hould pe along the_z path
1"s subtree are those inside the rectangle box show xixli“ o fn t??r;[ IS n;f_serted n tg‘e first Stﬁp' S'mt"
in Figure 5 (A). The concatenation of the suffixes to tﬁr Y V\;ﬁxmser esu 'XCJB' -+ Zn t'S a ;ﬁsu , We ge
the current active node is done by merging the suffix %pa iﬁxﬂ'“.' . x?th y reﬁpea;n%_ € same pro-
tree of the active node with the corresponding subtreecet l:;e untlmwe Inser Se' su 't);] N artlﬁg with, W?.
one level below the active node. For example, suffix get the pathw;z; ... z,. SINCe the path representing
tree "-1cd” in (A) is merged with *-1d”. The gener- a subsequence is unique, all sequences contaisfing

ated subtree is shown as the "-1d” subtree in (B). (B) fall on the_node corresponding . The TP_-cIuster

is the subsequent tree after the visit of the node "-1". tree contains all the sub;equences, or, equivalently, all
The same procedure will be applied recursively in the TP-Clusters embedded in databdse

depth-first order to construct the TP-cluster tree. For
example, after the first node visit at the roet1”, the

next node to be visited is "-1¢” and the suffixes in- q he ab | . develon th
side the rectangle box in Figure 5(B) are the next set  Based on the above HTP-clustering, we develop the

of suffixes to be inserted. The TP-Cluster algorithm SH T P-clustering algorithm by incorporating ontology

without any biological assessment is presented in Al-Knowledge into the clustering process. The ontology
information serves for the following two purposes: (1)

(B) First suffix concatenations at level 1

Figure 5. The illustration of suffix tree concate-
nation.

4.2 SHTP-clustering

gorithmgrowTree . X

the assessment of function enrichments of a cluster. (2)
Algorithm growTreg¢H,depth) the guidance to select the subset of conditions critical
Input: ‘H: the root of the initial tree, to a function category. (Along that subset of condi-

Output: TP-Cluster existed ift{

( Grow pattemns on the initial TP-Clustéf =) tions, a significant number of genes in th.at fu_n_ctlon
1. if H = nil category may stay close.) These two functionalities of
2. return ; ontology information are transformed into two pruning

3. Henia < H's first child; techniques in the SHTP-clustering algorithm.



The first pruning technique is based on the distri-
bution of function groups in a cluster. For any clus-
terC, we expect that there exists at least one function
category inC that is statistically significant. Given a
clusterC and the distribution of categories, we use the
following lemma for early detection of the potential
appearance of significant function categories.

Lemma 4.2 LetC be a cluster, leb={vy, va, ..., 04}
be a set of function categories and ketbe a counter
vector in which each elemesirecords the number of
appearances of the genes in categoyyn C. Let the
minimum number of genes required in a clustembe
and letd, be P-value threshold/v;, v; € V, letC;’ be
a cluster with sizer, and containanin(s;, n,) genes
in function category;. If V i, P(s;,C;") > 6, thenC
will not become an enriched cluster.

Proof 4.1 Vu;,v; € V, we haveP(s;,C;') < P(s;,C)
based on the property of P-value, i.e, the P-value in-
creases as the number of genes in the same cluster i

to become a functionally enriched cluster accord-
ing to Lemma 4.1, stop further development of
this node and its descendants, then go to the next
node in the predefined traversal order. Otherwise,
go to step 2.

Extract theOST of the cluster. If theOST is

not biologically viable according to Criterion 4.1,
stop further development of this node and its de-
scendants. Go to the next node in the predefined
traversal order.

We present the SHTP-clustering algorithm of ex-
tracting biologically relevant TP-Clusters in Algo-
rithm smartGrowTree Its major differences from the
HTP-clustering algorithm are the recursively feeding
and pruning of th& ST structure, and the cluster eval-
uation and pruning based on the significance of the
OST.

Algorithm smartGrowTrefH, n., n,.,depthparentOST)

nI'nput: ‘H: the root of the initial tree.

creases. According to the condition in the Lemma, wegyut: TP-Cluster existed ift/, the originalOST.

haved, < C! < P(s;,C). Hence, according to Defini-
tion 3.6,C will not be functionally enriched in any of
the function categories iw.

The algorithm of this pruning technique takes at
mostO(|V|) by scanning through each of the function
categories i and computing its smallest P-value that
might occur.

The second technique is to USEST' extracted in

a parent cluster to guide the selection of its descen-
dent TP-Cluster clusters, by favoring biological chil- 10

dren clusters defined in Definition 3.8. Our criterion

is based on the hypothesis that, the TP-Clusters in the 5
higher dimensional space are enriched in more specific 3.

categories.

Criterion 4.1 Let C and C’ be two clusters and let
C be the parent o’ in the TP-Cluster hierarchy.
We say that the development @f is not viable if

OSTe<OSTe.

The extraction ofOST from a cluster also takes
O|V| if we represent each gene category with a GO

(x Grow patterns on the initial TP-Clustef. )

1. if H =nil

2. return;

3. Henaag <H's first child,;

4. for any sub-tregubH of H

doinsertSubTreeubH, H);
curOST= extractOSTK);
if (curOST is not empty)
if (curOST=parentOST)
growTreeH chitg, ne, Ny depth + 1,
curOST);
else growTreet{s;p, ne, Ny, depth + 1,

parentOST);

5.
6.
7.
8.
9.

else
potential = evalFunctionf{, parentOST)
if (potential = good)

14. growTreel chiig, Ne, Ny, depth + 1,
curOST);

15. else growTreeHsip, ne, Ny depth,
parentOST);

16. return.

Analysis of HTP-clustering and SHTP-clustering
construction For both HTP-clustering and SHTP-
clustering, only one scan of the entire data matrix is

code[12]. At most two scans of the ordered GO codesneeded during the clustering. Each row is first con-

are necessary to generate thé€7. Combining the
two pruning techniques, we apply the following pro-
cedure at each node of the traversal.

1. Evaluate the prediction potential of the cluster
corresponding to this node. If it has no potential

8

verted into a sequence of column labels. The se-
guences are then inserted into the prefix tree. In the
initial tree structure, sequences with the same prefix
naturally fall onto the same path from the root to the
node corresponding to the end of prefix. To be mem-
ory efficient, the row/gene IDs associated with each



path are only recorded at the node marking the end of To assess the biological relevance of the clusters,
the longest common prefix shared by these sequencesve use GO and P-value to evaluate whether the clus-
The depth-first pre-order traversal is then applied to theter has significant enrichment in one or more func-
prefix tree to generate a TP-cluster tree. Pruning techtion groups. The ontology of the 799 yeast genes is
niques based on ontology knowledge further produce adownloaded from gene ontology consortium [23] in
STP-cluster tree without generating the complete TP-Feb, 2004. We use functions from the three categories:
cluster tree. molecular function(MF), cell component(CC) and bi-
Both the time and space complexities of the two ological process(BP). We extract categories between
algorithms are exponential determined by the natureontology level 2 and level 5 with a family size of at
of being a NP-hard problem. In the worst case sce-least 5. The discovered TP-Clusters in each level of
nario, given a gene expression matrix x m), the  the hierarchy are evaluated for enrichment with any of
size of tree isY" ; s!("7')). However, since we use those function categories.
the depth-first traversal of the tree and the part of

tree that has been traversed will not be needed for fu- | TYPes | #Known #Categories | #Anno per
ture mining, they can be deleted and the space can genes | (#genes >5) | gene
be reused. At level(i # 0), we only need to keep MF 370 |16 0.77
(m — i + 1) nodes. Therefore, the maximal space to | €€ 616 | 48 3.4
be allocated during the running time will be limitedto | BP °38 | 38 5.72
O(nY ", m—i+1)=0(nxm?).

The SHTP—cIustering will be more space and time Table 2. Statistics for the three categories.

efficient than HTP-clustering since less biologically ir-
relevant TP-Clusters are generated due to the ontol-
ogy guided pruning techniques. The pruning effects
are largely determined by the relationship between a
TP-Cluster and the significance of its underlying func-
tional categories.
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5 Evaluation )

Our experiments demonstrate the applicability of
SHTP-clustering algorithm in clustering biologically
related genes with effective pruning techniques based
on GO. The results are evaluated through the compar-
ison of HTP-clustering and SHTP-clustering, and the

mapping between the TP-cluster tree to the GO hier-
archy. The algorithm was implemented in C and exe- ‘*m.,‘_
cuted on a Linux machine with a 700 MHz CPU and V\:\L
2G main memory. I e LET S
Both HTP-clustering and SHTP-clustering algo- lo9(®y
rithms are tested on the yeast cell cycle data of Spell- b) The distribution of the clusters

manet al. The study monitored the expression levels  gi;e 6. The performance of the SHTP-

of 6,218 S. cerevisiae putative gene transcripts (Jenes) cjustering varying n, and 0.

measured at 10-minute intervals over two cell cycles

(160 minutes) with 18 time points. Spellma al.

identified 799 genes that are cell cycle regulated. We5.1 Performance

used the expression levels of the 799 genes across 18

time points as the original input matrix. The clustering  The first set of experiments was done using the
procedure groups together genes on the basis of theiSHTP-clustering algorithm and cellular component
common expression tendency across a subset of tim@ntology category to evaluate the performance by
points. varying parameters, and¢,. As shown in Figure 6
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Figure 8. The comparison of performance of

SHTP-clustering among three categories.

6, decreases. It also explains the performance gain of
SHTP-clustering at the same time. Also the percentage
of clusters being pruned due to Criterion 4.1 drops sig-
nificantly compared to the percentage of the enriched
clusters as the significance threshold decreases. This
may also indicate that the more significant the enrich-
ment of the clusters, the higher the probability that its
OST leads to the right direction of selecting the bio-
logically appropriate biclusters.

The second set of experiment in Figure 7 a) is a
comparison between SHTP-clustering algorithm and
HTP-clustering algorithm. For each algorithm, we
have done two tests with different settingsrof We
can observe significant and consistent improvement of
SHTP-clustering algorithm over HTP-clustering espe-
cially wheng, is relatively low. The performance of
SHTP-clustering can be as short as 1/4 of that of the
HTP-clustering algorithm.

Figure 7 b) compares the number of enriched clus-
ters and the total number of clusters for both of
the algorithms HTP-clustering and SHTP-clustering.
Clearly, HTP-clustering algorithm generate a large
number of TP-Clusters, of which only a small percent
are enriched. Compared with HTP-clustering, SHTP-
clustering generates less than half of the number of
TP-Clusters and almost the same number of enriched
TP-Clusters. Overall, SHTP-clustering improves the
performance with minimum loss of the enriched clus-
ters.

Figure 8 gives the comparison of the response times
varying the three available ontology files, i.e, MF, CC,
BF. We can observe a clear trend that the experiments
using biological process category consistently spend
more time than the rest two. This can be explained
by the data in Table 2. The average number of cate-

a), the response time of ti&d1 TP — clustering algo-  gories that a gene might have is 5.7, which is much
rithm decreases as the significance threshold decreasésigher than that of either the cellular component or
and as the minimum number of rows increases. Ac-the molecular function files. With fewer categories
cording to the pruning strategy Lemma 4.1, high sig- but more gene annotations, the distribution of func-
nificance threshold allows early drop of cluster with tion groups in a cluster has a higher probability be-
poor functional implication. More early pruning en- ing more concentrated in one or more function groups
ables shorter response time. The helps to prune  rather than being evenly distributed. As a result, fewer
clusters with the size limitation. The application of the functional clusters might be pruned, and hence, the re-
same algorithm to the other two categories exhibits thesponse time is longer. In addition, this may also be
same trend when varying. andd,,. coincident with the hypothesis that similar gene ex-

Figure 6 b) presents the distribution of the gener- pression profiles may indicate a function relation in
ated clusters in three categories: not enriched clusterbiological process [4]. As a result, more time will be
enriched cluster, and enriched cluster not following its taken for generating a larger number of significantly
parent’sOST according to Criterion 4.1. The percent- enriched clusters compared with the rest two ontology
age of not enriched cluster increases significantly asfiles.

10



Overall, our experiment shows that the ontology- tering algorithms are weak in modelling the hierarchy
based pruning is effective in reducing the search spacef GO due to the fact that traditional algorithms can-
of biclustering. In addition, the response time of our not produce a hierarchy of overlapping clusters with
algorithm is influenced by the two input parameters various sizes. To overcome these problems, we pro-
and the distribution of genes in each category of thepose to use a hierarchy of TP-Clusters to match the
ontology. hierarchy of GO. We present a biclustering algorithm

guided by GO, SHTP-clustering, which efficiently and
5.2 Mapping between GO and the TP-cluster tree  effectively extracts the biological relevant gene clus-
i . . ters. Our experiments on yeast gene expression data

We present a generic example of hierarchically or- gemonstrate the effectiveness of the ontology-based
ganized clusters that map to a hierarchical substructure\pruning techniques. Our future work will be using the

of GO'. ) generated STP-cluster tree for effective classification
In Figure 9, (A) presents a three-level hierarchy ¢ the unknown genes.

of TP-Clusters, while (B) shows the corresponding
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