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ABSTRACT Genome-wide expression quantitative trait loci (eQTL) studies have emerged as a powerful tool to understand the genetic
basis of gene expression and complex traits. In a typical eQTL study, the huge number of genetic markers and expression traits and their
complicated correlations present a challenging multiple-testing correction problem. The resampling-based test using permutation or
bootstrap procedures is a standard approach to address the multiple-testing problem in eQTL studies. A brute force application of the
resampling-based test to large-scale eQTL data sets is often computationally infeasible. Several computationally efficient methods have
been proposed to calculate approximate resampling-based P-values. However, these methods rely on certain assumptions about the
correlation structure of the genetic markers, which may not be valid for certain studies. We propose a novel algorithm, rapid and exact
multiple testing correction by resampling (REM), to address this challenge. REM calculates the exact resampling-based P-values in
a computationally efficient manner. The computational advantage of REM lies in its strategy of pruning the search space by skipping
genetic markers whose upper bounds on test statistics are small. REM does not rely on any assumption about the correlation structure
of the genetic markers. It can be applied to a variety of resampling-based multiple-testing correction methods including permutation
and bootstrap methods. We evaluate REM on three eQTL data sets (yeast, inbred mouse, and human rare variants) and show that it
achieves accurate resampling-based P-value estimation with much less computational cost than existing methods. The software is
available at http://csbio.unc.edu/eQTL.

GENOME-WIDE studies of expression quantitative trait
loci (eQTL) have been widely used to dissect the genetic

basis of gene expression and molecular mechanisms underly-
ing complex traits (Bochner 2003; Rockman and Kruglyak
2006; Michaelson et al. 2009). In a typical eQTL study, the
association between each expression trait and each genetic
marker [e.g., single-nucleotide polymorphism (SNP)] is as-
sessed separately, which leads to a huge number of correlated
tests. Appropriate multiple-testing correction is crucial for
eQTL studies. The resampling-based test using permutation
or bootstrap (Good 2005) has been widely used for multiple-

testing correction across multiple genetic markers for each
phenotype (Barrett et al. 2005; Purcell et al. 2007) by simu-
lating the null distribution using permuted or bootstrapped
phenotype values (Westfall and Young 1993; Churchill and
Doerge 1994; McClurg et al. 2007). More specifically, the
phenotype values are randomly shuffled and reassigned to
individuals with or without replacement (i.e., bootstrap and
permutation, respectively). For each resampled phenotype
a whole-genome scan is performed to find the maximum test
statistic among all SNPs. The corrected P-value is the propor-
tion of the resampled phenotypes where the maximum test
statistics are greater than the maximum test statistic in the
original data. We refer to such a corrected P-value as the
resampling-based P-value. The resampling-based test pre-
serves the correlation structure of the SNPs and does not
require any distribution assumption on the test statistic.

Another level of multiple-testing problem in eQTL studies
is the multiple tests across tens of thousands of gene
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expression traits (Kendziorski and Wang 2006). One standard
solution is first to estimate the resampling-based P-value (of
the most significant association) for each expression trait and
then to determine a threshold for the corrected P-values
across all expression traits by controlling the false discovery
rate (FDR) (Benjamini and Hochberg 1995; Storey 2003).

Although this approach is ideal for eQTL studies, its
intensive computational burden has greatly limited its
practical use. For example, supposing that a corrected P-
value threshold of 0.01 is needed to control the FDR, up
to 100,000 permutations/bootstraps may be needed to esti-
mate such a resampling-based P-value accurately. Consider
a typical scenario where there are 500,000 SNPs and 20,000
expression traits. The total number of tests is 500,000 ·
20,000 · 100,000 = 1015. A brute force implementation
of the resampling-based test is clearly not practical. Compu-
tationally efficient methods are highly desirable.

To tackle the computational challenge, several methods
have been proposed to approximate the resampling-based P-
values. One approach is to estimate the effective number of
independent tests from the eigenvalues of the correlation
matrix of the SNPs (Cheverud 2001; Nyholt 2004; Li and
Ji 2005; Gao et al. 2008; Moskvina and Schmidt 2008; Pe’er
et al. 2008). Previous studies have shown that these meth-
ods may yield inaccurate results (Salyakina et al. 2005; Han
et al. 2009). Another approach, relying on the assumption
that the test statistics over multiple SNPs asymptotically
follow a multivariate normal distribution (MVN), calculates
the permutation P-values by directly sampling from the
MVN distribution (Lin 2005; Seaman and Müller-Myhsok
2005; Conneely and Boehnke 2007; Han et al. 2009). Both
the “effective number of independent tests” and MVN meth-
ods cannot be directly applied to genome-wide association
studies when the number of SNPs is much larger than the
sample size. A common strategy is to divide all the SNPs into
contiguous blocks, to apply these two methods to each block
of SNPs, and then to combine the results across the SNP
blocks. This partition–ligation approach implicitly assumes
that the SNPs between two blocks are weakly correlated.
From a different perspective, an approximation method
based on a geometric interpretation of permutation P-values
has been proposed in Sun and Wright (2010). This method
does not require any asymptotic distribution of the test sta-
tistics, but it assumes a Markov type of dependency among
the markers. Another method has been developed to correct
very significant P-values in disease association studies by
importance sampling (Kimmel and Shamir 2006). This
method is designed for binary phenotypes and cannot be
directly applied to quantitative expression traits.

Despite the success of the aforementioned approximation
methods, their accuracies rely on the validity of the following
assumption: the nearby SNPs are correlated whereas the
distant SNPs are not. This assumption may not be valid.
Please refer to supporting information, File S1 for further
discussion on the assumptions of the existing approximation
methods.

For the resampling-based test, the total computational
time is equal to the average time needed to calculate each
test statistic multiplied by the total number of tests. Several
algorithms have been developed to speed up the exhaustive
resampling-based test by calculating each test statistic more
efficiently. For example, if the phenotype is binary, compu-
tational efficiency can be improved by efficient computation
of contingency tables (Browning 2008) or by bit arithmetic
operations (Pahl and Schafer 2010). For eQTL studies,
a summation tree can be utilized to compute the test statis-
tics incrementally (Gatti et al. 2009). Note that these meth-
ods are specifically designed for permutation tests and are
not applicable to bootstrapping. In this article we tackle the
computational challenge of the exhaustive resampling-based
test from another perspective. That is, we try to reduce the
number of test statistics that need to be calculated. We pres-
ent an algorithm, rapid and exactmultiple testing correction
by resampling (REM), which prunes the search space and
performs tests only on a small proportion of the SNPs. This is
achieved by constructing a two-layer indexing structure that
groups SNPs on the basis of their genotypes. The SNPs in
one group share a common upper bound on the test statis-
tics. Actual tests are performed only in the groups whose
upper bounds are greater than a certain threshold. REM is
guaranteed to find the exact resampling-based P-values. It
can be applied to a variety of resampling-based methods,
including permutation (Westfall and Young 1993; Churchill
and Doerge 1994) and bootstrap (McClurg et al. 2007). We
evaluate the performance of REM on yeast segregants,
mouse inbred strains, and human rare variants data. The
results demonstrate that REM not only returns the exact
resampling-based P-values, but also runs orders of magni-
tude faster than alternative methods.

Materials and Methods

Problem formulation

We consider binary genotype data. The binary genotype may
appear in haploid organisms, such as yeast, inbred diploid
organisms, such as inbred mice, or rare variants where the
genotype of a homozygous rare allele is unlikely to occur
and is collapsed with a heterozygous genotype if it does
occur. Without loss of generality, we denote the common
and rare genotypes by 0 and 1, respectively.

The permutation test based on the maximum test statistic
across all SNPs was originally described in Westfall and
Young (1993) and applied to a genome scan in Churchill
and Doerge (1994). This approach preserves the correlation
structure of the SNPs and requires a much smaller number of
permutations than the procedures that first compute point-
wise P-values and then apply adjustments (Nettleton and
Doerge 2000). The weighted bootstrap approach (McClurg
et al. 2007) that accounts for population structure has also
been proposed. We collectively refer to the permutation or
bootstrap P-values as resampling-based P-values.
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Let {X1, . . . , XN} be the SNPs and {Y1, . . . , YM} be the gene
expression traits. Let T (Xn, Ym) denote the test statistic be-
tween Xn (1 # n # N) and Ym (1 # m # M). Let T Ym be the
maximum test statistic for Ym. Suppose that we resample the
phenotype K times. For a resampled phenotype Yk

m, we de-
note its maximum test statistic as T Yk

m
. For k = 1, . . . , K, let

Ak ¼
(
1 if T Ym,T Yk

m
0 if T Ym$T Yk

m
:

The resampling-based P-value of Ym is defined as

PresðYmÞ ¼
PK

k¼1Ak þ 1
K þ 1

:

To calculate the resampling-based P-value of expression
trait Ym, the computational problem is to determine, for every
Yk
mð1#  k # KÞ, whether its maximum test statistic T Yk

m
is

larger than T Ym . A brute force solution to this problem is that,
for every Yk

m; we perform a complete scan of all SNPs to find
the maximum test statistic and compare it to T Ym . This ap-
proach has been adopted in most existing exhaustive methods
that calculate the exact resampling-based P-values. Next, we
discuss how our algorithm, REM, can efficiently compute the
solution without calculating the test statistics for all SNPs.

General idea of the proposed method

The key idea of the proposed algorithm is as follows. We
partition SNPs into different groups on the basis of their
allele frequencies. For each group of SNPs, we can find an
upper bound on the test statistics. If the upper bound is
lower than a certain threshold, there is no need to calculate
the test statistics for this group of SNPs. The actual tests are
performed only for the groups of SNPs whose upper bounds
are larger than the threshold.

The groups of SNPs are organized into a two-layer
indexing structure. Utilizing indexing structures for efficient
computation has been a longstanding research focus of the
database management and theoretical computation research
communities. The idea of indexing SNPs and exploring the
upper bound on test statistics was originally investigated in
epistasis detection in a genome-wide association study
(Zhang et al. 2009, 2010). In this article we apply this gen-
eral methodology to the problem of multiple-testing correc-
tion in eQTL studies.

Next we first introduce the two-layer indexing structure
that groups SNPs on the basis of allele frequencies. Then we
discuss how to use this indexing structure to obtain the
upper bound on the test statistics for each group of SNPs and
thus dramatically reduce the number of test statistics to be
calculated.

The indexing structure

First layer: Suppose that there are S individuals {I1, I2, . . . , IS}
in the study. We partition the individuals into two subsets: IA =
{I1, I2, . . . , I⌊S/2⌋} and IB = {I⌊S/2⌋+1, I⌊S/2⌋+2, . . . , IS}. Note

that the partition of individuals is random and only done once
for the entire data set.

For a SNP Xn, we use |IA(Xn)| and |IB(Xn)| to denote the
numbers of rarer genotype (i.e., the number of 1’s) in par-
titions IA and IB, respectively. We can group the SNPs by
their (|IA(Xn)|, |IB(Xn)|) values and index them in a two-
dimensional (2D) array. The SNPs with the same (|IA(Xn)|,
|IB(Xn)|) values will fall into the same entry in the array.

For example, suppose that there are S = 12 individuals in
our study. We can partition them into two subsets, each having
6 individuals. Figure 1A shows the first layer of the 2D index-
ing structure. The SNPs having the same (|IA(Xn)|, |IB(Xn)|)
value fall into the same entry in the 2D array. In this example,
the possible values of |IA(Xn)| and |IB(Xn)| are {0, 1, 2, . . . ,
6}. Recall that 1 denotes the rarer genotype, and thus the
number of 1’s in any SNP is no greater than ⌊S/2⌋; i.e.,
|IA(Xn)| + |IB(Xn)| # ⌊S/2⌋. Therefore, the indexing struc-
ture has entries only below the diagonal, as shown in Figure 1A.

Later we show that the SNPs in the same entry [i.e., with
the same (|IA(Xn)|, |IB(Xn)|) value] share a common upper
bound on their test statistics.

Second layer: Applying a similar idea, we can build a second
layer indexing structure for each entry in the first layer. For
a group of SNPs in the same entry in the first layer, we
further partition individuals in IA into two subsets: IA1

= {I1,
I2, . . . , I⌊S/4⌋} and IA2

= {I⌊S/4⌋+1, I⌊S/4⌋+2, . . . , I⌊S/2⌋}. Sim-
ilarly, we partition IB into two subsets IB1

and IB2
of similar

sizes. Note that these partitions are random and done only
once for the entire data set. For any SNP Xn, we use |IA1

(Xn)|,
|IA2

(Xn)|, |IB1
(Xn)|, and |IB2

(Xn)| to denote the number of 1’s
of Xn in IA1

, IA2
, IB1

, and IB2
, respectively. The group of SNPs in

the same entry in the first layer is further partitioned by
its (|IA1

(Xn)|, |IB1
(Xn)|) values. The SNPs with the same

(|IA1
(Xn)|, |IB1

(Xn)|) values fall in the same entry in the
second layer indexing structure.

Following the previous example where there are 12
individuals, its first layer indexing structure is shown in
Figure 1A. For a particular first layer entry (|IA(Xn)|,
|IB(Xn)|) = (4, 2), its second layer indexing structure is
shown in Figure 1B. It is easy to see that the maximum value
that |IA1

(Xn)| can take is min{|IA(Xn)|, ⌊S/4⌋}, and the

Figure 1 The two-layer indexing structure for a study of 12 individuals.
(A) The first layer indexing structure. (B) The second layer indexing struc-
ture for a particular entry (4, 2) in the first layer indexing structure.
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maximum value that |IB1
(Xn)| can take is min{|IB(Xn)|,

⌈S/4⌉}. This is reflected in the following example: the
maximum value of |IA1

(Xn)| is min{4, 3} = 3, and the
maximum value of |IB1

(Xn)| is min{2, 3} = 2.
Similar to the first layer, the SNPs in the same entry in the

second layer also share a common upper bound on their test
statistics. We will show that this bound is tighter than (or at
least as tight as) the bound derived from the first layer.

Upper bound on the test statistics

In this subsection, we give a common upper bound on the test
statistics for the SNPs in the same entry in the indexing
structure. An intuitive explanation is as follows. For SNP Xn and
a resampled phenotype Yk

m, let �Y1 represent the sum of the
phenotype values of the individuals with rarer genotypes (i.e.,
when Xn = 1). It can be shown that many statistics are convex
functions of �Y1 (see File S1 for details). If we can determine the
range of �Y1, we can easily derive an upper bound of the statis-
tics. It can be shown that the SNPs in the same entry have the
same range for �Y1 and hence share a common upper bound.

Next, we first discuss how to obtain the upper bound for
a SNP group in the first layer, and then we show that tighter
bounds can be achieved for the groups in the second layer.

First layer: Recall that when building the first layer index-
ing structure, we partition the individuals into two subsets,
IA and IB. The indexing structure groups SNPs on the basis of
their (|IA(Xn)|, |IB(Xn)|) values, i.e., the numbers of rarer
genotypes in the two subsets of individuals. For a resampled
phenotype vector Yk

m, we use Yk
mðIAÞ ¼ fyk1; yk2;  . . . ;  yk⌊S=2⌋g

and Yk
mðIBÞ ¼ fyk⌊S=2⌋þ1; y

k
⌊S=2⌋þ2;   . . . ;  y

k
Sg to denote the

phenotype values of the individuals in IA and IB, respectively.
Let ykAð1Þ#ykAð2Þ#⋯#ykAðjIAjÞ represent the ordered phenotype

values in Yk
mðIAÞ and ykBð1Þ#ykBð2Þ#⋯#ykBðjIBjÞ represent the

ordered values in Yk
mðIBÞ. For any SNP Xn in the first layer entry

(|IA(Xn)|, |IB(Xn)|), we have that

XjIAðXnÞj
i¼1

ykAðiÞ þ
XjIBðXnÞj

i¼1
ykBðiÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

RL

# �Y1; (1)

where
PjIAðXnÞj

i¼1 yAðiÞ is the sum of the smallest |IA(Xn)| phe-
notype values of individuals in IA, and

PjIAðXnÞj
i¼1 yBðiÞ is the sum

of the smallest |IB(Xn)| phenotype values of individuals in IB.
Recall that |IA(Xn)| + |IB(Xn)| is equal to the number of rarer
genotypes and Y

�

1 is the sum of the phenotype values of
individuals with rarer alleles. Clearly, the inequality holds.
We use RL to represent the left-hand side of inequality (1).

Similarly we have that

�Y1#
XjIAj

i¼jIAj2jIAðXnÞjþ1
ykAðiÞ þ

XjIBj
i¼jIBj2jIBðXnÞjþ1

ykBðiÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
RU

: (2)

We use RU to represent the right-hand side of inequality (2).
For a given resampled phenotype vector Yk

m, inequalities (1)
and (2) give us the range of �Y1. That is, for any SNP Xn in

the entry (|IA(Xn)|, |IB(Xn)|) of the first layer indexing
structure, we have that �Y1 2 ½RL;RU�.

The maximum value of any convex function is attained at
the boundary of its convex domain (Boyd and Vandenberghe
2004). Therefore, for the SNPs in the entry (|IA(Xn)|, |IB(Xn)|),
the upper bound on test statistics is attained when �Y1 ¼ RL or
�Y1 ¼ RU.

Second layer: Similarly, we can obtain an upper bound on
the test statistics for the SNPs in an entry of the second layer.
We partition the values in the resampled phenotype vector
Yk
m into four groups, each across individuals in IA1

, IA2
, IB1

,
and IB2, respectively. Let fYk

A1ðiÞg; fy
k
A2ðiÞg, fy

k
B1ðiÞg, and fykB2ðiÞg

represent the ordered phenotype values in the four groups.
We have the following two inequalities:

XjIA1 ðXnÞj
i¼1

ykA1ðiÞ þ
XjIA2 ðXnÞj

i¼1
ykA2ðiÞ þ

XjIB1 ðXnÞj
i¼1

ykB1ðiÞ þ
XjIB2 ðXnÞj

i¼1
ykB2ðiÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

R9L

#�Y1;

(3)

�Y1#
PjIA1 j

i¼jIA1 j2 jIA1 ðXnÞjþ1
ykA1ðiÞ þ

PjIA2 j
i¼jIA2 j2 jIA2 ðXnÞjþ1

ykA2ðiÞ

þ
PjIB1 j

i¼jIB1 j2 jIB1 ðXnÞjþ1
ykB1ðiÞ þ

PjIB2 j
i¼jIB2 j2 jIB2 ðXnÞjþ1

ykB2ðiÞ:

(4)

Letting R9LðR9UÞ be the left (right)-hand side of inequality (3)
[inequality (4)], then �Y1 2 ½R9L;R9U�. The upper bound on the
test statistics is attained when �Y1 ¼ R9L or �Y1 ¼ R9U. It is easy
to show that RL#R9L and R9U#RU. Therefore, we can get
a tighter (or at least an equally tight) upper bound by uti-
lizing the second layer indexing.

The REM algorithm

Given the SNPs and gene expression traits, REM returns the
significant traits whose resampling-based P-values are no
greater than a user-specified threshold Pt. If Pt = 1, REM
returns the resampling-based P-values for all expression
traits. The number of permutations/bootstraps is an input
parameter provided by the user. The pseudocode of the al-
gorithm is outlined in File S1.

For every phenotype Ym, REM first scans all SNPs to find
the maximum statistic T Ym . Then REM calculates a variable
count, which records the number of resampled phenotypes
whose maximum test statistics are greater than T Ym , as fol-
lows. For each Yk

m, REM first checks the entries in the first
layer of the indexing structure. It goes to the second layer
only if the upper bound of a first layer entry is greater than
T Ym . If the upper bound of the second layer entry is still
greater than T Ym , REM will perform actual tests on the SNPs
in the second layer entry; otherwise this group of SNPs will be
skipped because their test statistics are guaranteed to be no
greater than T Ym .

In addition to applying the upper bound to reduce the
number of SNPs to be examined, there are two other
strategies to further prune the search space. One is that,
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for a resampled phenotype vector Yk
m, as long as we find any

SNP whose test statistic is greater than T Ym ; we know its
maximum test statistic T Yk

m
will also be greater than T Ym :

Therefore, there is no need to scan the remaining SNPs. The
other pruning strategy is based on the significance threshold
Pt. For an expression trait Ym, once we have already exam-
ined enough resampled phenotype vectors such that its cor-
rected P-value is greater than Pt, there is no need to examine
the remaining resampled phenotype vectors. The detailed
analysis of the time complexity of REM is given in File S1.

REM can be applied to various resampling methods. For
example, in addition to the permutation and bootstrap
methods (Westfall and Young 1993; Churchill and Doerge
1994; McClurg et al. 2007) that preserve the correlation
structure of SNPs, a resampling method that preserves the
correlation structure of the expression data was proposed in
Breitling et al. (2008). When generating resampled pheno-
type vectors, this approach permutes the individual labels so
that each individual is assigned the genotype of another
random individual, while the expression profile of this in-
dividual is unchanged. When the mapping is repeated on
these permuted data, the correlation structure of gene ex-
pression is maintained. These methods differ in how they
generate the resampled phenotype vectors, i.e., line 4 in File
S1, Algorithm S1. REM will find the exact resampling-based
P-values for the resampling method adopted by the user.

Note that REM can be easily modified to identify multiple
SNPs that are significantly associated with a gene expression
trait. One naive approach is to apply REM to each of the top
T SNPs that are significantly associated with the gene ex-
pression trait. Since we compare the test statistic of the t-th
most significant association with the maximum test statistics
from the resampled data, the estimate of the resampling-
based P-value is conservative. However, as long as T is much
smaller than the total number of SNPs, the bias of the esti-
mate is small. A drawback of this naive approach is the
computational burden increases linearly with T. An alterna-
tive, and more sophisticated approach is to directly calculate
the desired percentile of the maximum test statistic. For
example, suppose that the desired significance level is a =
0.05, and thus we aim to estimate the 95th percentile of the
maximum test statistic from 1000 permutations/bootstraps.
In other words, we want to find the 50th largest maximum
test statistics among the 1000 maximum test statistics. We
can first carry out 50 permutations/bootstraps and record
the corresponding 50 maximum test statistics without prun-
ing. Then we carry out the following permutation/boot-
straps with pruning by keeping track of the largest 50
maximum test statistics and using the value of the 50th
one as the threshold for pruning.

Results

We evaluate the accuracy and computational efficiency of
REM and several representative existing methods. For
approximation methods, we choose SimpleM (Gao et al.

2008) to represent the approaches of estimating the number
of independent tests, and SLIDE (Han et al. 2009) to repre-
sent the approaches using the MVN framework. These two
methods have been shown to be superior to other alterna-
tives within their classes. We also study the performance of
the method in Sun and Wright (2010), which we call GeoP.
For exhaustive methods, we study the performance of PLINK
(Purcell et al. 2007) and FastMap (Gatti et al. 2009). Note
that these two methods are designed to speed up only per-
mutation test but not bootstrapping. Other approaches, such
as the approximation method RAT (Kimmel and Shamir
2006) and exhaustive methods PRESTO (Browning 2008)
and PERMORY (Pahl and Schafer 2010), are applicable only
to binary phenotypes and therefore are not applicable to
eQTL mapping. We evaluate the performance of the selected
methods on three eQTL data sets: inbred mouse strains,
yeast segregants, and human rare variants.

Inbred mouse strains

We use the hypothalamus eQTL data of inbred mice from
McClurg et al. (2007). There are 32 mouse strains in the
data set. The total number of SNPs is 156,525. The missing
values are imputed by the algorithm in Roberts et al. (2007).
There are 36,182 probes on the gene expression array. Here
we refer to the gene expression captured by each probe as
an expression trait. Following the same filtering method as
in Gatti et al. (2009), we dropped any expression trait whose
expression values are all ,200 or whose largest difference
in expression across the 32 mouse strains is less than three-
fold. There are 3,672 expression traits left after filtering.

Accuracy evaluation: Due to the population structure of
these inbred mouse strains, some strains are more similar to
each other than other strains, and thus a direct application
of a permutation test is not appropriate (Fei et al. 2006;
McClurg et al. 2007; Churchill and Doerge 2008). We adopt
the weighted bootstrap approach proposed by McClurg et al.
(2007) in REM to account for the population structure. We
studied 10 expression traits, whose uncorrected P-values
range from 1.9 · 10213 to 2.2 · 1026. We estimated the
corrected P-values by 100 million bootstraps, treated them
as the gold standard, and referred to them as the reference P-
values. The reference P-values of these 10 expression traits
vary from 0.00057 to 0.17. A method is considered accurate
if its corrected P-values are close to the reference P-values.

We use 1 million weighted bootstraps to estimate the
corrected P-values by REM. Because FastMap and PLINK
cannot perform weighted bootstrapping, we apply FastMap
and PLINK to these data using 1 million permutations to
estimate the corrected P-values. The approximation meth-
ods also employ an implicit assumption that all samples are
equally exchangeable, for example, in calculating the corre-
lation matrix. For comparison purposes, we apply these ap-
proximation methods even though the exchangeability
assumption is invalid in these data due to the population
structure. We set the window size to be 100 and the number
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of resamplings to be 1 million for SLIDE. The number of
resamplings is also set to be 1 million for GeoP. SimpleM
is not a resampling-based method and we use its default
setting. Following a similar approach as in Han et al.
(2009; Pahl and Schafer 2010), we construct a 95% confi-
dence interval to cover the sampling error of REM.

Figure 2A depicts the ratios between the corrected P-val-
ues and the reference P-values for the selected methods. A
method is accurate if its ratio is close to 1. As shown in
Figure 2A, there is discrepancy between the bootstrap and
the permutation test (as implemented in PLINK and Fast-
Map). This reflects the effect of the population structure of
the inbred mouse strains. The permutation test is anticon-
servative compared to the weighted bootstrap method. The
approximation methods, which are designed to estimate the
permutation P-values, are shown to be anticonservative
compared to both the bootstrapping and the permutation
test. This indicates that these approximation methods are
not replacements for exhaustive permutation tests. The cor-
rected P-values from the widely used Bonferroni correction
are also shown in Figure 2A. It can be seen that the Bonfer-
roni correction can be either conservative or anticonserva-
tive for different uncorrected P-values. Thus it is not an ideal
approach for multiple-testing correction in eQTL studies.

For comparison purposes, in addition to the weighted
bootstrap method, we also apply the permutation test using
REM. The basic experimental setting is similar to that in the
weighted bootstrap method. We estimate the reference
permutation P-values of the 10 expression traits by 100 mil-
lion permutations. The reference permutation P-values
range from 0.00018 to 0.053. For the three exact methods,
REM, FastMap, and PLINK, we use 1 million permutations to
estimate the corrected P-values.

Figure 2B shows the ratio between the corrected P-values
and the reference permutation P-values. The corrected P-
values generated by the three exact methods fall in the
confidence region of the reference P-values. In contrast,
the three approximation methods, GeoP, SLIDE, and Sim-
pleM, do not estimate the permutation P-values accurately.
Thus these approximation methods cannot replace the exact
permutation test. Further comparison between the exhaus-
tive permutation test and the approximation methods will
be conducted in yeast segregants and human rare variants
data.

Using the genotype data of these 32 mouse inbred
strains, we also study the accuracy of the selected methods
for three synthetic phenotypes whose values follow standard
normal, exponential, and uniform distributions. The approx-
imation methods are shown to be anticonservative. Please
see File S1 for further details.

Computational efficiency evaluation: We evaluate the
computational efficiency of the three selected exact resam-
pling methods, REM, FastMap, and PLINK. The approxima-
tion methods are usually very fast but do not provide
accurate P-value correction. They are not considered in the
computational efficiency evaluation. All experiments in this
subsection are performed on a single CPU of a 2.6-GHz PC
with 8 G memory running the Linux operating system.

Table 1 shows the runtime of the three methods when
applied to the entire eQTL data set with 3600 phenotypes.
As can be seen, with 100,000 resamplings, REM can finish
within 1 day if we set the threshold to be 1. If we find only
the expression traits that have significant associations, REM
can finish within a few hours. FastMap and PLINK will take
a much longer time.

Figure 2 Accuracy evaluation of se-
lected methods on real gene expression
traits in an inbred mouse data set. (Each
line represents the ratio between the
corrected P-values and the reference
P-values for a method. The reference
P-values are obtained using 100 million
resamplings. An accurate method should
yield a ratio of 1. In A, the reference
P-values are estimated by a weighted
bootstrap method. In B, the reference
P-values are estimated by a permutation
test.)
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Figure 3 shows the percentage of the SNPs that are pruned
by REM under different significance levels. The pruned SNPs
are the ones on which we do not perform any test. If we
calculate the corrected P-values for all expression traits,
.80% of SNPs are pruned. In most cases, we are interested
only in the traits whose corrected P-values are less than a cer-
tain threshold. At a significance level of 0.01, .97% of SNPs
are pruned, which means that we need to calculate test sta-
tistics only for ,3% of SNPs. This dramatically reduced
search space explains the improved computational efficiency
of REM. Recall that REM has three pruning strategies to re-
duce the search space. They are (1) pruning by the upper
bound, (2) pruning by the maximum statistic (lines 13–16
in File S1, Algorithm S1), and (3) pruning by the significance
threshold (lines 23–25 in File S1, Algorithm S1). Figure 3 also
shows the breakdown of which pruning strategy is used to
prune the search space. Strategy 2 provides 0.4–2.1% pruning
ratios across different significance levels. When the signifi-
cance level is set to be 1, the pruning strategy 1 alone prunes
.80% of the search space. Strategy 3 plays a more important
role for smaller significance levels. This is reasonable since,
for smaller significance levels, more phenotypes will not be
examined once we know they will not become significant.
Please refer to File S1 for more results on computational
efficiency evaluation.

Yeast segregants

The original yeast data set consists of 112 yeast segregants
generated from two parent strains (Brem and Kruglyak
2005; Brem et al. 2005). Expression levels of 6229 genes
and genotypes of 2956 SNPs were measured in each of the
segregants. After removing SNPs with .10% missing values
and combining SNPs with the same genotype profiles, there
are 1017 distinct genotype profiles.

Since this data set only has a very small number of SNPs,
the exact methods FastMap and REM can both finish within
a few hours for 1 million permutations. To evaluate the
accuracy of the selected methods, we use the same ratio
measurement as in the inbred mouse data set. Figure 4
shows the ratios between the 10 corrected P-values and
the reference P-values (calculated by 100 million permuta-
tions) for the selected methods. The uncorrected P-values of
the gene expression traits range from 4.8 · 1028 to 9.6 ·
1025. After correction, the P-values range from 0.000016 to
0.046. As expected, the corrected P-values of the exact
methods all fall into the confidence region. Both GeoP and
SLIDE provide overall unbiased permutation P-value esti-

mates. This is because the underlying correlation structure
assumption of these approximation methods is appropriate
in this yeast data set, as illustrated in File S1, Figure S1.

Human rare variants

Individual rare variants provide little power for association
studies because of their low minor allele frequencies. A
commonly used approach is to collapse nearby rare variants
and use these collapsed rare variants for association studies
(Li and Leal 2008). In this study, we generated a data set of
collapsed rare variants on the basis of genotype data from
65 HapMap Yoruba in Ibadan (YRI) samples (Frazer et al.
2007). Specifically, the genotype data of .2 million SNPs
were downloaded from the HapMap Web site. We first chose
the markers with minor allele frequency ,0.05, and no miss-
ing values, and then collapsed them within a moving window
of 50 kb that shifts 10 kb each time. The final data set
includes 143,000 collapsed SNPs. We downloaded expression
data of these 65 samples (measured by RNA-seq) from the
Pritchard laboratory’s Web site (http://eqtl.uchicago.edu/)
(Pickrell et al. 2010).

Figure 5A shows the ratios between the corrected P-val-
ues and the reference P-values for the selected methods. The
uncorrected P-values of the gene expression traits range
from 4.9 · 10210 to 7.1 · 1027. After correction, the P-
values range from 8 · 1026 to 0.046. The corrected P-values
of the exact methods still fall into the confidence region. For
the approximation methods, SLIDE and SimpleM are con-
servative for small P-values but become more accurate for

Table 1 Runtime of REM, FastMap, and PLINK on the entire inbred mouse hypothalamus eQTL data

No. resamplings REM (Pt = 0.01) REM (Pt = 0.05) REM (Pt = 1) FastMap PLINK

1,000 2.3 min 4.6 min 13 min 1.2 hr 21 days
10,000 0.3 hr 0.7 hr 2 hr 10 hr 211 days
100,000 2.8 hr 6.7 hr 0.9 day 4 days 5.8 yr
1 million 1.2 days 2.8 days 8.6 days 40 days 58 yr

The data set contains 150,000 SNPs and 3600 gene expression traits over 32 strains. The runtimes .10 days are estimated from smaller-scale experiments.

Figure 3 The pruning ratio (percentage of the SNPs that are pruned
without performing actual tests) of REM for different significance thresh-
olds when using an inbred mouse data set. This also provides the break-
down of the effects of the three pruning strategies used in REM. See text
for more details.
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larger ones. GeoP estimates are overall unbiased but with
large fluctuations.

Figure 5B shows the percentage of the SNPs that are
pruned by REM under different significance levels. Note
that, at significance level 0.01, .95% SNPs are pruned,
and only ,5% SNPs need to be examined for their tests
values. Compared to FastMap, REM speeds up the process
by 20–30 times.

Applying REM to a large sample study through
meta-analysis

The computational efficiency of REM comes from the
indexing structure. For each entry in the index structure,
REM performs a single computation to calculate a bound of
the test statistics of all SNPs in this entry. If the number of
samples is large, the number of entries in the indexing
structure will also be large. This may impair the computa-
tional efficiency of the algorithm. This problem may be
alleviated by meta-analysis (Munafo and Flint 2004). In
contrast to direct analysis of pooled individual-level data,
meta-analysis combines the summary statistics from differ-
ent studies.

We apply REM to a large sample data set (with 1000
samples) through meta-analysis. The samples are parti-
tioned into groups of equal size. For each group, we apply
REM to calculate the resampling-based P-values for 1000
simulated phenotypes. For each phenotype, a combined P-
value is computed by applying Fisher’s method to the group
P-values (Fisher 1925). The combined P-values and original

resampling-based P-values (when using all samples) are al-
most perfectly correlated. Specifically, the correlations are
0.99, 0.98, and 0.96 when we partition the samples into
2, 5, and 10 groups, respectively. Therefore, for large sample
studies, we can apply REM to groups and combine the P-
values by using meta-analysis. The combined P-values are
robust estimations of the original resampling-based P-val-
ues. More detailed discussion on applying REM to a large
sample study through meta-analysis can be found in File S1.

Discussion

The resampling-based test is widely used to address the
multiple-testing correction problem in genetic association
studies. Its main disadvantage is the intensive computa-
tional burden. In eQTL studies, the computational problem
becomes more severe since one needs to correct the P-values
for tens of thousands of gene expression traits. In this article,
we present a rapid and robust algorithm, REM, that dramat-
ically speeds up the process of the exact resampling-based
test. It builds a two-layer indexing structure that groups
SNPs by their genotypes. By estimating the upper bound
of the test statistics for all SNPs within one group, REM
prunes away most of the SNPs. Moreover, since usually we
are interested only in the expression traits whose corrected
P-values are less than a certain significance level, REM can
further improve the computational efficiency by filtering out
the insignificant expression traits in early stages. Most im-
portantly, REM guarantees that we find the exact resam-
pling-based P-values even if it performs the actual tests on
only a small number of SNPs. REM can be applied to a wide
range of resampling procedures. It provides the flexibility to
the user to determine the appropriate resampling strategy
for the data set under consideration. We use three eQTL
data sets to evaluate the performances of several selected
algorithms and demonstrate that REM produces accurate
estimates of resampling-based P-values with much less com-
putational cost than other alternatives.

We have shown that the performances of approximation
methods vary for different data sets with no method being
consistently superior to other methods. The approximation
methods achieve higher accuracy on the yeast data set than
the other two data sets since the correlation structure in the
yeast data set matches the assumptions of the approxima-
tion methods. However, in inbred mice and human rare
variants data sets, nearby markers do not have higher
correlations and the heat maps do not show clear banding
correlation structure among SNPs (File S1, Figure S1).
Therefore, the correlation assumption of the approximation
methods is not valid, which leads to their poor performance.

Association studies of the low-frequency/rare variants
have recently attracted much research attention (Bodmer
and Bonilla 2008; Manolio et al. 2009). With the advance
of sequencing techniques, we expect in the near future that
rare variants will be used in most association studies. Multiple-
testing correction for rare variants association is of great research

Figure 4 Accuracy evaluation of selected methods on the yeast data set.
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interest. Since a single rare variant has little power to detect
an association signal, a common approach is to collapse the
rare variants at a locus so that 1/0 indicates the presence/
absence of any rare variant (Li and Leal 2008; Morris and
Zegginic 2010). The collapsed rare variants often do not
have strong correlations among nearby loci, which violates
the assumption underlying most approximation methods for
permutation P-value estimation. To the best of our knowl-
edge, this article is the first effort to address the multiple-
testing correction problems of rare variant association and
our REM algorithm provides an accurate and computation-
ally efficient solution for this problem.

There is room to improve the REM algorithm. In this
article, we have focused on the cases where genotype data
are binary. The general principle used in REM can also be
applied to the situation where one marker may have three
possible genotypes, which is among our future research
directions.

In summary, the REM algorithm provides an efficient
solution to calculate the exact resampling-based P-values for
a variety of statistical tests in eQTL studies. It has been
demonstrated to be much faster than recently developed
methods. The software is implemented in C++ and is pub-
licly available at http://csbio.unc.edu/eQTL. The algorithm
can be easily parallelized, for example, by parallelizing the
computation for each gene expression trait.
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Assumption of Existing Approximation Methods for Multiple Testing Correction

Figure S1 illustrates the correlation structures of genotype data in yeast segregants (BREM et al. 2005) (Figure S1(a-

b)), mouse inbred strains (MCCLURG et al. 2007) (Figure S1(c-d)), and rare variants in human population (FRAZER

et al. 2007) (Figure S 1(e-f)). More details of these three datasets have been discussed in the Results Section. The

yeast segregants data is a typical genetic dataset from a cross of inbred strains where markers within a chromosome are

highly correlated (Figure S1 (a)) and form an approximate banding structure (Figure S1 (b)). Thus this dataset satisfies

the assumptions needed for the approximation methods. In contrast, we do not observe such correlation structure in

the data of mouse inbred strains and human rare variants. Both mouse inbred strains and human rare variants data are

commonly encountered in genetic studies. The insufficiency of the approximation methods for these datasets motivates

the recent development of the exhaustive methods that calculate the exact resampling-based P-values.
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(a) (b)

(c) (d)

(e) (f)

Figure S1: Difference between correlation structures in the yeast [(a) and (b)], inbred mouse [(c) and (d)], and human
rare variant [(e), (f)] data sets. (a), (c), (e) compare the correlation density for marker pairs within and between
chromosomes. (b), (d), and (f) are the heat maps of correlation matrices in chromosome 12 of the three data sets.
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Convexity of Commonly Used Statistical Tests

It has been shown that most of the commonly used statistical tests in eQTL studies, such as Pearson’s correlation,

Student’s t-test, analysis of variance (ANOVA F-test), and likelihood ratio test are equivalent for binary genotype data

(GATTI et al. 2009). Without loss of generality, we show that the ANOVA F-test is a convex function of Ȳ1. Recall

that Ȳ1 is defined as follows: for SNP Xn and a resampled phenotype Y k
m, Ȳ1 represents the sum of the phenotype

values of the individuals with rarer alleles (i.e., when Xn equals to 1).

The ANOVA F-test partitions the total sum of squares SST into a between-group sum of squares SSB and a

within-group sum of squares SSW . The F-statistic is F = cSSB/SSW , where c is a fixed constant for a particular

study. Let SST be the total sum of squares. We have that F = cSSB/SSW = cSSB/(SST − SSB). For a given

resampled phenotype vector Y k
m, the F-statistic is a monotone function of SSB . From now on, we will use SSB as our

test statistic. For SNP Xn and resampled phenotype vector Y k
m,

SSB(Xn, Y
k
m) =

Ȳ 2
0

S0
+

Ȳ 2
1

S1
− Ȳ 2

S
,

where Ȳ0 and Ȳ1 are the sums of the phenotype values in Y k
m when Xn equals to 0 and 1, respectively, S0 and S1 are

the numbers of 0’s and 1’s in Xn, respectively, Ȳ is the sum of all phenotype values in Y k
m, and S is the total number

of individuals. Clearly, Ȳ0 + Ȳ1 = Ȳ , S0 + S1 = S, and thus we can rewrite SSB as

SSB(Xn, Y
k
m) =

(Ȳ − Ȳ1)
2

S − S1
+

Ȳ 2
1

S1
− Ȳ 2

S
. (1)

Clearly, SSB(Xn, Y
k
m) is a convex function (more specifically a quadratic function) of Ȳ1.
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Accuracy Evaluation using Synthetic Phenotypes

To further study the accuracy of the selected methods on the inbred mouse data set, we generate three synthetic phe-

notypes whose values follow standard normal, exponential, and uniform distributions. For each synthetic phenotype,

we use the selected methods to correct the P-values. The uncorrected P-values ranges from 1.2× 10−9 to 5.4× 10−7

(normal), 5.4 × 10−12 to 7.6 × 10−8 (exponential), and 2.7 × 10−11 to 2.1 × 10−7 (uniform). After correction (by

100M permutations), the P-values range from 0.00039 to 0.052 (normal), 0.00044 to 0.053 (exponential), and 0.00026

to 0.05 (uniform). Then we apply different methods to estimate the corrected P-values.

Figures S2(a), S2(b), and S2(c) show the results when using the permutation P-values as reference. From these

figures, we can observe a similar trend using the three synthetic datasets to that using the real expression traits data. The

approximation methods are anti-conservative. Moreover, they do not provide accurate estimation for the permutation

P-values. Their performances vary for phenotypes with different distributions. GeoP does not work for exponentially

distributed phenotypes (with all corrected P-values being 0), though it performs better than SLIDE and SimpleM on

the other two distributions. This demonstrates that the distribution of the phenotypes plays an important role in the

performances of the approximation methods.

X. Zhang et al. 5 SI



(a) Synthetic normally distributed trait

(b) Synthetic exponentially distributed trait (c) Synthetic uniformly distributed trait

Figure S2: Accuracy evaluation of selected methods on synthetic gene expression traits using inbred mouse data set.
(Each line represents the ratio between the corrected P-values and the reference P-values for a method. The reference
P-values are obtained using 100M permutations. An accurate method should yield a ratio of 1. In this figure, the
reference P-values are estimated by permutation test.)
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Computational Efficiency Evaluation when Varying the Size of the Data Set

We randomly sample 1K real gene expression traits for the evaluation. Unless otherwise specified, the default exper-

imental setting is as follows: number of SNPs = 150K, number of traits = 1K, and number of resamplings = 100K.

PLINK is not computationally efficient enough for this setting. However, since its runtime is linear to the number of

resamplings, we estimate its runtime for 100K resamplings by first running it with 100 resamplings, and then multi-

plying the runtime by 1000. We examine the runtimes of REM for three different thresholds of corrected P-values, 1,

0.05, and 0.01. When the threshold is set to be 1, REM will find the corrected P-values for all traits. Otherwise REM

automatically finds the traits whose corrected P-values are less than the threshold. As shown in Figure S3, FastMap

is about two orders of magnitude faster than PLINK. REM further improves the computational efficiency by about

two orders of magnitude. The computational efficiency of REM is dramatically improved when the corrected P-value

threshold decreases, because REM can filter out insignificant traits in a very early stage of the process.
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(a) Varying the number of SNPs
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(b) Varying the number of traits

Figure S3: Efficiency evaluation of three exact methods, PLINK, FastMap, and REM, when varying the number of
SNPs and the number of traits in the mouse data set. The y-axis (runtime) is in logarithmic scale. The runtime of
PLINK is estimated based on small scale experiments. See text for more details.
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Pseudo Code of the REM Algorithm

Algorithm S1: REM - Rapid and Exact Multiple testing correction by resampling
Input: SNPs {X1, X2, · · · , XN}, gene expression traits {Y1, Y2, · · · , YM}, number of resamples K, and

desired resampling-based P-value threshold pt.
Output: Significant gene expression traits, i.e., the ones whose resampling-based P-values are no greater than

pt.

index SNPs {X1, X2, · · · , XN} by the two-layer indexing structure;1

for every Ym (1 ≤ m ≤ M) do2

scan all SNPs to find maximum statistic TYm ;3

generate resampled phenotype vectors {Y 1
m, Y 2

m, · · · , Y K
m };4

count = 0;5

pres(Ym) = count+1
K+1 ;6

for every Y k
m (1 ≤ k ≤ K) do7

for every e1i (e1i is a first layer entry) do8

if ub(e1i) > TYm then9

for every e2j (e2j is a second layer entry of e1i) do10

if ub(e2j) > TYm then11

for every Xn in entry e2j do12

if T (Xn, Y
k
m) > TYm then13

count = count+ 1;14

pres(Ym) = count+1
K+1 ;15

goto line 23;16

end17

end18

end19

end20

end21

end22

if pres(Ym) > pt then23

goto line 2;24

end25

end26

return Ym as significant;27

end28
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Time Complexity of REM

Supposed that we have S individuals, N SNPs, M Phenotypes, and K Permutations/bootstrapps. In Line 1 of Algo-

rithm S1, the overall time complexity for indexing the SNPs is O(NS). In Line 9, the total number of upper bounds

in the first layer we need to check is (S/2)2/2. The complexity of each check is O(1). So the overall time complexity

for searching the first layer is O(KMS2). In Line 11, in the worse case, each first layer entry has O(S2) second layer

entries. However, the total number of secondary entries cannot be larger than the total number of SNPs N . Thus, the

worst case time complexity for searching the second layer is O(KMN). Moreover, in practice, for a first layer entry,

a second layer indexing is only needed when its number of SNPs is larger than the possible number of second layer

entries. Only a small portion of the first layer entries will actually have the second layer indexing. The overall time

complexity of REM is O(NS +KMS2 +KMN).

Note that the complexity analysis only provides an asymptotic description of the worst case performance of the

algorithm. The actual performance of the algorithm heavily depends on the tightness of the upper bound, which has

been demonstrated by extensive experimental evaluation.
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Applying REM to Large Sample Study through Meta-Analysis

REM can be effectively applied to large sample study through meta-analysis. In a meta-analysis, the samples are

partitioned into several groups. The resampling-based P-values within each group are calculated using REM. The

P-values are then combined by applying Fisher’s method (FISHER 1925).

We simulate data sets of large samples to demonstrate the efficacy of REM. We use SNPs in chromosome 22 of

1000 randomly selected individuals from the genome-wide association study of Schizophrenia (SHI et al. 2009). At

each locus, the heterozygous genotype is combined with the homozygous genotype of major allele. There are 6,679

SNPs of MAF no less than 0.05. The phenotypes Y are simulated by a linear model: Y = Xb + ϵ, where X is the

genotype of a SNP, b is the coefficient, and ϵ is the residual error. In our experiments, b varies from 0.3 to 0.7, and ϵ

follows a standard Gaussian distribution.

The square of Pearson’s correlation, R2, is used as the test statistic. We denote the maximum R2 of the origi-

nal phenotype to be r20 . The permutation P-value across the 1000 individuals is calculated as the proportion of the

permutations with maximum R2 larger than r20 .

For meta-analysis, we randomly partitioned the data into two groups, each of which has 500 samples. In each

group, we calculated the permutation P-value as the proportion of the permutations whose maximum R2 are larger

than fr20 , where f is a constant. We then apply Fisher’s method to combine the permutation P-values of every group

to obtain the meta permutation P-value.

We repeat the above simulation 1000 times and compare the permutation P-values from the whole group (the 1000

individuals) to the meta permutation P-values. Figure S4 depicts that they are highly correlated. Specifically, when

the factor f equals to 2.0 (red points in the figure), the correlation is 0.99.

Meta-analysis using 5 and 10 groups are also performed. The results are similar to that of 2 groups. In particular,

the correlation is 0.98 for 5 groups, and 0.96 for 10 groups.

The nearly perfect correlation between the permutation P-value (of the whole group) and the meta permutation

P-value enables us to apply REM to studies with large samples effectively. Specifically, we first partition the samples

into smaller groups and apply REM to get the permutation P-values for each group. We then combine these P-values

by the Fisher’s method to get a meta permutation P-value. Finally, we map the meta permutation P-value to the

original permutation P-value following the estimated relationship (e.g., the line corresponding to factor 2 in Figure

S4) between these two values. Note that the relationship between the original permutation P-value and the meta

permutation P-value can be estimated by using a small number (e.g., tens) of phenotypes.

The exact value of the factor f is not essential to the success of our method. This is because, for any given factor f ,

we can always estimate the relationship between the meta permutation P-value and the original permutation P-value.

For example, the three lines in Figure S4 correspond to three different values of f . Any one of them can be used to
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map between the two P-values. In theory, however, it is interesting to investigate whether there exists an optimal f

value that gives the highest correlation between the two P-values. This is among our future research directions.
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Figure S4: Relationship between the combined P-values and the original P-values
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