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Abstract

Recently, there is an increasing interest in new intelligent mining methods to find more meaningful and compact results.
In intelligent data mining research, accessing the quality and usefulness of the results from different mining methods is
essential. However, there is no general benchmarking criteria to evaluate whether these new methods are indeed more effec-
tive compared to the traditional methods. Here we propose a novel benchmarking criteria that can systematically evaluate
the effectiveness of any sequential pattern mining method under a variety of situations. The benchmark evaluates how well
a mining method finds known common patterns in synthetic data. Such an evaluation provides a comprehensive under-
standing of the resulting patterns generated from any mining method empirically. In this paper, the criteria are applied
to conduct a detailed comparison study of the support-based sequential pattern model with an approximate pattern model
based on sequence alignment. The study suggests that the alignment model will give a good summary of the sequential data
in the form of a set of common patterns in the data. In contrast, the support model generates massive amounts of frequent
patterns with much redundancy. This suggests that the results of the support model require more post processing before it
can be of actual use in real applications.
� 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Much research has been devoted to efficient mining methods that can process huge amounts of data. Yet,
the mining methods have been ineffective in many real world applications with limited use because often times
the results are not of direct use to a human expert. Recently, there is an increasing interest in new intelligent
mining methods to find more meaningful and compact results. However, there is no general benchmarking
criteria to evaluate whether these new methods are indeed more effective compared to the traditional methods.
Furthermore, benchmarking the quality of the mined results is required to compare the effectiveness of new
0169-023X/$ - see front matter � 2006 Elsevier B.V. All rights reserved.
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intelligent mining methods among themselves. Assessing the quality and usefulness of the results from different
mining methods is essential in intelligent data mining research.

We are particularly interested in the problem of mining sequential patterns. In sequential pattern mining,
the goal is to detect patterns in a database comprised of sequences of sets. Conventionally, the sets are called
itemsets. For example, supermarkets often collect customer purchase records in sequence databases in which a
sequential pattern would indicate a customer’s buying habit. In such a database, each purchase would be rep-
resented as a set of items purchased, and a customer sequence would be a sequence of such itemsets.

One common approach in sequential pattern mining is provided by the support model [2]: the task is to find
the complete set of frequent subsequences in a set of sequences. Much research has been done to efficiently find
the patterns defined by the support model, but to the best of our knowledge, no research has examined in
detail the usefulness of the patterns actually generated.

An alternative pattern definition in sequential pattern mining is the multiple alignment model [6]. Its goal is
to organize and summarize sequences of sets to uncover the underlying consensus patterns in the data. An
approximate algorithm, ApproxMAP, uses clustering as a preprocessing step to group similar sequences,
and then mines the underlying consensus patterns in each cluster directly through multiple alignment.

Our purpose here is to introduce a general evaluation method to assess the quality of the mined results from the
two sequential pattern mining models, and then to compare the results. In this paper, employing our new eval-
uation method we examined closely the results from both the support model and the multiple alignment model.
The evaluation method clearly describes the different kinds of patterns generated from each model. Understand-
ing the characteristics of the results suggests when each model should be used to mine sequential patterns.

1.1. Our approach

In general, the most suitable evaluation criteria for a given problem tends to be domain-specific. That is, the
evaluation criteria depends on what type of sequential patterns are of most interest in the domain application.
Thus, the most general benchmark should provide a set of target patterns and evaluation criteria that is appro-
priate for each target pattern. Then, users can select the appropriate target patterns and evaluation criteria
required for the domain in order to determine the most appropriate mining method for the application.

As a first step towards building such a general benchmark, we propose an evaluation method that can
quantitatively assess how well the models can find known common patterns in the data. Integral to the eval-
uation method is a synthetic dataset with known embedded patterns against which we can compare the mined
results. For this purpose we have used the well-known IBM synthetic data generator [2] built by the authors of
the support model, Agrawal and Srikant. We extend the well-known IBM data generator to generate a variety
of situations with varying randomness and noise levels. Then, we develop a set of evaluation criteria to use in
conjunction with the extended IBM data generator to measure the accuracy of the results. By mapping the
mined patterns back to the known base patterns that generated the data, we are able to measure how well
the base patterns are recovered and how much confounding information (in the form of spurious patterns,
redundant patterns, or extraneous items) is in the results.

In summary, our evaluation method is a matrix of four experiments—(1) random data, (2) patterned data,
and patterned data with (3) varying degree of noise, and (4) varying number of outliers—assessed on five cri-
teria: (1) recoverability, (2) precision, (3) the total number of result patterns returned, (4) the number of spu-
rious patterns, and (5) the number of redundant patterns. Recoverability, defined in Section 4, provides a good
estimation of how well the underlying trends in the data are detected. Precision, adopted from ROC analysis
[8], is a good measure of how many incorrect items are mixed in with the correct items in the result patterns.
Both recoverability and precision are measured at the item level. On the other hand, the numbers of spurious
and redundant patterns along with the total number of patterns returned give an overview of the result at the
sequence level. In short, a good model would produce (1) high recoverability and precision, with (2) small
number of spurious and redundant patterns, and (3) a manageable number of result patterns.

Our workshop paper [7] reports our preliminary work. In this paper, we extend the report by

• presenting the details of the synthetic data generation process,
• revising and extending the evaluation criteria,
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• illustrating the evaluation method via an example,
• supplementing the comparison experiment,
• and briefly exploring some promising directions for future research.

The remainder of this paper is organized as follows. Section 2 summarizes the related works in sequential
pattern mining. Sections 3 and 4 describe the synthetic data and the criteria used in the evaluation method
respectively. Section 5 is a detailed example illustrating how the evaluation is done. Section 6 presents a com-
parison study of the sequential pattern mining methods employing the evaluation method. Finally, Section 7
concludes with a discussion of directions for future research.

2. Background and related work

Mining sequential patterns has become an important data mining task with broad applications in business
analysis, career analysis, policy analysis, and security. Many papers on sequential pattern mining focus on spe-
cific algorithms and evaluating their efficiency.

2.1. IBM synthetic data generator

The IBM synthetic data generator was first presented in [1] to evaluate the efficiency of mining association
rules. It was further expanded to evaluate the efficiency of sequential pattern mining methods in [2]. Since then,
the IBM synthetic data has been used extensively as a performance benchmark in association rule mining and
sequential pattern mining.

The computational efficiency of most mining methods are usually well documented, however, the efficacy of
various definitions in producing useful results has received less attention. Although the well used IBM syn-
thetic data generator reports the base patterns used to generate the data, to the best of our knowledge, no
previous study has measured how well the various methods recover the known base patterns in the synthetic
data. In this paper, we propose to extend the performance benchmark to evaluate the quality of the mined
results. By mapping the mined patterns back to the base patterns that generated the data, we are able to mea-
sure how well the mining models find the real underlying patterns. We can also determine whether or not a
model generates any spurious patterns or confounding information.

2.2. Support model

Sequential pattern mining is commonly defined as finding the complete set of frequent subsequences in a set
of sequences. The conventional support model finds all subsequences that meet a user specified threshold,
min_sup [2]. We omit the details of the support model since it is well known. GSP [11], PrefixSpan [9], SPADE
[14], and SPAM [3] are some well-known algorithms to efficiently find such patterns. The efficiency of these
methods are compared in detail using the IBM data generator in [9]. However, to the best of our knowledge,
our workshop paper [7] was the first to examine in detail what patterns are actually generated from such a
model. In this paper, we supplement our experiments in [7] to better understand whether the support model
in fact generates interesting and understandable patterns.

Some attempts have been made to improve the results from the support model. In order to reduce redun-
dancy, [12] extends the support model to find only closed sequential patterns. Ref. [13] extends the support
criteria to account for partial matches to find approximate sequential patterns.

Two papers viewed the output from the support model as intermediate results. Ref. [10] presents a system
for managing interesting sequential rules using the output from the support model. Ref. [4] uses the informa-
tion on frequent subsequences to cluster the sequential data.

2.3. Multiple alignment model

Recently, [6] presented an entirely different model for sequential pattern mining based on sequence align-
ment. Extending the rich body of literature on string analysis in computer science and computational biology,



Table 1
Multiple alignment (h = 75%)

seq1 = h(BC)(DE)i h( ) ( ) (BC) (DE)i
seq2 = h(A)(BCX)(D)i h(A) ( ) (BCX) (D)i
seq3 = h(AE)(B)(BC)(D)i h(AE) (B) (BC) (D)i
seq4 = h(A)(B)(DE)i h(A) ( ) (B) (DE)i
Weighted sequence wseq (A:3, E:1):3 (B:1):1 (B:4, C:3, X:1):4 (D:4, E:2):4 4

Consensus pattern (w P 3) h(A) (BC) (D)i
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Kum generalized string multiple alignment to find patterns in ordered lists of sets. The power of the multiple
alignment model hinges on the following insight: the probability that any two long data sequences are the
same purely by chance is very low. Thus, if a number of long sequences can be aligned with respect to partic-
ular items that occur frequently in certain positions, we will have implicitly found sequential patterns that are
statistically significant.

The exact solution to multiple alignment pattern mining is too expensive to be practical. Consequently the
results of the alignment model are method dependent. An efficient approximation algorithm, ApproxMAP (for
APPROXimate Multiple Alignment Pattern mining), was introduced in [6]. In this paper, we use the results of
ApproxMAP to represent the alignment model.

ApproxMAP has three steps. First, k nearest neighbor clustering is used to partition the database. Second,
for each partition, the optimal multiple alignment is approximated by the following greedy approach: in each
partition, two sequences are aligned first, and then a sequence is added incrementally to the current alignment
of p � 1 sequences until all sequences have been aligned. At each step, the goal is to find the best alignment of
the added sequence to the existing alignment of p � 1 sequences. A novel structure, weighted sequence, is used
to summarize the alignment information in each cluster. In short, a weighted sequence is a sequence of item-
sets with a weight associated with each item. The item weight represents the strength of the item where strength
is defined as the percentage of sequences in the alignment that have the item present in the aligned position.
Clearly, larger strength value indicates that more sequences share the item in the same aligned position. Third,
based on the user-defined threshold, h, for item strength the weighted sequence of each partition is used to
generate the consensus pattern for the partition.

Table 1 illustrates the alignment model. Given a set of sequences, ApproxMAP will first cluster the sequences
into similar sequences. Then each group will be aligned, via dynamic programming, to generate a consensus
pattern. For example, given a group of similar sequences, ApproxMAP will align them as in Table 1. The align-
ment information is summarized in the weighted sequence wseq. There are three elements in the weighted
sequence. First, there is a weight associated with the full sequence. The 4 in the last column is associated with
the sequence and indicates that there are four sequences in the alignment. Second, there are weights associated
with each item. 3 and 1 associated with the items A and E, respectively, in the first itemset (A:3, E:1) indicate
that there are three A’s and one E in the first column of the alignment. Third, there is a weight associated with
each itemset. The weight 3 associated with the first itemset (A:3, E:1):3 indicates that one sequence out of four
sequences (4 � 3 = 1) has a null itemset aligned to this position. seq1 has a null itemset in the first position of
the alignment. The details of ApproxMAP can be found in [6].
3. Synthetic data generation

Integral to evaluating the effectiveness of mining methods is synthetic data with known embedded pat-
terns against which we can compare the mined results. For this purpose we have used the well-known
IBM synthetic data generator [1,2]. In this section, we detail the data generation process after a through
review of the public code. We further use an example to illustrate the data generation process. In addition,
in Sections 3.2–3.4 we extend the IBM data generator to generate a variety of situations varying random-
ness and noise level.
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3.1. IBM synthetic data generator: Patterned data

As discussed in [1,2] the IBM synthetic data generator models a customer transaction database. The general
idea is that people buy sequences of sets of items. Each such sequence could be similar to a frequent buying
pattern. For instance, a common buying pattern might be sheets and pillows followed by a comforter. Some
people will buy only some items in the potentially frequent buying pattern. In the previous example, some will
only buy sheets followed by comforters. Other customer sequences will contain more than one such potentially
frequent buying pattern. For example, some customers might order a dress and jacket along with the sheets.
This customer might follow this initial order with a comforter and shoes. In this case, the dress and jacket
followed by shoes might form another frequent buying pattern. In the original paper, these frequent patterns
in the synthetic data were called maximal potentially large sequences. In this paper, we call them base patterns.
These are the patterns used to generate the sequence database. In short, a customer sequence is generated by
deleting items from base patterns, and then combining the different perturbed base patterns. Now, let us exam-
ine this process technically.

The input parameters for the IBM data generator is given in Table 2. We have changed the notations from
the original paper for clarity. The first four parameters determine the characteristics of the sequence database,
and the last four parameters determine the type of base patterns used to generate the database. Given these
parameters, the IBM data generator produces a patterned database and reports the base patterns used to gen-
erate it.

The data is generated in two phases. First, it generates Npat potentially frequent sequential patterns, called
base patterns, according to user parameters Lpat and Ipat. Secondly, each sequence in the database is built by
combining these base patterns until the size specified by user parameters Lseq and Iseq are met. There are Nseq

such sequences in the database. Along with each base pattern, the data generator reports the expected fre-
quency, E(FB), and the expected length (total number of items), E(LB), in the database for each base pattern.
The E(FB) is given as a percentage of the size of the database and the E(LB) is given as a percentage of the
number of items in the base pattern.

There are two steps involved in building the base patterns. First, the set of potentially frequent itemsets, K,
is built by randomly selecting items from the distinct set of items in I. Under the assumption that some items
occur often while others occur rarely, the probability of an item occurring is exponentially distributed. The
size of each itemset is randomly determined using a Poisson distribution with mean Ipat. The assumption is
that the transaction sizes are usually clustered around a mean with few transactions that are larger. The details
of building the potentially frequent itemsets can be found in [1]. The number of distinct items and the number
of potentially frequent itemsets are determined by user set parameters kIk and kKk, respectively.

Second, the base patterns are then built by selecting, corrupting, and concatenating itemsets selected from
the set of potentially frequent itemsets in K. The selection and corruption is based on the probability of select,
P(select), and probability of corrupt, P(corrupt), randomly assign to each potentially frequent itemset. The
selection probability is exponentially distributed then normalized to sum to 1. The corruption probability is
normally distributed. Corrupting means randomly deleting items from the selected potentially frequent item-
Table 2
Parameters for the original IBM synthetic data generator (patterned data)

Type Notation Original notation Meaning

Sequence database parameters kIk N # of items
Nseq kDk # of data sequences
Lseq kCk Avg. # of itemsets per data sequence
Iseq kTk Avg. # of items per itemset in the database

Base pattern parameters kKk NI # of potentially frequent itemsets
Npat NS # of base patterns (potentially freq. seq. patterns)
Lpat kSk Avg. # of itemsets per base pattern
Ipat kIk Avg. # of items per itemset in the base patterns
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set. Npat determines how many base patterns to construct, and Lpat determines the average number of itemsets
in the base patterns. More precisely, the number of itemsets in a base pattern is randomly assigned from a
Poisson distribution with mean Lpat. Again, the assumption is that the sequence lengths are usually clustered
around a mean, with few long sequences [2]. Base patterns built in this manner then become the potentially
frequent sequential patterns.

The database is built in a similar manner by selecting, corrupting, and combining the base patterns. As with
potentially frequent itemsets, each base pattern is also assigned a separate P(select) and P(corrupt). The
P(select) is exponentially distributed then normalized to sum to 1 and P(corrupt) is normally distributed.
The P(select) is the likelihood a base pattern will appear in the database. Thus, it is equal to the expected fre-
quency of a base pattern, E(FB), in the database. The P(corrupt) is the likelihood of a selected base pattern to
be corrupted before it is used to construct a database sequence. Corrupting base patterns is defined as ran-
domly deleting items from the selected base pattern. Hence, 1 � P(corrupt) is roughly the expected length
(total number of items), E(LB), of the base pattern in a sequence in the database.
Table
A data

Base p

DB seq

Table
A com

Sequen
Base p
EðF BÞ ¼ P ðselectÞ
EðLBÞ ’ 1� P ðcorruptÞ

ð1Þ
Each sequence is built by combining enough base patterns until the size required, determined by Lseq and Iseq,
is met. Hence, many sequences are generated using more than one base pattern. Base patterns are combined by
interleaving them so that the order of the itemsets are maintained. Table 3 demonstrates how three base pat-
terns are combined to build a database sequence. The items that are crossed out were deleted in the corruption
process.

In essence, noise is introduced into each data sequence in the form of tiny bits of another base pattern.
Hence, sequential pattern mining is difficult because the data has confounding noise rather than random noise.
In Section 3.3, we discuss how to add controlled level of random noise in addition to the confounding noise in
the patterned data in order to test for the effects of random noise.

Similarly, outliers may exist in the data in the form of very weak base patterns. The expected frequency of
the base patterns has exponential distribution. Thus, the weakest base patterns can have expected frequency be
so small that the base pattern occurs in only a handful of the database sequences. These are in practice outliers
that occur rarely in the database. For example, when there are 100 base patterns, 11 base patterns have
expected frequency less than 0.1%, of them 1 base pattern has expected frequency less than 0.01%. Thus, even
when Nseq = 10,000, the weakest base pattern would occur in less than one sequence (10,000 * 0.01% = 1 seq).
In Section 3.4, we discuss how to add controlled level of strictly random sequences in addition to outliers in the
form of very weak base patterns in the patterned data to test for effects of outliers.

3.1.1. Example

To better understand the properties of the synthetic data generated, let us look closely at a particular IBM
synthetic database. A common configuration of the synthetic database is given in Table 4. The configuration
can be understood as follows:
3
base sequence built from three base patterns

(A, J) (B) (A) (E, H) (C) (L)
atterns (D) (F) (M)

(G) (L) (K) (F, I) (D)

uence (D, G) (A, J) (B) (K) (A, F, I) (E, H) (C) (D, F, L)

4
mon configuration of the IBM synthetic data

ce database kIk = 1000 Nseq = 10,000 Lseq = 10 Iseq = 2.5
attern kKk = 5000 Npat = 100 Lpat = 7 Ipat = 2
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Fig. 1. Distributions from the synthetic data specified in Table 4: (a) distribution of the actual lpat and (b) distribution of the E(FB).
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(1) There are kIk = 1000 unique items in the synthetic database.
(2) Using these kIk = 1000 unique items kKk = 5000 itemsets were generated at random. These are the

potentially frequent itemsets used to construct the base patterns.
(3) On average there are Ipat = 2 items per itemset in these 5000 potentially frequent itemsets.
(4) Npat = 100 base patterns were randomly constructed using the 5000 potentially frequent itemsets.
(5) On average there are Lpat = 7 itemsets per base pattern. The actual distribution of the number of item-

sets for each of the 100 base patterns, lpat, is given in Fig. 1(a). Remember that lpat has a Poisson distri-
bution with mean at Lpat. When Lpat = 7, 10% of the patterns have between 3 and 4 itemsets in the base
patterns. On the other hand 5% of the patterns have more than 10 itemsets per base pattern. The remain-
ing 85% of base patterns have between 5 and 10 itemsets per pattern. Values of Lpat < 7 start to introduce
base patterns of less then three itemsets per pattern. Thus, Lpat = 7 is the practical minimum value that
will embed sequential patterns of more than two itemsets into the synthetic data.

(6) Nseq = 10,000 data sequences were constructed using the 100 base patterns.
(7) The distribution of the expected frequencies, E(FB), of the 100 base patterns is given in Fig. 1(b). Of 100

base patterns, 11 have E(FB) < 0.1% (0.1% * 10,000 = 10 seq). Of them, one base pattern has expected
frequency less than 0.01% (0.01% * 10,000 = 1 seq). As discussed above these are the practical outliers
that occur rarely in the database. On the other hand, there are 12 base pattern with E(FB) > 2%
(2% * 10,000 = 200 seqs). Of these the four largest E(FB) are 7.63%, 5.85%, 3.80%, and 3.35%, respec-
tively. The other 8 are all between 2% and 3% (2% < E(FB) 6 3%). The majority, 77 base patterns, have
E(FB) between 0.1% and 2% (10 seq = 0.1% < E(FB) 6 2% = 200 seqs).

(8) The base patterns were combined so that on average there are Lseq = 10 itemsets per data sequence and
Iseq = 2.5 items per itemset in a data sequence. Note that since Lpat = 7 is the practical minimum for
embedding sequential patterns into the synthetic data, Lseq should be greater than 7. Thus, a reasonable
range of Lseq would be from 10 to 50.

3.2. Extention 1: random data

In this section, we detail how to generate random data with the same properties as the patterned sequence
database. Recall that the first four parameters, kIk, Nseq, Lseq, Iseq, specify the characteristics of the sequence
database. We use the same four parameters to specify a random database.

Random data is generated by assuming independence between items both within and across itemsets. Fol-
lowing the assumption that some items occur often while others occur rarely, the probability of an item occur-
ring is exponentially distributed. The number of distinct items and the number of sequences generated are
determined by user set parameters kIk and Nseq, respectively. Same as done in the IBM data generator, the
number of itemsets in a sequence and the number of items in an itemset follow a Poisson distribution with
mean Lseq and Iseq, respectively.
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3.3. Extention 2: patterned data with varying degree of noise

Noise occurs at the item level in sequential data. Therefore, to introduce varying degree of controlled noise
into the IBM patterned data, we use a corruption probability a. Items in the patterned database are randomly
changed into another item or deleted with probability a. This implies that 1 � a is the probability of any item
remaining the same. Hence, when a = 0 no items are changed, and higher values of a imply a higher level of
noise [13].

3.4. Extention 3: patterned data with varying degree of outliers

Outliers are sequences that are unlike most other sequences in the data. That is there are very few sequences
similar to the outlier sequence. A randomly generated sequence, such as the sequences generated for the ran-
dom data, can be such an outlier sequence. Thus, we introduce controlled level of outliers into the data by
adding varying number of random sequences to the IBM patterned data. The random sequences are generated
using the same parameters Lseq, Iseq, and kIk as those used to generate the patterned data. In the rest of the
paper, random sequences added to patterned data are referred to as outliers.

4. Evaluation criteria

The effectiveness of a sequential pattern mining method can be evaluated in terms of how well it finds the
real underlying patterns in the data, and whether or not it generates any confounding information. The exten-
sively used IBM synthetic data generator reports the underlying base patterns in the data along with the data-
base. Therefore, used in conjunction with the proper evaluation criteria it would be possible to benchmark not
only the efficiency of the algorithms but also the efficacy under varying conditions. The number of base pat-
terns found or missed is not alone an accurate measure of how well the base patterns were detected because it
can not take into account which items in the base pattern were detected or how frequent the pattern is in the
data. Instead, we report a comprehensive view by measuring this information at two different levels; (1) at the
item level and (2) at the sequence level.

4.1. Evaluation at the item level

At the item level, we adapt the ROC analysis to measure recoverability and precision. ROC analysis is com-
monly used to evaluate classification systems with known actual values. The confusion matrix contains infor-
mation about the actual and predicted patterns [8]. The confusion matrix for the evaluation is given in Table 5.
The actual patterns are the base patterns that were embedded into the database. The predicted patterns are the
result patterns generated from any sequential pattern mining algorithm. Then the true positive items, called
pattern items, are those items in the result patterns that can be directly mapped back to a base pattern.
The remaining items in the result patterns, the false positive items, are defined as extraneous items. These
are items that do not come from the embedded patterns, but rather the algorithm falsely assumes to be part
of the base patterns. The items from the base pattern that were missed in the result patterns, the false negative
items, are the missed items. In this context, there are no true negative items (cell a). Thus, only the cells b–d are
used in the evaluation.

Using the confusion matrix we measure two criteria at the item level. Recoverability measures how much of
the base patterns have been found. Precision measures how precise are the predictions made about the base
Table 5
Confusion matrix

Predicted (result patterns generated)

Negative Positive

Actual (base patterns embedded) Negative a (NA) b (extraneous items)
Positive c (missed items) d (pattern items)
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patterns. That is, precision measures how much confounding information (extraneous items) are included with
the true pattern items.

Normally recall, ð d
cþdÞ, the true positive rate, is used to measure how much of the actual pattern has been

found. However, recall is not accurate in this application because base patterns are only potentially frequent
sequential patterns in the data. The actual occurrence of a base pattern in the data, which is controlled by
EðF BiÞ and EðLBiÞ, varies widely.

EðF BiÞ is exponentially distributed then normalized to sum to 1. Thus, some base patterns have tiny EðF BiÞ.
These base patterns do not exist in the data or occur very rarely. As discussed in Section 3.1 these weak base
patterns are in practice outliers that occur rarely in the database. Thus in practice, recovering these patterns is
not as crucial as recovering the more frequent base patterns.

EðLBiÞ controls how many items on average in the base patterns are injected into one occurrence of the base
pattern in a sequence. This means that one sequence in the database is not expected to have all the items in the
embedded base pattern. Remember that before a base pattern is embedded into a data sequence, the base pat-
tern is corrupted by randomly deleting items from it. EðLBiÞ controls how many items on average are deleted in
this process.

Therefore, taking EðF BiÞ and EðLBiÞ into account, we designed a weighted measure, recoverability, which
can more accurately evaluate how much of the base patterns have been recovered. Specifically, given (1) a
set of base patterns, {Bi}, along with EðF BiÞ and EðLBiÞ for each base pattern, and (2) a set of result patterns,
{Pj}, let each result pattern map back to the most similar base pattern. That is, the result pattern, Pj, is
matched with the base pattern, Bi, if the longest common subsequence between Pj and Bi, denoted as Bi � Pj,
is the maximum over all base patterns. We indicate this matching by referring to the matched result patterns
with two indices. Pj(i) denotes that pattern Pj has been mapped to base pattern Bi.

Now let Pmax(i) be the max pattern for base pattern Bi. A max pattern, Pmax(i), is the result pattern that
shares the most items with a base pattern, Bi, over all result patterns mapped to the same base pattern. Fur-
thermore, at least half of the items in Pj has to come from the base pattern Bi. Thus, maxrslt pat{Pj(i)}kBi � Pjk1

is the most number of items recovered for a base pattern Bi. In essence, max patterns recovered the most infor-
mation about a particular base pattern. Note that, there is either one or no max pattern for each base pattern.
There could be no max pattern for a base pattern if none of the result patterns recovered enough of the items
from the base pattern.

EðLBiÞ � kBik is the expected number of items in one occurrence of Bi in a sequence. Hence,
max kBi�P jk
EðLBi Þ�kBik is the

fraction of the expected number of items found. EðLBiÞ is an expected value, and sometimes the actual

observed value, maxfP jðiÞgkBi � P jk is greater than EðLBiÞ � kBik. In such cases, the value of max kBi�P jk
EðLBi Þ�kBik is trun-

cated to one so that recoverability stays between 0 and 1.
In sum, recoverability is defined as follows:
1 kse
Recoverability R ¼
X

base patfBig
EðF BiÞ �min

1
maxrslt patfPjðiÞgkBi�P jk

EðLBi Þ�kBik

� �(
ð2Þ
Intuitively, if the recoverability of the mining is high, major portions of the base patterns have been found.
In ROC analysis, precision, d

bþd, is the proportion of the predicted positive items. It is a good measure of
how much of the result is correct [8]. In sequential pattern mining, precision measures how much extraneous
items are mixed in with pattern items in the results. Remember that when the result pattern Pj is mapped to
base pattern Bi, the items in both the result pattern and the base pattern, Bi � Pj, are defined as pattern items.
The result pattern Pj is mapped to base pattern Bi, when kBi � Pjk is maximum over all base patterns. Thus,
the number of pattern items for a result pattern, Pj, is maxfBigkBi � P jk. The remaining items in the result pat-
tern, Pj, are the extraneous items. The different item counts in the result patterns are summarized in Table 6.
Denoted as P, precision is calculated as follows:
Precision P ¼ Npat I

N item

� 100% ¼ 1� N extra I

N item

� �
� 100% ð3Þ
qik = length of seqi denotes the total number of items in seqi.



Table 6
Item counts in the result patterns

Notation Meaning Equation

Nitem Total # of items
P

rslt patfP jgkP jk
Npat I Total # of pattern items

P
rslt patfP jgðmaxbase patfBigkBi � P jkÞ

Nextra I Total # of extraneous items
P

rslt patfP jgðkP jk �maxbase patfBigkBi � P jkÞ
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4.2. Evaluation at the sequence level

At the sequence level, the three criteria that we measure are (1) the total number of result patterns, (2) the
number of spurious patterns, and (3) the number of redundant patterns. To do so, we categorize the result
patterns into spurious, redundant, or max patterns depending on the composition of pattern items and extra-
neous items. We do not report the number of max patterns because it can be easily calculated by Nmax =
Ntotal � Nspur � Nredun.

Spurious patterns are those that were not embedded into the database, but what the algorithm incorrectly
assumed to be sequential patterns in the data. In this evaluation, spurious patterns are defined as the result
patterns that have more extraneous items than pattern items. As discussed in the previous section, max pat-
terns are those that recover the most pattern items for a given base pattern. The remaining sequential patterns
are redundant patterns. These are result patterns, Pa, which match with a base pattern, Bi, but there exists
another result pattern, Pmax, that matches with the same base pattern but better in the sense that
kBi � PmaxkP kBi � Pak. Therefore these patterns are redundant data that clutter the results.

4.3. Units for the evaluation criteria

Recoverability and precision are reported as a percentage of the total number of items in the result ranging
from 0% to 100%. In comparison, the spurious patterns and redundant patterns are reported as number of
patterns. These measures can easily be changed to percentage of the total number of result patterns as needed.

We report the actual number of patterns because the number of spurious patterns can be tiny as a percent-
age of the total number of result patterns. In fact, by definition we expect that there will be only a few spurious
patterns if the algorithm is reasonably good. In such situations, a user would want to see exactly how few spu-
rious patterns are in the result rather than its proportion in the result. For example, one of the experiments on
the support model had over 120,000 result patterns of which 16 (0.012%) were spurious patterns.

Unlike spurious patterns, redundant patterns are not incorrect patterns. Sometimes, they can even have
additional information, such as suggesting common variations of a strong pattern in the data. The most neg-
ative effect of redundant patterns is the confounding effect it can have on understanding the results when there
are too many of them. Hence, the exact number of redundant patterns is directly related to the interference
factor. For example, it is easy to glean some information and/or ignore 10 redundant patterns of 20 result
patterns but not so easy to work through 50% of 120,000 patterns.

The five evaluation criteria are summarized in Table 7.

5. Example

Let Table 8 be the base patterns used to construct a sequence database. The expected frequency EðF BiÞ,
the expected length after corruption EðLBiÞ, and the actual length kBik of the base patterns are also given.
Table 7
Evaluation criteria

Criteria Meaning Level Unit

Recoverability R The degree of the base patterns detected (Eq. (2)) Item %
Precision P 1 � degree of extraneous items in the result patterns (Eq. (3)) Item %
Nspur # of spurious patterns (Nextra I > Npat I) seq # of patterns
Nredun # of redundant patterns seq # of patterns
Ntotal Total # of result patterns returned seq # of patterns



Table 9
Result patterns {Pj}

ID Result pattern Pj kPjk
P1 (PR) (Q) (I) (IJ) (IJU) (U) (D) (T) 12
P2 (GKQ) (IT) (IJ) (D) (NT) 10
P3 (P) (IS) (U) (DV) (NT) 8
P4 (FR) (M) (C) (BU) (Y) (CL) 9
P5 (F) (AV) (CL) (BSU) (I) 9

Table 8
Base patterns {Bi}: Npat = 3, Lpat = 7, Ipat = 2

ID Base patterns Bi EðF Bi Þ EðLBi Þ kBik
B1 (PR) (Q) (IST) (IJ) (U) (D) (NT) (I) 0.566 0.784 13
B2 (FR) (M) (GK) (C) (B) (Y) (CL) 0.331 0.805 10
B3 (D) (AV) (CZ) (HR) (B) 0.103 0.659 8
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In addition, let Table 9 be the result patterns from a sequential pattern mining algorithm. The length of the
result patterns is given in kPjk. Then, the evaluation is done in the follows steps:

(1) Identify total number of result patterns. Ntotal = k{Pj}k = 5.
(2) Map result patterns to base patterns. Each result pattern, Pj, is mapped to the best matching base pattern

Bi such that kBi � Pjk is maximized over all base patterns Bi in Table 10. For result pattern P5,
kB1 � P5k = k(U)(I)k = 2, kB2 � P5k = k(F)(C)(B)k = 3, and kB3 � P5k = k(AV)(C)(B)k = 4. Thus,
result pattern P5 is mapped to base pattern B3.

(3) Count the number of pattern items and extraneous items for each result pattern. In Table 10, the number of
pattern items and extraneous items are given in Npat I and Nextra I. Result pattern P1 has nine pattern
items it shares with B1 (PR)(Q)(I)(IJ)(U)(D)(T) and three extraneous items (IJU).

(4) Calculate precision, P. The total number of extraneous items is 3 + 2 + 1 + 1 + 5 = 12. The total number
of items in the result pattern is 12 + 10 + 8 + 9 + 9 = 48. Thus, P ¼ ð1� 12

48
Þ � 100% ¼ 75%.

(5) Identify spurious patterns, Nspur. If a result pattern, Pj, has more extraneous items than pattern items, it is
classified as a spurious pattern. P5 is a spurious pattern because 4 < 5. Therefore, Nspur = 1.

(6) Identify max patterns, Pmax(i). Of the remaining result patterns, for each base pattern, Bi, identify the
max result pattern such that kBi � Pjk is maximized over all result patterns Pj(i) mapped to Bi. In Table
10, result patterns are sorted by kBi � Pjk for each base pattern. P1 and P4 are max patterns for B1 and
B2, respectively. B3 does not have a max pattern.

(7) Identify redundant patterns, Nredun. All remaining result patterns are redundant patterns. P2 and P3 are
redundant patterns for B1. Nredun = 2.

(8) Calculate recoverability, R. For each max pattern, calculate recoverability with respect to Bi,
RðBiÞ ¼ kBi�P maxðiÞk

EðLBi Þ�kBik . Truncate R(Bi) to 1 if necessary. Weight and sum over all base patterns.
2 Tra
only c
meanin
R ¼ EðF B1
Þ � RðB1Þ þ EðF B2

Þ � RðB2Þ þ EðF B3
Þ � RðB3Þ ¼ 0:566 � 9

10
þ 0:331 � 8

8
þ 0:103 � 0 ¼ 0:84 ¼ 84%
6. Comparison study

In this section, we employ the evaluation method to conduct a comparison study of the traditional support
model2 with an alternative multiple alignment model. The comprehensive evaluation method enables us to
understand what patterns are returned from each model under a variety of situations.
ditionally, one itemset frequent patterns, called large itemsets, are considered as part of the results. However, in our evaluation we
onsider result patterns with more than one itemset in the sequence as a valid pattern. One itemset patterns are obviously not
gful sequential patterns and can be dismissed easily.



Table 10
Worksheet: R ¼ 84%; P ¼ 1� 12

48
¼ 75%; N total ¼ 5; N spur ¼ 1; N redun ¼ 2
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6.1. Spurious patterns in random data

In this section, we study empirically under what condition spurious patterns are generated from completely
random data. Since there are no base patterns embedded in the data, evaluation criteria recoverability, pre-
cision, and number of redundant patterns do not apply. The only important criteria that applies is the number
of spurious patterns, Nspur, generated by the algorithm. Since there are no base patterns in the data Ntotal =
Nspur. We generate random databases with parameters kIk = 100, Nseq = 1000, Iseq = 2.5, and Lseq =
10, . . . , 50.

Both models have a user specified cutoff point. In the support model, the user sets the minimum support
min_sup. In the alignment model, the user sets the strength cutoff point h. To better understand each of
the parameters, we first examined the threshold where the first spurious pattern occurs, Tspur. In both models,
Tspur suggests that as the sequences get longer, spurious patterns are more likely to occur (Fig. 2(a)). This is to
be expected. However, the significant differences in the values of Tspur in the two models should be fully appre-
ciated. In the support model, Tspur is the highest point at which a spurious pattern appears in the full database.
On the other hand, in the multiple alignment model, Tspur is the highest point at which a spurious pattern
occurs in any subgroup of the database (any cluster). That is support is based on the full database, whereas
strength is based on clusters.

Thus, in practice min_sup is usually set very low and is almost always less than 10%. In the support model,
when Tspur is greater than 10% it suggests a significant problem in dealing with spurious patterns. Fig. 2(a)
show that in all datasets, Tspur is in fact greater than 10%.

In comparison, since the strength cutoff point, h, is specified against a similar group of sequences, it is set
high (20–50%) in practice. The suggested default for consensus patterns is 50%. Thus, Tspur 6 35% for all dat-
abases signifies that the first spurious pattern occurs at a relatively low point. Spurious patterns can clearly be
differentiated from real patterns in such circumstances.
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Fig. 2. Comparison results for random data: (a) Tspur, (b) support model and (c) alignment model.
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Now let us examine the results of each model in detail. The support model has no mechanism to eliminate
patterns that occur simply by chance. When sequences are long, short patterns can occur frequently simply by
chance [7]. The threshold where the first spurious pattern is generated, Tspur, depicts this well empirically. As
the sequence becomes longer, Tspur increases quickly. When Lseq = 50, a simple sequential pattern, h(A)(A)i,
occurs in 610 of 1000 sequences simply by chance. That is 61% of the sequences share the random short pat-
tern. Even when Lseq is only 20, the sequential pattern occurs in 200 of 1000 sequences simply by chance. Thus,
when min_sup is set to conventional values of less than 10% we can expect the result to include these short
spurious patterns. Accordingly, the support model generated many spurious patterns given random data.
In fact, Fig. 2(b) demonstrates that the number of spurious patterns increases exponentially with respect to
Lseq. Clearly, support alone cannot distinguish between significant patterns and random sequences.

In contrast, ApproxMAP handles random data very well. The probability of a group of random sequences
aligning well enough to generate a consensus pattern is negligible. Thus, using default parameters (k = 5,
h = 50%), the multiple alignment model found no spurious patterns in any database with Lseq = 10, . . . , 50
(Fig. 2(c)). Although the algorithm generated many clusters, all the clusters were either very small, or not
enough sequences in the cluster could be aligned to generate consensus patterns. When sequences are longer,
there are a few negligible number of spurious patterns (1, 6, and 5 when Lseq = 30, 40, and 50, respectively)
generated at the lower cutoff point of h = 20%.

6.2. Baseline study of patterned data

Now we move on to investigate the behavior of the algorithms on patterned data. This experiment serves
several purposes. First, it evaluates how well the models detect the underlying patterns in a simple patterned
database. Second, it enables us to study the behavior of the input parameters. Third, it illustrates how readily
the results may be understood. Fourth, it establishes a baseline for the remaining experiments.

To keep the results manageable, we generate a simple database with 1000 sequences built from 10 base pat-
terns. The full parameters of the database is given in Table 11. The first task is to study the input parameters
and tune both models to the optimal settings for this dataset.

Table 12 gives the results for the support model for min_sup = 4%, . . . , 10%. As expected, when support is
decreased recoverability improves. However, the number of redundant and spurious patterns increase as sup-
port is decreased. There is not much change in precision with respect to support. Although though the number
of extraneous items increases significantly, the number of items in the redundant patterns grows just as
quickly. Thus, precision can not properly depict how much extraneous items exist in the results because the
result is overwhelmed by the huge number of redundant patterns. In the presence of large numbers of redun-
dant and spurious patterns, the amount of extraneous items mixed in with the sequential patterns hold less
significance.
Table 11
Parameters for the IBM data generator in experiment 2

Sequence database kIk = 100 Nseq = 1000 Lseq = 10 Iseq = 2.5
Base pattern kKk = 500 Npat = 10 Lpat = 7 Ipat = 2

Table 12
Results from patterned data from the support model

min_sup (%) Recoverability (%) Nitem Nextra I Precision (%) Ntotal Nspur Nredun

4 94.20 6,085,496 197,074 96.76 715,758 249 715,499
5 91.59 1,782,583 66,058 96.29 253,782 58 253,714
6 91.52 881,721 26,633 96.98 128,936 16 128,910

7 87.67 543,717 12,213 97.75 82,638 7 82,621
8 83.76 286,418 6279 97.81 47,540 4 47,526
9 80.81 158,035 3465 97.81 28,337 4 28,323

10 76.89 89,535 2063 97.70 17,323 3 17,310



Table 13
Results from patterned data from the alignment model (h = 30%)

k Recoverability (%) Nitem Nextra I Precision (%) Ntotal Nspur Nredun

3 92.36 179 5 97.21 15 0 7
4 91.66 153 2 98.69 13 0 6
5 91.16 136 4 97.06 11 0 4
6 91.16 106 3 97.17 8 0 1

7 85.77 100 1 99.00 8 0 2
8 82.86 90 4 95.56 7 0 1
9 85.77 90 0 100.00 7 0 1

10 70.76 82 4 95.12 6 0 1
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As the optimal point, we considered min_sup equal to 5% and 6% which had recoverability at over 90% and
number of spurious patterns less than 100. For similar recoverability, min_sup = 6% had much less spurious
patterns. Thus, for this dataset, we chose min_sup = 6% as the optimal setting.

There are two input parameters, k and h, for ApproxMAP. This makes it more difficult to find the optimal
setting for ApproxMAP. Limited by space, we summarize the results from the various experiments we ran to
find the optimal settings. In our first experiment we found that h = 30% was a reasonable setting that gave
good results for a range of k.

Table 13 give the results from our second experiment with h = 30% while varying k. As expected, as k
increases, more sequences are clumped together to form less clusters. This is reflected in the reduction of Ntotal.
Initially the clusters merged in this process are those with similar sequences built from the same base pattern.
This can be seen for k = 3, . . . , 6 where Nredun decreases from 7 to 1 and little change occur in recoverability
from 92.36% to 91.16%. However, when k is increased beyond 6, small clusters (sequences built from less fre-
quent base patterns) are merged together and we start to loss the less frequent patterns resulting in decreased
recoverability. For k = 6, . . . , 10, this phenomena occurs where recoverability is decreased from 91.16% to
70.76%. Fig. 3(a) depicts the drop in recoverability at k = 6. Fig. 3(b) illustrates that the number of redundant
patterns levels off at the same point (k = 6). Hence, k = 6 is the optimal resolution for clustering this database.

As a last step, we tried to optimize h for the optimal k = 6. To be precise, the optimal point is the one where
the most pattern items are found with the least possible extraneous items. In our experiment with k set to 6
while varying h, we found that the optimal results can be obtained when k = 6 and 28% P h P 30%.
Results obtained when 25% P h P 35% were very similar to the optimal results as well. The details are given
in Table 14.

These experiments on the input parameters revealed interesting behaviors of both models. The experiment
on the support model depicts the trade off between recoverability and number of redundant and spurious pat-
terns. The experiment reiterates that support is not a good criteria to detect only the underlying patterns in the
data as it can not differentiate between random occurrences and statistically significant patterns. By lowering
support, the user can detect more patterns at the cost of more redundant and spurious patterns.
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Fig. 3. Effects of k (a) recoverability w.r.t. k and (b) number of redundant patterns w.r.t. k.



Table 14
Results from patterned data from the alignment model (k = 6)

h (%) Recoverability (%) Nitem Npat I Nextra I Precision (%) Ntotal Nspur Nredun

20 93.10 125 106 19 84.80 8 0 1
25 91.16 108 103 5 95.37 8 0 1
30 91.16 106 103 3 97.17 8 0 1

35 91.16 102 100 2 98.04 8 0 1
40 88.69 98 98 0 100.00 8 0 1
45 88.69 97 97 0 100.00 8 0 1
50 87.45 96 96 0 100.00 8 0 1

44 H.-C. Kum et al. / Data & Knowledge Engineering 60 (2007) 30–50
The experiment on the alignment model revealed that ApproxMAP is robust with respect to the input
parameters. That is many settings give results comparable to the optimal solution (k = 5 or 6;
25% P h P 35%). More importantly, for a wide range of k and h the results are at least a sub-optimal solu-
tion. For k = 3 to 9 and 25% P h P 45%, all results had recoverability greater than 80% and precision greater
than 90%.

Now let us compare the mined results from the optimal runs. The results and the optimal parameters are
summarized in Table 15. In this section, we add an important variation of the support model to the compar-
ison experiment. The MaxSupport model retrieves only the max sequential patterns from the support model,
which reduces the redundancy in the results. We were interested to see just how much redundancy would be
reduced. For this experiment, we used the brute force method to find max sequential patterns. It should be
noted that there is no known efficient algorithm to find max sequential patterns yet. The only paper we are
aware of is [12] for finding closed sequential patterns. More research is required for extending it to find
max sequential patterns. The brute force method is too inefficient to be applicable on real data.

The recoverability for all models is good at over 90%. However, in the support model it is difficult to extract
the 10 base patterns from over 128,000 results. In fact, the generated patterns from the support model are
almost 129 times the number of sequences in the given database (Nseq = 1000 and Ntotal = 128,936). Majority
of the result patterns are redundant patterns (Nredun = 128,910) which are either subsequences of a longer pat-
tern or a small variation on it. They hold no additional information and instead bury the true patterns. In
addition, there are more spurious patterns (Nspur = 16) than the 10 base patterns in the data. Even if we were
to find only the max-patterns, there are still 20,992 max-patterns. That is still close to 21 times that of the num-
ber of sequences in the given database. Again most are redundant patterns: 20,974 are redundant patterns and
9 are spurious patterns. The results still hold too much redundancy due to the variations that exist in the basic
pattern and noise in the data. Furthermore, although the precision seems to be reasonable at 96.98%, this
accounts for 26,633 extraneous items. The precision seems good because there are so many redundant items
in the results. Consequently, when the redundancy is reduced in the max support model, precision decreases to
87.77%.

In contrast, the alignment model returned a very succinct but accurate summary of the base patterns. Table 16
gives, in one small table, the full results. All the consensus patterns, PatConSeqi, with the matching base pat-
terns, BasePi, are shown along with expected frequency and length of the base patterns. The sequences are
sorted by the expected frequency of the base patterns. In this small database, manual inspection clearly shows
how well the consensus patterns match the base patterns used to generate the data. Each consensus pattern
found was a subsequence of considerable length of a base pattern. Clearly, the eight consensus sequences pro-
vide a good overview of the 1000 data sequences. The consensus patterns do not cover the three weakest base
Table 15
Comparison results for patterned data

Model Optimal settings R (%) Nitem Nextra I P (%) Ntotal Nspur Nredun

Alignment k = 6, h = 28%, . . . , 30% 91.16 106 3 97.17 8 0 1
Support min_sup = 6% 91.52 881,721 26,633 96.98 128,936 16 128,910
MaxSupport min_sup = 6% 91.15 122,144 14,939 87.77 20,992 9 20,974



Table 16
Consensus patterns and the base patterns in a small data set

E(FB) E(LB) kPk Type Patterns

0.21 0.66 13 ConPat1 h(15,16,17,66)(15)(58,99)(2,74)(31, 76)(66)(62)i
14 BasePat1 h(15,16,17,66)(15)(58,99)(2, 74)(31,76)(66)(62)(93)i

0.161 0.83 19 ConPat2 h(22,50,66)(16)(29,99)(94)(45,67)(12,28,36)(50)(96)(51)(66)(2,22, 58)i
15 ConPat3 h(22,50,66)(16)(29,99)(94)(45,67)(12,28,36)(50)(96)(51)i
22 BasePat2 h(22,50,66)(16)(29,99)(94)(45, 67)(12,28,36)(50)(96)(51)(66)(2,22,58)(63,74,99)i

0.141 0.82 11 ConPat4 h(22)(22)(58)(2,16,24,63)(24,65,93)(6)i
14 BasePat3 h(22)(22)(58)(2,16,24,63)(24, 65,93)(6)(11,15,74)i

0.131 0.9 11 ConPat5 h(31,76)(58,66)(16,22,30)(16)(50,62,66)i
15 BasePat4 h31,76)(58,66)(16,22,30)(16)(50, 62,66)(2,16,24,63)i

0.123 0.81 13 ConPat6 h(43)(2,28,73)(96)(95)(2,74)(5)(2)(24,63)(20)i
14 BasePat5 h(43)(2,28,73)(96)(95)(2,74)(5)(2)(24, 63)(20)(93)i

0.121 0.77 8 ConPat7 h(63)(16)(2,22)(24)(22,50,66)i
9 BasePat6 h(63)(16)(2,22)(24)(22,50, 66)(50)i

0.054 0.6 16 ConPat8 h(70)(58)(22,58,66)(22,58)(74)(22,41)(2,74)(31,76)(2,74)i
13 BasePat7 h(70)(58,66)(22)(74)(22,41)(2, 74)(31,76)(2,74)i

0.014 0.91 17 BasePat8 h(20,22,23,96)(50)(51,63)(58)(16)(2, 22)(50)(23,26,36)(10,74)i
0.038 0.78 7 BasePat9 h(88)(24,58, 78)(22)(58)(96)i
0.008 0.66 17 BasePat10 h(16)(2,23,74,88)(24,63)(20, 96)(91)(40,62)(15)(40)(29,40,99)i
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patterns. But, recoverability is still quite good at 91.16% because in general, the consensus patterns recover
major parts of the base patterns with high expected frequency in the database. In addition, there were only
one redundant pattern, no spurious patterns, and three extraneous items.

It is interesting to note that a base pattern may be recovered by multiple consensus patterns. For example,
ApproxMAP forms two clusters whose consensus patterns approximate base pattern BaseP2. This is because
BaseP2 is long (kBaseP2k = 22, E(LB) = 18) and has a high expected frequency (16.1%). Therefore, many data
sequences are generated using BaseP2 as a template. However, two sequences using the same long base pattern
as the template are not necessarily similar to each other because sequences are generated by removing various
parts of the base pattern and combining them with other items. As a result, the sequences generated from a
long base pattern can be partitioned into multiple clusters. One cluster with sequences that have most of the 22
items from BaseP2 (PatConSeq2) and another cluster with sequences that are shorter (PatConSeq3). The one
which shares less with the base pattern is classified as a redundant pattern in the evaluation method.

6.3. Robustness with respect to noise

Typically, real data have high levels of noise. For example, in a sales marketing database, many customers
may share similar buying habits, but few of them follow exactly the same buying patterns. A good sequential
pattern mining algorithm should be able to detect the general trend shared across these similar sequences in
the presence of noise. In this section, we evaluate the robustness of the models with respect to varying degree
of noise added to the patterned data used in Section 6.2.

The support model is on exact match. That is, a sequence in the database supports a pattern if, and only if,
the pattern is fully contained in the sequence. Results show that such an exact match-based model is vulner-
able to noise in the data. As seen in Fig. 4, as the corruption factor, 1 � a, increases, the support model detects
less of the base patterns (recoverability decrease) and picks up more extraneous items (precision decrease).
When the corruption factor is 30%, recoverability degrades significantly to 25.89%. Even when min_sup is
lowered to 2%, the recoverability is only 65.01% when the corruption factor is 30%. Note that even with recov-
erability at 25.89%, the model returns 2070 patterns that include 495 extraneous items.

In comparison, the alignment model is robust to random noise in the data. The goal in the alignment model
is to report the general underlying trend in the data through sequence alignment. In the process of lining sim-
ilar sequences, ApproxMAP tunes into those items that are shared across sequence while ignoring random
noise not shared by sequences. Hence, despite the presence of noise, as shown in Fig. 4, ApproxMAP is still
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Fig. 4. Effects of noise under optimal settings (a) recoverability w.r.t. 1 � a and (b) precision w.r.t. 1 � a.
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able to detect a considerable number of the base patterns (i.e. recoverability is 90.95% when corruption factor
is 30%) with high precision and no spurious patterns.

6.4. Robustness with respect to outliers

It is safe to assume that real data has high levels of outliers along with noise. A good mining algorithm
should be able to detect the patterns regardless of the outliers in the data. In order to test the effect of outliers
on the algorithm, we added random sequences to the patterned dataset used in Section 6.2.

The main effect of the outliers is the weakening of the patterns as a percentage of the database. Conse-
quently, in the support model the recoverability along with the number of spurious patterns, the number of
redundant patterns, and the number of extraneous items is decreased when min_sup is maintained at 6%.
On the other hand, when min_sup is maintained as 60 sequences, obviously the recoverability can be main-
tained. The tradeoff is that the number of spurious patterns, redundant patterns, and extraneous items all
increase.

Similarly, in ApproxMAP when h is kept the same at 30% the results decline as the number of outliers
increase. However, the longer underlying patterns can be easily detected by adjusting h to compensate for
the outliers in the data. In summary, with a slight decrease in h we can recover all of the base patterns detected
in the simple patterned data with only minor decrease in precision. The detailed results can be found in the
Appendix A.

6.5. Discussion

In the absence of noise in the data, the support model can find the underlying patterns in the data. How-
ever, the real patterns are buried under the huge number of redundant and spurious patterns. In the presence
of noise in the data, the ability to detect the underlying patterns quickly degrades but a large number of redun-
dant and spurious patterns still remain.

These empirical results are inline with the theoretical analysis of the support model and clearly depicts the
inherent limitations. First, support along cannot distinguish between statistically significant patterns and ran-
dom occurrences [7]. Many short patterns can occur frequently simply by chance along. Consequently, the
support model returns more spurious patterns than the base patterns in the data. Second, by definition of find-
ing the complete set of frequent subsequences, the support model has much redundancy in the results. Fur-
thermore, even when the results contain only the max sequential patterns the redundancy from variations
of the underlying pattern still remains. This is evident in the numerous redundant patterns in both the support
model and the max support model. And finally, the exact match-based support model can not detect the
underlying patterns in the presence of noise in the data.

In comparison, the evaluation results revealed that the alignment model returns a succinct but accurate
summary of the base patterns with few redundant patterns and no spurious patterns. ApproxMAP is able to
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summarize the 1000 data sequences into 8 consensus patterns. Furthermore ApproxMAP is robust with respect
to the two input parameters k and h. Many settings give results comparable to the optimal solution while a
wide range of k and h give at least a sub-optimal solution. In addition, the experiments demonstrate that
the alignment model is robust to both noise and outliers in the data.

Again these empirical results support the theory well. The likelihood of random sequences lining up to pro-
duce patterns is slim. Furthermore, the alignment process allows for approximate matches and ignores both
noise and variations in the data. By lining up similar sequences and detecting the general trend, the multiple
alignment model effectively finds consensus patterns that are approximately similar to many sequences. Such
an approach dramatically reduces the redundancy among the derived patterns and virtually eliminates all spu-
rious patterns.

This empirical study suggests that the alignment model will give a good summary of the sequential data in
the form of a set of common patterns in the data. In contrast, the support model does not try to summarize. In
fact, it tends to return many more patterns than the number of sequences in the original data. This suggests the
need for more post processing. It seems appropriate to consider the output of the support model as summary
statistics of the sequential data which can be used in subsequent mining processes rather than the end results.
Indeed in association rule mining, the output of the support counts are fed into the confidence rule to find
association rules between items. Application of such confidence rules to sequential data can be vague and
more complex [10]. In order for the support model to be of real use, more research is needed on the final post
processing steps of sequential pattern mining.
7. Conclusion and future work

7.1. Conclusion

As a first step towards building a general benchmark for sequential pattern mining, we propose an evalu-
ation method that can quantitatively assess how well the models can find known common patterns in the data.
We first extend the well-known IBM synthetic data generator to generate variety of situations varying ran-
domness and noise. Then, we develop a comprehensive set of evaluation criteria to use in conjunction with
the IBM synthetic data. Together the five criteria: (1) recoverability, (2) precision, (3) the total number of
result patterns returned, (4) the number of spurious patterns, and (5) the number of redundant patterns mea-
sure how much of the underlying patterns are found and whether or not it generates any spurious patterns or
extraneous items.

Such a method provides a basis for comparing the results of different sequential mining models. We empha-
size that the purpose of the benchmark is not to determine which sequential method is best for all domains.
Rather, the evaluation depicts what information is being returned from the various models under a variety of
circumstances. Namely, the evaluation method provides a comprehensive understanding of the resulting pat-
terns empirically.

This evaluation method will enable researchers not only to use synthetic data to benchmark performance in
terms of speed, but also to quantify the quality of the results. Such benchmarking will become increasingly
important as more data mining methods focus on approximate solutions.
7.2. Future work

Known common patterns in the data are only one type of target patterns. For a more comprehensive
benchmark for sequential pattern mining, much work is needed to design good synthetic data with different
types of target patterns and matching evaluation criteria. Here we briefly discuss two commonly studied target
patterns, frequent patterns and outlier patterns.

Frequent patterns can be defined as subsequences that occur frequently in a given database. Although most
widely studied, the fundamental question as to what should be considered frequent in a given database has not
been researched much. In order to evaluate frequent pattern mining effectively, the target pattern, frequent
sequential patterns, must be objectively defined first. More precisely, given a database, how can we determine
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an objective support threshold rather than a user given threshold. Designing appropriate evaluation criteria
for frequent patterns should come after objectively defining the target pattern.

Outlier patterns are the problem of detecting rare sequences in the data such as in fraud detection. We can
expand the current framework to evaluate outlier pattern detection since many of the base patterns are in fact
practical outliers. Specifically, base patterns with small E(F) are outliers that occur rarely in the database.
Thus, we can consider these base patterns as the target patterns. All but one of the evaluation criteria pro-
posed in this paper apply to outlier pattern detection. Recoverability is not applicable as it gives more empha-
sis on finding commonly occurring patterns. Comparable criteria need to be designed for outlier pattern
detection.

Furthermore, methods to evaluate mining algorithms using real data need more attention. Access to real
sequential data is virtually impossible. Most real data available in data repositories are too small for mining
sequential data. Even the unusually large Gazella data set from KDD-CUP 2000 only has an average of less
than two itemsets per sequence [5]. Hence, the dataset cannot be used to mine sequential patterns. More effort
is needed to provide real sequential data publicly.
Appendix A. Detailed results

(See Tables A.1–A.6).
Table A.1
Effects of noise: the support model (min_sup = 6%)

1 � a (%) Recoverability (%) Nitem Nextra I Precision (%) Ntotal Nspur Nredun

0 91.52 881,721 26,633 96.98 128,936 16 128,910
10 70.37 114,630 6696 94.16 24,591 5 24,576
20 50.44 20,582 1814 91.19 5907 3 5895
30 25.89 6047 495 91.81 2070 0 2063
40 27.14 2335 171 92.68 906 0 899
50 14.67 1013 57 94.37 440 0 435

Table A.2
Effects of noise: the alignment model (k = 6, h = 30%)

1 � a (%) Recoverability (%) Nitem Nextra I Precision (%) Ntotal Nspur Nredun

0 91.16 106 3 97.17 8 0 1
10 91.16 104 1 99.04 9 0 2
20 91.16 134 1 99.25 12 0 5
30 90.95 107 0 100.00 9 0 2
40 88.21 95 0 100.00 9 0 2
50 64.03 68 0 100.00 8 0 3

Table A.3
Effects of outliers: the support model (min_sup = 6%)

Noutlier min_sup (%) Recoverability (%) Nitem Nextra I Precision (%) Ntotal Nspur Nredun

0 60/1000 = 6.0 91.52 881,721 26,633 96.98 128,936 16 128,910
200 72/1200 = 6.0 87.67 476,480 10,628 97.77 73,936 7 73,919
400 84/1400 = 6.0 83.76 224,885 4961 97.79 38,614 4 38,600
600 96/1600 = 6.0 77.98 111,687 2603 97.67 21,094 3 21,081
800 108/1800 = 6.0 67.48 53,765 1402 97.39 11,407 2 11,396



Table A.4
Effects of outliers: the support model (min_sup = 60 sequences)

Noutlier min_sup (%) Recoverability (%) Nitem Nextra I Precision (%) Ntotal Nspur Nredun

0 60/1000 = 6.0 91.52 881,721 26,633 96.98 128,936 16 128,910
200 60/1200 = 5.0 91.52 882,063 26,726 96.97 129,061 16 129,035
400 60/1400 = 4.3 91.52 882,637 26,867 96.96 129,231 16 129,205
600 60/1600 = 3.8 91.52 882,960 26,961 96.95 129,346 16 129,320
800 60/1800 = 3.3 91.52 883,219 27,048 96.94 129,439 17 129,412

Table A.5
Effect of outliers: the alignment model (k = 6, h = 30%)

Noutlier NPatSeq Recoverability (%) Nitem Nextra I Precision (%) Ntotal Nspur Nredun

0 1000 91.16 103 3 97.17 8 0 1
200 1000 91.16 100 2 98.04 8 0 1
400 1000 88.33 97 0 100 8 0 1
600 1000 82.87 92 0 100 8 0 1
800 1000 72.88 81 0 100 7 0 1

Table A.6
Effect of outliers: the alignment model (k = 6)

Noutlier NPatSeq h (%) Recoverability (%) Nitem NextraI Precision (%) Ntotal Nspur Nredun

0 1000 30 91.16 103 3 97.17 8 0 1
200 1000 25 91.16 103 4 96.26 8 0 1
400 1000 22 91.16 103 6 94.50 8 0 1
600 1000 18 91.16 103 10 91.15 8 0 1
800 1000 17 91.16 103 11 90.35 8 0 1
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