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The Collaborative Cross (CC) is a mouse recombinant inbred strain panel that is being developed as a resource for
mammalian systems genetics. Here we describe an experiment that uses partially inbred CC lines to evaluate the genetic
properties and utility of this emerging resource. Genome-wide analysis of the incipient strains reveals high genetic diversity,
balanced allele frequencies, and dense, evenly distributed recombination sites—all ideal qualities for a systems genetics
resource. We map discrete, complex, and biomolecular traits and contrast two quantitative trait locus (QTL) mapping
approaches. Analysis based on inferred haplotypes improves power, reduces false discovery, and provides information to
identify and prioritize candidate genes that is unique to multifounder crosses like the CC. The number of expression QTLs
discovered here exceeds all previous efforts at eQTL mapping in mice, and we map local eQTL at 1-Mb resolution. We
demonstrate that the genetic diversity of the CC, which derives from random mixing of eight founder strains, results in high
phenotypic diversity and enhances our ability to map causative loci underlying complex disease-related traits.

[Supplemental material is available for this article. The microarray data from this study have been submitted to the NCBI
Gene Expression Omnibus (http://www.ncbi.nlm.nih.gov/geo) under accession no. GSE22297.]

Mouse models have made significant contributions to our un-

derstanding of human biology and disease. Analogous physiology

and anatomy between humans and mice enables the study of

human diseases in an organism that is amenable to laboratory

investigation. Moreover, we can manipulate the mouse experi-

mentally, and as a result, characterize disease mechanisms in ways

that are impossible in humans. Mouse models allow application of

powerful genomic techniques to identify and validate causative

genes underlying human diseases with complex etiologies.

Recombinant inbred lines (RILs) are one of the many mouse

resources that have been developed to advance complex disease

research. RILs are well suited for modeling variable susceptibility to

disease among individuals, particularly for common diseases that

can be attributed to the combined effects of multiple genetic and

environmental factors. RIL panels are genetic reference populations

that can be studied across a range of perturbations, and have the

added benefit of known population structures (Churchill 2007).

However, existing RIL panels have limitations such as large regions
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of the genome lacking genetic variation and low statistical power

due to small panel sizes that make them suboptimal for genome-

wide analyses with contemporary ‘‘-omic’’ technologies. This

study demonstrates the utility of a next-generation RIL resource

specifically designed to overcome limitations of current mouse

resources.

The Collaborative Cross

The Collaborative Cross (CC) is currently under development

as a next-generation platform for mammalian systems genetics

(Threadgill et al. 2002; Churchill et al. 2004). The CC will consist of

a panel of RILs derived from eight diverse founder strains, in-

cluding five classical inbred strains (A/J, C57BL/6J, 129S1/SvImJ,

NOD/LtJ, and NZO/H1LtJ) and three wild-derived strains repre-

senting the three Mus musculus subspecies (CAST/EiJ, PWK/PhJ,

and WSB/EiJ). The eight founder strains capture a level of genetic

diversity unsurpassed by any existing RIL panel or other extant

mouse resource (Roberts et al. 2007). The CC will comprise sub-

stantially more lines than existing RIL panels and, thus, it will

provide more statistical power. Because the captured genetic vari-

ation will be randomly distributed among the lines, the CC will

minimize spurious associations in mapping studies. In the CC RIL

breeding scheme (Fig. 1A), founder strains contribute equally to

each of the independently bred lines. Two generations of out-

crossing are required to produce generation G2:F1 mice, whose

genomes include balanced contributions from the eight founder

strains. After this generation, CC strains become inbred by

brother–sister mating. The rate of inbreeding is rapid at first and

slows with each subsequent generation.

Study design

We performed an experiment, referred to as the pre-CC study, to

investigate the genetic architecture and phenotypic characteristics

of the incipient CC strains. We observed variation in a broad range

of phenotypes, examined the genetic properties of the panel, and

developed and tested data analysis strategies that will also apply to

the finished CC strains.

The pre-CC study used partially inbred mice from 220 CC

lines that were initiated at the Oak Ridge National Laboratory

(ORNL) (Chesler et al. 2008). Mice ranging from generation G2:F5

to G2:F12 were distributed to four distinct phenotyping arms (Sup-

plemental Fig. 1; Supplemental Table 1). The phenotyping arms

focused on (1) exercise behavior and metabolism; (2) H1N1 in-

fluenza susceptibility; (3) SARS-CoV susceptibility; and (4) allergic

airway disease. Phenotyping for the first three arms was conducted

at the University of North Carolina–Chapel Hill (UNC), while the

fourth arm was conducted at the National Human Genome Re-

search Institute (NHGRI). To the extent possible, littermates from

each CC line were distributed across the four arms of the study. Due

to the complex logistics of breeding and shipping mice, the sample

sizes varied among study arms with the largest arm containing 184

mice. Tissues from terminal dissection of the mice were sent to

National Jewish Health (NJH) for characterization of innate im-

mune response and to The Jackson Laboratory ( JAX) for gene ex-

pression analysis. In addition to these four study arms, pheno-

typing efforts were also performed using different sets of mice at

the ORNL and Tel Aviv University (TAU) breeding facilities.

Here we present the first genetic data and analysis from the

incipient CC lines: 33.4 million genotypes, two phenotypes, and

Figure 1. Genetic properties of the Pre-CC panel. (A) Eight founder’s inbred strains were bred according to the original funnel design (Churchill et al.
2004). The G2:F1 generation has contributions from all eight founders. Siblings are mated in this and all subsequent generations until the lines are isogenic.
(B) An example of a pre-CC genome from a single G2:F7 animal. Ancestry was inferred by comparing pre-CC and founder genotypes using an HMM. (C )
Founder contributions to any particular line (columns) vary from 1.3% to 30.7%. (D) Each of the eight founders contributes between 11.4% and 13.5% to
184 lines from the exercise behavior and metabolism phenotyping arm.
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23,176 gene expression measurements from one arm of the pre-CC

study. These data enabled us to illustrate the properties of the study

design and to provide an overview of the analysis techniques and

strategies developed for the CC. High-density genotype data

allowed us to ask questions about the breeding process and com-

pare our expectations with empirical observations. We estimated

ancestry across each pre-CC genome, and these analyses indicated

that the incipient CC strains are genetically diverse and include

balanced contributions from each founder strain. Additionally,

we mapped quantitative trait loci (QTL) for white head-spotting,

a discrete character observed in one of the eight founder strains;

baseline body weight, a trait known to be highly polygenic; and

liver mRNA expression profile. Thus, we highlight results from

three types of traits–Mendelian, complex, and molecular. An an-

cestry-based approach proved superior to marker-based methods

for mapping QTL in the pre-CC population, and facilitated new

approaches to downstream analysis that are introduced here.

These genetic analysis strategies and the population genetic ar-

chitecture are the common elements shared across the four pre-CC

study arms.

Results

PreCC genomes have balanced founder contributions

Male mice from the exercise behavior and metabolism study arm

(n = 184) were genotyped at UNC using a high-density genotyping

platform (Yang et al. 2009). Marker density far exceeds recom-

bination in the panel, making it possible to observe effectively

every transition in the ancestry of each mouse. On average, these

mice had undergone 6.7 generations of inbreeding and were 84.1%

homozygous. We applied a hidden Markov model (HMM) to the

genotypes to infer from which of the eight CC founder strains

each allele was inherited (Fig. 1B; Mott et al. 2000; Liu et al. 2010)

and used these results to assess the properties of the panel as

a whole. Genome segments were defined as the regions between

inferred recombination breakpoints. Pre-CC autosomal genomes

had 142.3 segments on average (st dev. = 21.8). Simulated CC ge-

nomes (Broman 2005) had 134 segments on average, which is

significantly fewer (one sample t-test, t = 5.16, P # 0.0001). This is

consistent with a model in which some of the observed segments

will be lost during the process of inbreeding. Segment sizes were

exponentially distributed with a median of 10.46 Mb, which is

smaller than the simulated median segment size of ;17 Mb (8.5 cM).

Founder contributions to individual lines varied from 1.3% to

30.7% (Fig. 1C), with one exception. A small number of lines that

were determined to include breeding errors were excluded from the

study (see Supplemental material). When averaged across all pre-

CC lines, each of the eight founders contributed uniformly to the

population (11.4%–13.5%) (Fig. 1D). Local allele frequencies in

each genomic segment ranged from 4.1% to 27.3%, demonstrating

that genetic variation from each of the eight founder strains was

present at all loci (Fig. 2). Allele frequencies deviated significantly

from the expected 12.5% only in extremely short intervals (spikes

on Chr 2 and Chr 15 in Fig. 2), most likely due to uncertainty in

haplotype inference.

QTL mapping indicates white head-spotting in the pre-CC
is a Mendelian recessive trait linked to a region on Chr 10

Two methods for mapping QTL were applied to the study data. A

marker-based association method regresses phenotypic values on

observed marker genotypes. This method does not take advantage

of our ability to infer the founder origin of inherited haplotypes. In

addition, we used an eight-allele linkage model in the manner

previously described for multifounder crosses (Mott et al. 2000;

Valdar et al. 2006b; Kover et al. 2009). Specifically, phenotypic

values were regressed on estimated founder haplotype probabili-

ties in each marker interval. An allele descended from the A/J

founder was considered distinct from an allele descended from

C57BL/6J, even though individual marker genotypes in that in-

terval may be identical. In this way we accounted for unobserved

Figure 2. Allele frequencies. Genome-wide founder allele frequencies range from 4.1% to 27.3%. The color corresponding to each founder strain is the
same as in Figure 1D.
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variation unique to each founder strain. However, in this partially

inbred panel, eight founder alleles can result in 28 unique het-

erozygous genotypes. Any particular heterozygote genotype was

rare enough that we had no power to evaluate its relationship to a

QTL. Instead, we made the simplifying assumption that a hetero-

zygote has a phenotype that is intermediate between the pheno-

types of the two associated homozygote genotypes. We applied

both methods in the pre-CC population. Here we use the white

head-spotting trait to illustrate the differences.

White head-spotting results from the absence of pigment

from an area on the crown of the head in WSB/EiJ mice. Mutations

in numerous genes have been previously identified that result in

the absence of pigment-producing melanocytes in mice. However,

the genetic basis of the WSB/EiJ white head spot has not been

determined. Spotting was not observed in any F1 hybrid crosses

with WSB/EiJ, suggesting that head-spotting is due to a single locus

recessive allele or to complex inheritance involving multiple loci.

Since the white head spot cannot be observed in albino mice,

those animals were removed from the mapping population and

the trait was mapped using 111 nonalbino mice. We observed six

animals with white head spots, which is less than expected for

a single locus recessive (expectation = 11.7, see Supplemental

material).

Association mapping with the marker-based model revealed

several markers with high LOD scores throughout the genome,

with two significant loci on Chr 2 (147.4 Mb, LOD = 15.59) and

Chr 10 (89.9 Mb, LOD = 15.78) that exceed the 5% genome-wide

LOD threshold of 15.35 (Fig. 3A). In contrast, the eight-allele

model produced a LOD profile with a single highly significant peak

located at 92.0 Mb on Chr 10 (LOD = 17.36, 5% genome-wide

threshold = 10.03). To explain this discrepancy, we looked at the

genotypes and allele effects underlying each locus (Supplemental

Fig. 3). At the Chr 2 locus, two of 111 samples had heterozygous

genotypes, and both of these were white-spotted animals. The

other four spotted animals did not share the WSB/EiJ allele. Given

our observation of white head-spotting in the WSB/EiJ strain and

absence of head-spotting in F1 hybrids, the Chr 2 locus is an im-

plausible genetic explanation for white head-spotting. The sig-

nificant test statistic resulted from the small number of head-

spotted samples combined with the small number of heterozygous

animals and the chance occurrence of two white-spotted animals

being heterozygous at the same locus. In contrast to these results,

all six white head-spotted samples share the allele that is private

to WSB/EiJ at the Chr 10 locus. We conclude that the Chr 2 locus is

spurious and that white spotting is driven by a single QTL on Chr 10.

We identified the founder haplotypes and assigned bound-

aries to the genomic regions contributed by each founder in each

of the six mice with a white head spot. The overlap of homozygous

WSB/EiJ haplotypes concordant with the LOD peak on Chr 10

supports a recessive Mendelian mode of inheritance for the white

head-spot phenotype. Specifically, the white head-spotted animals

share two regions of WSB/EiJ homozygosity, from 88.6 to 94.3 Mb

and from 96.4 to 101.3 Mb (Fig. 3B, one animal had a region

descended from the A/J strain from 94.3 to 96.4 Mb). We used the

Gene Ontology (GO) and Mammalian Phenotype Ontology to

query whether any of the 52 genes in this region were known to be

associated with white spotting. The kit ligand (Kitl, stem-cell factor,

steel factor) was associated with phenotypes including white spot-

ting, head spot, and head blaze, and with the GO biological process

positive regulation of melanocyte differentiation. None of the other

51 genes in the region were associated with these or similar terms

in either ontology. Numerous alleles of Kitl and its target receptor Kit

have been reported to result in white-spotting phenotypes

(Sarvella 1956; Rhim et al. 2000). This wealth of evidence makes

Kitl a strong candidate for the white-spotting gene in the WSB/EiJ

inbred strain and the pre-CC population.

Figure 3. White head-spot genome scan. (A) Marker-based (light gray) and eight-allele (black) models implicate an allele on Chr 10. (B) Superimposing
WSB/EiJ homozygous regions from white head-spotted samples reveals two candidate regions from 88.6 to 94.3 Mb and from 96.4 to 101.3 Mb.
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Allele effect patterns for a complex trait QTL provide a means
for data integration and candidate gene discovery

Body weight shows a continuous range of variation that is con-

sistent with polygenic genetic architecture in the pre-CC mice. The

founder strains vary widely in body weight. The obese NZO/HlLtJ

mice weigh 45.7 g on average (n = 8), while the three wild-derived

inbred strains averaged only 16.2 g (n = 28) between 11 and 14 wk

of age. We used the eight-allele model to map QTL for baseline

body weight (Fig. 4A). One QTL was detected on Chr 4 (LOD = 7.90,

5% genome-wide error rate threshold = 6.98), which explained

18.6% of the observed phenotypic variation. This QTL was desig-

nated Bwq14 and spans the region from 3.03 to 10.34 Mb (1.5 LOD

drop confidence interval), which contains 42 genes (Supplemental

Table 2). Several additional peaks were distinct, but not significant,

at a 5% threshold. Of these, peaks on Chr 10 and Chr 15 are in the

same location as previously reported QTLs for relative fat content

(Purcell-Huynh et al. 1995; Keightley et al. 1998; Brockmann et al.

2000). In contrast, no QTLs were detected using the marker-based

approach.

We estimated allele effects at the five highest peaks in order to

determine which founder strains contributed high body weight

alleles. Two peaks on Chr 6 were associated with different allele

effect patterns, indicating that they are indeed separate loci. We

found that five of the eight founders (A/J, C57BL/6J, 129S1/SvImJ,

NZO/HlLtJ, and CAST/EiJ) contributed high body weight alleles at

one or more of these loci. The genomic contribution of the NZO/

HlLtJ strain to individual pre-CC mice ranged from 3.7% to 24.9%,

but there was no correlation between the proportion of NZO/HlLtJ

ancestry and body weight. These observations indicate that varia-

tion in body weight is not driven solely by the genetic contributions

from the founder with the most extreme body weight. However, the

high body weight allele underlying Bwq14 is shared by the NZO/

HlLtJ and C57BL/6J strains, the two CC founder strains with the

highest body weights (Fig. 4B). We used this allele effects pattern in

two separate analyses to refine the QTL location and identify

functional candidates for the gene(s) underlying Bwq14.

We performed a founder haplotype analysis using a very high-

density SNP resource (Frazer et al. 2007) and genotypes from the

Mouse Diversity Array (MDA) (Yang et al. 2009). We identified re-

gions of sequence polymorphism in which NZO/HlLtJ and C57BL/6J

share the same allele, but are different from the other six founders.

SNPs with this strain diversity pattern (SDP) are densely clustered

at 6.01–10.62 Mb (Fig. 4B; Frazer et al. 2007; Szatkiewicz et al.

Figure 4. Baseline body weight genome scan. (A) Eight-allele model (black) indicates a QTL on Chr 4, named here Bwq14, and several suggestive peaks.
No peaks reach significance using the marker-based method (light gray). (B) Allele effects plot for Bwq14 suggest a shared NZO/HlLtJ and C57BL/6J allele at
this locus is associated with an increase in body weight (dark-gray and light-blue lines). The color corresponding to each founder strain is the same as in
Figure 1D. (C ) A region of sequence identity between NZO/HlLtJ and C57BL/6J (black bars) reduces the candidate region to 4.69 Mb.
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2008; Yang et al. 2009). This step reduced

the candidate region by 37%, to 4.61 Mb.

This NZO/HlLtJ-C57BL/6J identical by

descent (IBD) region contains 12 genes

(71% reduction).

We incorporated liver gene expres-

sion data collected from a subset of pre-

CC samples (see next section). We per-

formed expression QTL (eQTL) analysis

on 11,167 genes that are expressed above

background levels among the pre-CC

samples. Eighteen of the genes located in

the Bwq14 confidence interval had a local

eQTL. We compared the allele effects pat-

terns underlying each eQTL with the allele

effects pattern of the phenotypic QTL.

Only one eQTL, for the gene aspartate-

beta-hydroxylase (Asph, cardiac junctin),

shared the pattern in which the NZO/

HlLtJ and C57BL/6J effects are clustered

together and apart from the other six strain effects.

Finally, we used GO and Mammalian Phenotype data to ask

whether any of the genes in the region were associated with terms

related to body weight. Six genes were linked to relevant GO terms,

phenotypes, or both (Supplemental Table 2). The overlap between

these three independent analyses determined our highest priority

candidates. Four genes had associated ontology terms and fell

within the NZO/HlLtJ-C57BL/6J IBD region (Cyp7a1, Chd7, Asph,

Gdf6). Of these, only Asph had a local eQTL, and the allele effects

pattern for that eQTL matched the effects pattern for Bwq14. This

evidence places Asph as the strongest candidate for future functional

studies on body weight. We acknowledge that candidates that do

not affect mRNA abundance could also be responsible for Bwq14. To

further characterize Asph, we examined SNPs present in and around

the gene based on complete genome sequences of the eight founder

strains (http://www.sanger.ac.uk/resources/mouse/genomes/, see

comment in the Methods section). This confirmed that NZO/HlLtJ

and C57BL/6J are, in fact, IBD for the entire gene, and all other

strains differ by a minimum of seventeen SNPs. The A/J and NOD/

LtJ alleles are essentially identical to each other and differ from the

NZO/HlLtJ-C57BL/6J allele in the 39 untranslated region (UTR),

which could potentially alter expression levels. The other four

strains each harbor distinct haplotypes with variation throughout

Asph, including a shared alternative translation stop site.

Abundant local eQTLs reveal high functional diversity
and precise mapping

In order to estimate the mapping resolution and to assess functional

diversity on a genome-wide scale, we performed gene expression

profiling using liver mRNA from 156 available pre-CC samples.

We filtered the set of 23,176 probe sets to 11,167 genes that were

expressed above background levels in more than 87.5% of the

population. A genome-wide eQTL analysis of these transcripts

yielded 6182 eQTLs significant above a 5% genome-wide thresh-

old and an additional 1053 eQTLs significant above a 10% thresh-

old. These thresholds correspond to false discovery rates of 2%

and 4%, respectively (Storey and Tibshirani 2003). Most eQTLs

(5406 or 75%) were local, which we defined as within 10 cM of

either end of the gene. Local eQTLs are readily visualized since

they appear on the diagonal in a plot of gene location versus

eQTL location (Fig. 5A).

A reason for the abundance of local eQTLs relative to distant

eQTLs is that local eQTLs generally have larger effects and are

therefore easier to detect. As the threshold is lowered, new distant

eQTLs are declared at a rate higher than new local eQTLs. For in-

stance, only 15% of eQTLs declared at the 5% threshold are distant,

but they comprise 73% of the additional eQTLs declared at the

10% threshold. Increases in statistical power by using larger

numbers of CC lines will therefore likely translate to additional

distant eQTLs.

We estimated allele effects for each eQTL peak. Classical in-

bred strains contributed more alleles with positive effects on ex-

pression relative to the population mean than negative effects. The

genetically distant PWK/PhJ and CAST/EiJ alleles contributed

more extreme effects than the other strains, and the effects were

slightly more often negative than positive (Supplemental Fig. 4).

The liver transcriptome data set with an abundance of local

eQTLs provided a means to estimate the accuracy and mapping

precision in the pre-CC study (Bennett et al. 2010). We computed

the distance between the local eQTL peak and the physical mid-

point of the corresponding gene based on the assumption that

most local eQTLs result from polymorphisms in the cis-regulated

genes themselves (Fig. 5B). The median eQTL–gene distance was

0.92 Mb, and distance was correlated with peak height. The most

significant eQTLs were also the most accurately located at the gene.

Discussion
The analysis of genetic structure and phenotypes in the pre-CC

experiment provides important insights that will apply directly to

future CC experiments. We showed that the CC breeding design

successfully produced balanced founder contributions to the pre-

CC lines. All of the alleles present in the eight founder strains were

captured in the pre-CC population. Most allele frequencies were

near the expected 1/8 proportion, but ranged from 4% to over

27%. Extreme frequencies could occur by chance, by error in the

haplotype inference, or by biological forces such as selection.

However, there is no strong evidence for selection in our results.

Epistatic incompatibilities could decrease the frequency of alleles,

but it was not possible to detect two-locus disequilibrium (64

possible genotype combinations) using such a small number of

lines. If selection is occurring, we expect that extreme allele fre-

quencies will be more pronounced in the completed CC lines.

Figure 5. Expression QTL from liver. (A) A total of 7235 eQTLs were detected for 6327 genes. Genes,
arranged in order of genomic position along the y-axis, are associated with genetic variation plotted by
genomic position on the x-axis. The prominent diagonal band indicates local eQTLs. (B) Local eQTL
peaks generally fell within 1 Mb of the gene’s genomic location, with the most significant eQTLs also
being the most accurate.
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When those lines have been genotyped, the pre-CC genotypes

will allow a retrospective view of the forces acting on individual

alleles across generations.

The pre-CC population has 6% more detectable recombi-

nation breakpoints than simulated CC strains (Broman 2005) and

segments are of smaller median size. The major differences be-

tween the pre-CC lines and the finished CC strains are the fewer

inbreeding generations and the resulting residual heterozygosity,

and these qualities are reflected by the differences in genome ar-

chitecture. Recombination breakpoints at the boundary of a het-

erozygous region are found on only one chromosome, and some

portion of these will be lost as inbreeding progresses, resulting in

fewer segments overall. It is important to note that new recom-

bination breakpoints will continue to be detected in regions that

are still segregating, but on average we expect detectable break-

points to decrease over the course of inbreeding. As the number

of genome segments decreases, the median size of the segments

will increase necessarily. Overall, these minor differences are less

remarkable than the similarities between our observations in the

pre-CC study and our expectations for the CC strains. The genetic

composition of the pre-CC lines is a good indicator that the final CC

strains will achieve the goal of even distribution of diverse haplo-

types, both within lines and at each locus across lines.

Previous studies of multiparent RILs and outcross populations

established a framework for the haplotype-based methods used in

this study (Valdar et al. 2006b; Macdonald and Long 2007; Kover

et al. 2009). We used an HMM to infer genotype probabilities, then

segmented the underlying haplotype structure of each pre-CC

mouse in order to interrogate allele frequencies and recombi-

nation. We also used the haplotype-based method to map QTL,

and we contrast this linkage-based approach with association

mapping on biallelic marker genotypes. The marker-based method

is dependent upon marker loci that share the same strain distri-

bution pattern as the causative alleles. In contrast, the eight-allele

model faithfully represents all of the genetic variants in a region

with the exception of de-novo mutations that may have arisen in

the derivation of strains. Moreover, the haplotype-based method

provides a means to assess the local extent of linkage disequilib-

rium and thus to obtain confidence regions for QTL localization. In

the white head-spotting example, the multiple peaks that appear

in the QTL region are caused in part by a segment of non-WSB/EiJ

genome in one white-spotted animal. This proved to be helpful in

localizing the effect.

Aside from these technical considerations, the haplotype-

based method allows us to draw conclusions about regions of

a specific founder strain genome. This is the essential difference

between a linkage study, in which descent is known or can be

inferred, and association analysis, which relies solely on the ob-

served genotypes. Our results support theoretical predictions that

the linkage approach increases power and accuracy while de-

creasing false discoveries (Valdar et al. 2006a).

Using the haplotype-based method, we presented three ex-

amples demonstrating that the pre-CC population is an excellent

resource for QTL mapping. Nevertheless, the pre-CC experiment

described here will not be typical of future CC studies. Several

limitations resulted from using partially inbred lines that will be

ameliorated in the CC. Replication is a key advantage of using RILs,

but each arm of the pre-CC study included only a single mouse

from each line. In a CC experiment, multiple genetically identical

mice can be phenotyped to substantially increase heritability for

any trait (Belknap 1998). Further, the fully inbred CC lines will

constitute a genetically reproducible population supporting in-

tegration of data across experiments, phenotype domains, exper-

imental conditions, and time. Such data integration was prob-

lematic with the pre-CC population since littermates used in

different arms of the pre-CC experiment were not genetically

identical. Sibling data could improve the precision of the haplo-

type reconstructions, yet, due to the extremely high density of

marker genotypes, only marginal improvements would be expected.

Additionally, the logistics of the pre-CC experiment were complex.

They involved breeding and shipping mice and samples between

multiple institutions, genotyping on a newly developed platform,

and multistep phenotyping pipelines. The experiment was sec-

ondary to animal production at ORNL, so only 138–184 lines were

available to any particular study arm. Environmental and sea-

sonal variation was impossible to control.

Residual heterozygosity presented another analytical chal-

lenge for QTL mapping that will not be present in the completed

CC lines. This was particularly problematic for the marker-based

approach, in which we treated heterozygotes as a separate geno-

type class, resulting in a false-positive QTL detection for white

head-spotting (Fig. 3). For the eight-allele model we used an ad-

ditive genetic model that treated heterozygous genotypes as hav-

ing an effect that is intermediate between the estimated homo-

zygous genotype effects, as was done for previous multifounder

crosses (Mott et al. 2000; Mott and Flint 2008). Although the ad-

ditivity assumption was not correct, it did not prevent detection

of the recessive white head-spotting phenotype. Over- or under-

dominant heterozygous loci are exceptions. The success of map-

ping with simple regression on founder haplotype probabilities

provides a baseline for the performance of the more sophisticated

analysis methods that are being developed (Durrant and Mott

2010).

Despite these limitations, the pre-CC experiment provided an

excellent test bed for analysis strategies and yielded new biological

insights that illustrate the potential of the CC. For example, our

results revealed Kitl as a strong candidate gene for white head-

spotting in the WSB/EiJ strain and pre-CC mice. A variety of Kitl

alleles with effects on pigmentation, hematopoiesis, spermato-

genesis, and other phenotypes have been characterized over the

past half-century (Sarvella 1956; Rhim et al. 2000; Gu et al. 2009;

Deshpande et al. 2010). A unique aspect of the CC design is that

functional alleles from the eight founders will be fixed on a variety

of genetic backgrounds. This will provide opportunities to accu-

rately estimate allele effects in genetically heterogeneous pop-

ulations and to identify modifier loci.

QTL mapping is only a starting point for genetic analyses, and

strategies for incorporating additional data are as important as

mapping methods. The eight-way cross design provides a number

of unique advantages that enable efficient data integration. The

power provided by complete genome sequences of the founder

strains that are currently available in draft versions (http://www.

sanger.ac.uk/resources/mouse/genomes/) cannot be overstated.

When these are combined with haplotype reconstructions such as

those presented here, it will be possible to impute the full genome

sequence for each CC line, effectively providing a large genetic

reference population with completely sequenced genomes. A de-

fining and powerful feature of the eight-allele model is the ability

to identify specific patterns of allele effects at a QTL. Balanced al-

lele frequencies in the CC enhance the ability to estimate effects

relative to outbred populations. Allele effects can be used to dis-

tinguish tight linkage from pleiotropy (Macdonald and Long 2007)

and can substantially narrow the list of the candidates for causal

polymorphisms in a QTL.
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In the genetic analysis of baseline body weight, we used

Bwq14 allele effects to integrate our QTL results with high-density

SNP genotypes and eQTL data. We successfully narrowed the QTL

region and generated a prioritized list of candidate genes with Asph

being the top-ranked gene. Asph is involved in calcium (Ca) cycling

in cardiomyocytes, and knockout mice exhibit abnormal heart

function, morphological defects, and reduced fertility (Dinchuk

et al. 2000; Yuan et al. 2007). Although there are no reported effects

on body weight in the Asph knockout, Asph has been associated

with cell proliferation in the Gene Ontology. Additional analysis is

required to determine whether variation in Asph expression con-

tributes to differential body weight.

The Asph example effectively illustrates several points that are

relevant to understanding the importance of the CC as a tool for

complex trait analysis. The extreme abnormalities reported in the

Asph knockout mouse are clearly not relevant to alleles segregating

in the CC. This illustrates the stark contrast between the complete

ablation of gene function common with reverse genetic ap-

proaches and the often-moderate effects of natural allelic variants.

Analysis of the founder genome sequences revealed six distinct

alleles, underscoring the genetic diversity that will be present in

CC strains. Our results demonstrate that sequence variation pres-

ent in the CC corresponds to functional variation at the molecular

and phenotypic level. For example, Asph is expressed in multiple

tissues and has 25 reported transcripts and 20 reported protein

products (Barrett et al. 2009; Hubbard et al. 2009). The premature

stop codon observed in four of the CC founder strains could ex-

plain the observed differential gene expression, which could result

from strain-specific transcripts not detected on the gene expres-

sion platform, differential transcription due to regulatory varia-

tion, transcripts targeted for nonsense-mediated decay, differential

RNA stability, or a combination of these.

The number and distribution of eQTLs indicate a vast amount

of functional diversity. One way of assessing the functional genetic

diversity is the number of local eQTLs. The number observed in the

pre-CC experiment is more than double the number recently

reported in a large panel of classical inbred strains and classical-

derived RILs (Bennett et al. 2010), which itself exceeded other

currently available resources. One major difference between the

CC and these other resources is the genetic variation introduced by

the wild-derived founder strains. The CAST/EiJ and PWK/PhJ allele

effects were at the extremes of the effect distribution more than

twice as often as allele effects from the other strains (Supplemental

Fig. 4), supporting the conclusion that much of the functional

variation in the pre-CC lines is derived from these strains. These

wild-derived alleles had negative effects on expression more often

than positive effects. If we assume that each strain should con-

tribute around the same number of negative and positive effect

alleles, then we estimate the excess of negative effect wild-derived

alleles at around 14%. This excess may result from hybridization

errors, in which an undiscovered SNP prevents the wild-derived

mRNA from binding to the oligonucleotide expression array. We

expect a higher rate of undiscovered SNPs in the wild-derived

strains relative to the classical inbred strains, since the expression

array platform was developed based on classical inbred strains.

When full genome sequence is available for the founder strains, we

will be able to test this hypothesis. However, this rate of false

positives would not change our conclusions about the abundance

of functional diversity relative to other mouse resources or the

wild-derived alleles as the source of this diversity (also note that

probe effects will undoubtedly also result in false-negative eQTLs,

which will lead to an underestimate of their numbers). The geno-

mic distribution of eQTLs is uniform and without gaps across the

genome when corrected for local gene density (Supplemental Fig.

5). Furthermore, there are no genomic regions that lack functional

genetic variation, in contrast to typical inbred strain crosses (Yang

et al. 2007).

We observed no evidence of eQTL clustering (trans-bands)

as reported in previous mouse eQTL studies (Schadt et al. 2003;

Chesler et al. 2005). These previous studies have posited that trans-

bands are due to a few genes with pleiotropic effects. Others have

suggested trans-bands are caused by intersample correlations in-

troduced experimentally that can be statistically corrected (Kang

et al. 2008). However, the pre-CC data suggest an alternative origin

for their existence in mouse transcriptome analyses. Due to their

related origin and breeding histories, existing inbred mouse strains

have distinct population substructures, large regions of IBD, and

correlated SNP distribution patterns across the genome. eQTL

studies using mapping populations with these characteristics

(existing RI panels or F2 crosses using common laboratory strains)

can erroneously lead to the appearance of trans-bands if any one

gene linked to a correlated SNP pattern is under strong trans-

regulation. The lack of trans-bands in the pre-CC data suggests

that population substructures present in existing mouse resources

have been disrupted through the random breeding scheme. Conse-

quently, genetic regulatory variation in the CC is spread throughout

the genome, as would be predicted of a random breeding population

with genome-wide variation as is present in humans.

The liver transcriptome data was also used to estimate the

mapping resolution obtained with as few as 156 pre-CC mice.

Local eQTLs are on average <1 Mb from the location of the regu-

lated gene. Extrapolation of this finding to a panel of 500 lines,

with replicate measurements to reduce residual variation, implies

that mapping resolution of high-effect QTL in the CC could be

reduced to <0.25 Mb (Kong and Wright 1994). Local eQTLs typi-

cally have larger effects sizes than phenotypic QTLs, but this

finding suggests that mapping precision is generally high when

there is sufficient power to detect QTLs.

The pre-CC experiment provides strong support for success

with future CC experiments. The CC breeding design randomly

mixed the genetic diversity of three wild-derived strains with that

of five classical inbred strains, and will make vast functional vari-

ation accessible in a single resource. The approach used here to

precisely map QTLs and prioritize candidate genes will further

benefit from having replicate measurements of fully inbred CC

strains. As the CC strains are characterized, we expect that a wealth

of condition- and tissue-specific transcript, metabolite, and pro-

tein-profiling data will become available, essentially at no cost to

adopters of the CC platform. The combination of a reproducible

genetic reference population with fully imputed genome sequences

and high-dimensional molecular phenotypes will open new possi-

bilities for analysis that we have only touched upon, and integrating

these data in the context of specific diseases will support human

genetic studies by providing new insights to the genetic bases and

molecular mechanisms of common human diseases.

Methods

Body weight, white head spot, and gene expression
Pre-CC mice were weaned at ORNL and transported to UNC at
9–13 wk of age. Baseline body weight was measured after accli-
mating at UNC for 1 wk. Upon completion of the pre-CC experi-
ment at 12–16 wk of age, the presence of a white head spot was
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noted and liver tissue was dissected and stored in RNAlater
(Ambion) before homogenizing in TRIzolPlus (Invitrogen). Total
RNA was isolated according to the manufacturer’s protocol, and
quality was assessed using an Agilent 2100 Bioanalyzer instrument
and RNA 6000 Nano LabChip assay (Agilent Technologies). Fol-
lowing reverse transcription with random primers-T7 primers
(Affymetrix), double-stranded cDNA was synthesized with the
GeneChip WTcDNA Synthesis and Amplification Kit (Affymetrix).
In an in vitro transcription (IVT) reaction with T7 RNA polymerase,
the cDNA was linearly amplified to generate cRNA. In the second
cycle of cDNA synthesis, random primers were used to generate
single-stranded DNA in the sense orientation. Incorporation of
dUTP in the cDNA synthesis step allowed for the fragmentation
of the cDNA strand utilizing uracil DNA glycosylase (UDG) and
apurinic/apyrimidinic endonuclease 1 (APE 1) that specifically
recognizes the dUTP and allows for breakage at these residues.
Labeling was performed with terminal deoxynucleotidyl trans-
ferase (TdT), where biotin is added with an Affymetrix Labeling
Reagent. Then, 2.3 mg of biotin-labeled and fragmented cDNA were
hybridized onto GeneChip Mouse Gene 1.0 ST Arrays (1,102,500
probes; Affymetrix) for 16 h at 45°C. Post-hybridization staining
and washing were performed according to the manufacturer’s
protocols using the Fludics Station 450 instrument (Affymetrix).
Finally, the arrays were scanned with a GeneChip(R) Scanner 3000
laser confocal slide scanner.

Feature extraction was performed with GCOS (Affymetrix).
CEL files were imported into the R 2.9.2 language/environment for
normalization and analysis. Normalization was applied with the
rma function in the affy R package from Bioconductor (Gentleman
et al. 2004). Probe level data was summarized using a custom probe
set definition based on Ensembl genes from the BrainArray website
(Sandberg and Larsson 2007; package MoGene10stv1_Mm_ENSG
V11.0.1).The minimum number of probes in a probeset was three
and the median was 26. Probesets with normalized values <6 in
more than 7/8 of samples were removed from further analyses.
Probeset level data was transformed using the equation

y�i = f�1 ri

No + 1

� �
;

where f�1(p) is the quantile with probability p in a normal distri-
bution, ri is the rank of yi with ties resolved by the average rank,
and No is the total number of nonmissing observations (Lehmann
1975).

Genotyping

Each mouse in the pre-CC experiment was genotyped using a high-
density SNP array. Most of the genotyping was completed using
‘‘test’’ arrays. These arrays were developed as an intermediate step
in the process of developing the Mouse Diversity array (Yang et al.
2009). There are two versions of the test array: A-array and B-array.
The A-array includes 294,878 SNP assays, and the B-array contains
287,687 additional SNP assays. We determined that 181,752
(A-array) and 180,976 (B-array) SNP assays performed well and tar-
geted loci that are polymorphic among the eight founder strains.
There is no overlap between the two arrays, but the genome cov-
erage is complete and uniformly distributed in both. In some cases,
animals from the same phenotyping arm were genotyped with
different arrays. Integration was achieved by merging the two sets
and using an HMM to impute haplotypes at loci with missing ge-
notypes. Due to the high marker density, this procedure was very
effective. The exercise behavior and metabolism arm was com-
pletely genotyped with the A-array. Genotype data is publically
available for download at the CC Status website (http://csbio.unc.
edu/CCstatus/index.py).

Haplotype reconstruction

Reconstruction of founder haplotypes in the pre-CC animals is
based on analysis of biallelic SNP data from each founder strain.
The high density and uniform distribution of phylogenetically
informative SNPs (Yang et al. 2009) resulted in highly accurate and
robust reconstructions. Haplotype probabilities were computed
using HMM (Mott et al. 2000; Liu et al. 2010) with a conservative
genotyping error rate of 0.01. The marker density exceeded the
total density of recombinations in the cross; thus, it was possible to
reduce the exercise behavior and metabolism arm data to ;16,199
intervals, within which estimated genotypes were essentially
constant. Interval boundaries were defined at transitions in high-
est probability genotype, based on Baum-Welch output from the
HMM. In most intervals, haplotype probabilities were near 1 for
the inferred states. Exceptions occurred in regions where two or
more of the five classical strains in the founder set are identical by
descent. One sample was removed from architecture analyses be-
cause it was an outlier in two criteria; it had high heterozygosity
and a high number of genome segments. To evaluate segregation
distortion we used a x2 goodness-of-fit test on the allele frequencies
of homozygotes in each segment and identified extremes using
false discovery rate (FDR). Genetic map positions are used for ref-
erence purpose only and were based on the integrated mouse ge-
netic map using mouse genome build 37 (Cox et al. 2009).

Genome scans

QTL mapping was performed using a regression model (Mott et al.
2000) with previously described optimization and software (Valdar
et al. 2009). We used the BAGPIPE package that consists of an
R library and accessory scripts in R and Perl. We regressed each
phenotype without covariates on the expected number of haplo-
types (i.e., haplotype dosage) at each interval between adjacent
genotyped markers. Each test produces an F statistic, which we
transformed to a LOD score statistic to evaluate significance. A 1.5
LOD drop interval is considered the best approximation to a 95%
confidence interval for QTL mapping (Dupuis and Siegmund
1999). We estimated genome-wide significance thresholds by
permutation, which is appropriate in unstructured populations
(Churchill and Doerge 1994). Allele effects were estimated using
partial correlation coefficients from the same model.

To make eQTL analysis computationally feasible, we reduced
the genome to the 16,199 genome segments described above.
Within each segment, we averaged the probability matrices to
create a new segment-wide matrix. We then regressed the z-trans-
formed expression values on this averaged genotype matrix. Ge-
nome scans were essentially identical using ;182 K complete
markers or 16,199 genome segments, and the same eQTLs were
declared using segmented and nonsegmented genomes. We per-
formed 5000 permutations on 50 traits to determine 0.05/0.1 error
thresholds and used the mean threshold across all expression
traits. We used this null distribution to calculate adjusted P-values
for each genome scan, and used these to determine the FDR for the
eQTL analysis (Storey and Tibshirani 2003). To determine how
often each strain was at the extreme end of the allele effects dis-
tribution for a given eQTL, we estimated each allele’s effect and
compared the distribution between strains. These results are
summarized in Supplemental Figure 4.

We used three data sources for additional sequence analysis:
the Perlegen array-based Mouse resequencing (http://mouse.perlegen.
com), the Sanger Mouse Genomes Project (http://www.sanger.ac.uk/
resources/mouse/genomes/), and the Mouse Diversity Array (http://
cgd.jax.org/datasets/popgen.shtml/). Perlegen data was necessarily
used for regional analysis (i.e., in the Bwq14 confidence interval)
because the Sanger data is embargoed for analysis on regions larger
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than a single gene (http://www.sanger.ac.uk/resources/mouse/
genomes/datarelease.html).
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