
Mining Shifting-and-Scaling Co-Regulation Patterns on Gene
Expression Profiles

Xin Xu
National University

of Singapore

xuxin@comp.nus.edu.sg

Ying Lu
University of Illinois,

Urbana-Champaign

yinglu@uiuc.edu

Anthony K. H. Tung
National University

of Singapore

atung@comp.nus.edu.sg

Wei Wang
U. of North Carolina,

Chapel Hill

weiwang@cs.unc.edu

Abstract

In this paper, we propose a new model for coherent
clustering of gene expression data called reg-cluster.
The proposed model allows (1) the expression profiles of
genes in a cluster to follow any shifting-and-scaling pat-
terns in subspace, where the scaling can be either pos-
itive or negative, and (2) the expression value changes
across any two conditions of the cluster to be signif-
icant. No previous work measures up to the task that
we have set: the density-based subspace clustering algo-
rithms require genes to have similar expression levels to
each other in subspace; the pattern-based biclustering al-
gorithms only allow pure shifting or pure scaling patterns;
and the tendency-based biclustering algorithms have no
coherence guarantees. We also develop a novel pattern-
based biclustering algorithm for identifying shifting-and-
scaling co-regulation patterns, satisfying both coherence
constraint and regulation constraint. Our experimental
results show that the reg-cluster algorithm is able to de-
tect a significant amount of clusters missed by previous
models, and these clusters are potentially of high biologi-
cal significance.

1. Introduction

Advances in microarray technologies have made it
possible to measure the expression profiles of thousands
of genes in parallel under varying experimental condi-
tions. Table 1 shows an example dataset. Each row of
the table corresponds to a gene (denoted as gi) while
each column corresponds to a certain condition (de-
noted as cj) in which gene expression level is measured.
A subset of genes showing correlated co-expression pat-
terns across a subset of conditions are expected to be
functionally related. A natural task is to group such
subsets of genes and conditions together.

One well-known characteristic of high-dimensional

data is that data objects are not correlated in full di-
mensional space but correlated only in a subset of di-
mensions (subspace). The density-based subspace clus-
tering algorithms [1, 2, 4, 15, 16, 21] assume data ob-
jects of the same cluster to be close in correlated sub-
space and assign each data object to only one cluster.
Yet in gene expression data, a gene or a condition may
be involved in multiple pathways. To allow overlap be-
tween gene clusters, pioneering biclustering algorithms
such as [6] have been proposed. A later advancement,
pattern-based biclustering algorithms [24, 25, 26] take
into consideration the fact that genes with strong cor-
relation do not have to be spatially close in correlated
subspace.

In this paper, we focus on the more general shifting-
and-scaling co-regulation patterns, which have received
little attention so far.

1.1. Motivation

Existing pattern-based biclustering algorithms are
only able to address pure shifting patterns or pure scal-
ing patterns separately: as shown in Figure 1. After a
single shifting or scaling, a pattern may coincide with
another pattern. In Figure 1, the six patterns are of
the relationships: P1 = P2 − 5 = P3 − 15 = P4 =
P5/1.5 = P6/3. PCluster [24] and δ-cluster [25] as-
sume that scaling patterns can be transformed to shift-
ing patterns after a logarithm transformation on the
whole dataset D, and focuses on shifting patterns only.
Tricluster [26] focuses on scaling patterns only, assum-
ing that after a global exponential transformation of
D, shifting patterns will all be transformed into scal-
ing patterns. Assume dic and djc are expression levels
of gene gi and gj on condition c, s1 and s2 are the scal-
ing and shifting factors respectively; their mathemati-
cal relationships are given as follows:

dic = s1 ∗ djc ⇒ logdic = logdjc + logs1 [24, 25] (1)

dic = djc + s2 ⇒ edic = edjc · es2 [26]. (2)



No existing pattern-based algorithms can han-
dle dataset with shifting-and-scaling patterns of the
form diC = s1 ∗ djC + s2, by which the six cohe-
sive patterns in Figure 1 can be grouped together
simultaneously.
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Figure 1. Previous Patterns

gene c1 c2 c3 c4 c5 c6 c7 c8 c9 c10

g1 10 -14.5 15 10.5 0 14.5 -15 0 -5 -5
g2 20 15 15 43.5 30 44 45 43 35 20
g3 6 -3.8 8 6.2 2 7.8 -4 2 0 0

Table 1. Running Dataset
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Figure 2. Our Shifting-and-Scaling Patterns

There are three problems the pattern-based algo-
rithms and other existing biclustering algorithms have
ignored:
• Regulation Test: Cheng and Church [6] state that
the utmost important goal of gene expression data
analysis is to find a set of genes showing strikingly sim-
ilar up-regulation and down-regulation under a set of
conditions, rather than simply to find a bicluster to per-
fectly cover the data. The pattern-based and tendency-
based algorithms disregard the fact that patterns with
smaller variations in expression values are probably of
little biological meaning.
• Pattern Universality: Co-regulated genes may re-
spond to environmental stimuli or conditions coher-

ently, forming certain shifting-and-scaling patterns due
to varying individual sensitivities. For instance, expres-
sion profiles of g1 and g3 of the running example (Ta-
ble 1) in Figure 2 are shifting-and-scaling patterns:
d1,{5,1,3,9,7} = 2.5 ∗ d3,{5,1,3,9,7} − 5. Current pattern-
based models [24, 25, 26] only validate a partial corre-
lation, either a pure shifting pattern or a pure scaling
pattern, special cases of the shifting-and-scaling pat-
tern. Therefore, many co-regulation patterns would
be missed by existing pattern-based algorithms, such
as the one of real dataset in Figure 8.
• Negative Correlation: The complex biological sys-
tem exhibits an even greater diversity in gene corre-
lations than any existing subspace clustering and bi-
clustering algorithms can capture. One is negative-
correlation, i.e., when one gene has a high expression
level, the expression level of the other gene is low and
vice versa. Both positive-correlated genes and negative-
correlated genes should be grouped together because
they could be involved in the same biological pathway
[9]. None existing subspace clustering algorithms has
addressed the issue of negative correlation in a system-
atic way. Actually, negative correlation in subspace also
pertains to the shifting-and-scaling pattern with a neg-
ative scaling factor, such as the relationship between
g2 and the other two genes in Figure 2, d2,{5,1,3,9,7} =
−2.5 ∗ d3,{5,1,3,9,7} + 35 = −d1,{5,1,3,9,7} + 30.

1.2. Goal

To address the various problems that we have just
discussed, we propose a new model called reg-cluster.
The proposed model can better accommodate the reg-
ulation constraint and various correlation measures on
gene expression profiles employed previously, includ-
ing both positive and negative co-regulations. The pro-
posed model also allows for shifting-and-scaling co-
regulation as well as pure shifting and scaling one. Ta-
ble 1 illustrates the expression levels of three genes un-
der 10 conditions. As Figure 2 shows, g1 and g3 are
strongly positively co-regulated, but g2 strongly neg-
atively co-regulated with g1 and g3 on conditions c5,
c1, c3, c9 and c7. The three genes form a candidate
3× 5 reg-cluster before the regulation constraint is ap-
plied. A reg-cluster exhibits the following characteris-
tics which are suitable for expression data analysis:
• increase or decrease of gene expression levels across
any two conditions of a reg-cluster is significant with re-
gard to the regulation threshold γ.
• increase or decrease of gene expression levels across
any two conditions of a reg-cluster is in proportion,
allowing small variations defined by the coherence
threshold ε.



• genes of a reg-cluster can be either positively corre-
lated or negatively correlated.

1.3. Challenges

In correlated subspace, positive-correlated genes and
negative-correlated genes exhibit no spatial proximity
at all. This makes it impractical to apply density-based
subspace clustering algorithms [1, 2, 4, 15, 16, 21] and
the mean-squared-residue-score based biclustering al-
gorithm [6].

For pattern-based and tendency-based biclustering
algorithms, there are three main challenges for reg-
cluster discovery.

Naturally, the biggest challenge is the need of a novel
coherent cluster model that can capture the more gen-
eral shifting-and-scaling co-regulation patterns.

Another challenge is how to apply a non-negative
regulation threshold. Tendency-based models of [3, 18,
19] are not suitable for adopting a regulation threshold
γ. For example, the sequence model of [18], given the
regulation threshold 0.8 for g2 and the sorted expres-
sion levels {15, 20, 43, 43.5, 44} on conditions c2, c10, c8,
c4 and c6, is unable to group non-regulated condition-
pairs c8−c4 and c4−c6 together why not the regulated
condition-pair c6 − c8.

The third challenge is negative co-regulation. Note
that our scaling coefficient can be a negative real num-
ber. Existing pattern-based biclustering algorithms
can not efficiently handle negative co-regulation prob-
lem, since the coexistence of positively and negatively
correlated genes would lead to a rather large pScore
[24] or expression ratio range [26].

The rest of paper is organized as follows. We review
related work on gene expression data clustering in Sec-
tion 2. Our reg-cluster model is presented in Section 3.
We introduce our reg-cluster mining algorithm in Sec-
tion 4. In Section 5, we present our experimental re-
sults. We conclude in Section 6.

2. Related Work

With the rapid advances of microarray technolo-
gies, large amounts of high-dimensional gene expression
data are being generated, which poses significant com-
putational challenges. Clustering is one of the most im-
portant tasks as similar expression profiles imply a re-
lated function and indicate the same cellular pathway
[13]. Clustering algorithms may be classified into two
big categories: full space clustering algorithms which
evaluate the expression profile similarity of genes in all
conditions, and subspace clustering algorithms which
evaluate similarity in a subset of conditions.

The most commonly applied full space clustering al-
gorithms on gene expression profiles are hierarchical
clustering algorithms [10], self-organizing maps [12],
and K-means clustering algorithms [23]. Hierarchical
algorithms merge genes with the most similar expres-
sion profiles iteratively in a bottom-up manner. Self-
organizing maps and K-means algorithms partition
genes into user-specified k optimal clusters. Other full
space clustering algorithms applied on gene expression
data include Bayesian network [14] and neural network.

A common characteristic of high-dimensional data
is that values of data objects may only be coherent
under a subset of conditions. For this reason, density-
based subspace clustering algorithms have been pro-
posed [1, 2, 4, 15, 16, 21]. However, a common draw-
back of these density-based subspace clustering algo-
rithms is that they assign each data object (gene) to
one cluster only. Yet we know that a gene may partic-
ipate in several biological pathways and thus it should
be allowed to be assigned to multiple clusters. Biclus-
tering algorithms provide an answer to this problem
as it allows overlapping clusters. [6] is an example of a
heuristic biclustering algorithm.

These algorithms require genes of the same clus-
ter to be dense and close to each other when pro-
jecting into the correlated subspace. The more recent
pattern-based and tendency-based biclustering algo-
rithms, [3, 18, 19, 24, 25, 26] overcome the conventional
constraint of spatial proximity and are able to identify
shifting patterns, scaling patterns and synchronous-
tendency patterns.

Current pattern-based and tendency-based algo-
rithms focus on finding clusters with compatible ex-
pression profiles in subspace, disregarding regulation
evaluation. The tendency-based biclustering algo-
rithms like [18, 19] identify genes whose expression
levels rise and fall synchronously in subspace with-
out coherence guarantee. Existing pattern-based
algorithms are limited to two simple types of pat-
terns: pure shifting pattern and pure scaling pat-
tern; they are unable to discover the more complicated
shifting-and-scaling patterns. Another unaddressed is-
sue is negative correlation, which is still confined to
full space clustering at present [9, 17, 22].

Our reg-cluster model improves over previ-
ous pattern-based and tendency-based bicluster-
ing algorithms by addressing the more general
shifting-and-scaling co-regulation patterns, allow-
ing negative correlations as well as positive ones.

Our reg-cluster discovery algorithm gains effi-
ciency by utilizing condition-wise enumeration strat-
egy when searching representative regulation chains.
Compared with previous condition-wise methods in
gene expression analysis [20, 8, 7], reg-cluster per-



forms the condition-wise enumeration on ordered con-
dition chains while the enumerated condition set of
[20, 8, 7] is unordered.

3. The reg-cluster Model

3.1. Regulation Measurement

Suppose dica
and dicb

are the expression levels of
gene gi under conditions ca and cb respectively. We
could then say gi is up-regulated from condition cb to
condition ca, denoted as Reg(i, ca, cb) = Up, if the in-
crease in expression level exceeds its regulation thresh-
old γi, as described in Equation 3. Alternatively, we
say gi is down-regulated from condition ca to cb, de-
noted as Reg(i, cb, ca) = Down. We call cb the regu-
lation predecessor of ca, denoted as cb x ca, and ca

as the regulation successor of cb for gi, denoted as
ca y cb.

Reg(i, ca, cb) =

�
Up if dica − dicb > γi

Down if dica − dicb < −γi
(3)

In this paper, for ease of understanding, we assume
the regulation threshold of gi, γi, as a pre-defined per-
centage of the expression range of gi in Equation 4,
where n is the dimensionality of the expression dataset
and γ is a user-defined parameter ranging from 0 to
1.0. We consider imposing a regulation threshold im-
portant for pattern validation, as it will help to distin-
guish useful patterns from noise. In practice, other reg-
ulation thresholds, such as the average difference be-
tween every pair of conditions whose values are clos-
est [18], normalized threshold [17], average expression
value [5], etc., can be used where appropriate.

γi = γ × (MAX1≤j≤n(dicj )−MIN1≤j≤n(dicj )), (4)

The intuition behind using a local regulation thresh-
old for different genes instead of a global one is that
individual genes have different sensitivities to environ-
mental stimulations. For instance, studies in [11] reveal
that the magnitudes of the rise or fall in the expres-
sion levels of a group of genes inducible or repressible
by hormone E2 can differ by several orders of magni-
tude. Current pattern-based and tendency-based mod-
els [3, 18, 19] can only cope with the extreme and prob-
ably biased case where γ = 0, and is constrained to the
positive correlation. If γ > 0, these models become
problematic, as we discussed in Section 1.

To support this general concept of regulation, in-
stead of recording the regulation relationships between
all possible pairs of C2

n conditions, we propose a new
model, called RWaveγ 1, which only keeps the regu-
lation information of bordering condition-pairs for the

1 RWave stands for regulation wave

genes in a wave-boosting manner with respect to γ. Fig-
ure 3 illustrates the RWave0.15 model (γ1 = γ2 = 4.5
and γ3 = 1.8) for the running example (Table 1). c5−c1

is one bordering condition-pair for g1, and that any
condition ci that lies on the left hand side of c5 will
guarantee to have a bigger difference than γ1 when
compared to any condition cj that lies on the right
hand side of c1. The formal definition of the RWaveγ

model is given below.

Figure 3. RWave0.15 Models

Definition 3.1 RWaveγ

Given the regulation threshold γ, the RWaveγ model
of gene gi on the set of conditions c1, c2, ..., and cn is
a non-descending ordering (¹) of the set according to
their expression values with regulation pointers mark-
ing all the bordering regulation relationships such that
for each regulation pointer pointing from cb to ca, we
have, (1) ∀cp º cb and ∀cq ¹ ca, Reg(i, cp, cq) = Up,
denoted as cq x cp; and (2) there is no other embed-
ded pointer pointing from cb′ to ca′ , such that ca′ º ca

and cb′ ¹ cb, ∀cp′ º cb′ and ∀cq′ ¹ ca′ , we have
Reg(i, c′p, c

′
q) = Up, denoted as cq′ x cp′ . ¤

Note that if cq ¹ cp in gi’s RWaveγ model, indicat-
ing diq ≤ dip, then cq may not be cp’s regulation pre-
decessor. Here, ¹ and º indicate the ordering of the
conditions while x and y indicate the upward and
downward regulation relationships of a condition-pair
with respect to γ. Given the regulation threshold γ, the
regulation relationship of any condition-pair of gi can
be easily inferred from its RWaveγ model by simply
checking whether there is a regulation pointer between
the two conditions and what the pointer direction is.
The conditions of a reg-cluster whose pairwise differ-
ences in expression levels are either upward or down-
ward defined by γ must be separated by at least ONE
regulation pointer in the RWaveγ model of its genes,
thus forming a “x” or “y” linked regulation chain.

Besides, Lemma 3.1 ensures that ∀ck of a gene gi,
we can locate all the regulation predecessors and reg-
ulation successors of ck for gi efficiently by using the
RWaveγ model.



Lemma 3.1 Given the regulation threshold γ, a gene
gi and a condition ca, let cp x cq be the nearest reg-
ulation pointer that is before ca with respect to gi.
All conditions cb such that cb ¹ cp are all regula-
tion predecessors of ca with respect to gi. Likewise, if
cp x cq is the nearest regulation pointer that is af-
ter ca, then all conditions cb such that cq ¹ cb are def-
initely the regulation successors of ca for gi.
Proof: Since the conditions are sorted in non-
descending order of their expression levels,
cb ¹ cp ≺ cq ¹ ca if cp x cq represents the
nearest regulation pointer before ca. Since the dif-
ference between the expression levels of cp and cq

is greater than γ based on the definition of regula-
tion pointer, we can also see that the difference be-
tween the expression levels of cb and ca is greater than
γ. Thus cb is considered to be the regulation predeces-
sor of ca. For the case in which cp x cq is the nearest
regulation pointer after ca, the same argument ap-
plies. ¤

Given the RWave0.15 models in Figure 3, assume
we want to find the regulation predecessors of c6 for
g1, we simply follow the closest regulation pointer be-
fore it, which points from c1 to c5. c7, c2, c10, c9, c8

and c5 are exactly the regulation predecessors of c6.
We can also infer that there are no regulation succes-
sors of c6 as no regulation pointer exists after c6. Inter-
ested readers may refer to Table 1 for a more detailed
analysis.

3.2. Coherence Measurement

Besides the regulation threshold γ, reg-cluster
should be validated with the shifting-and-scaling co-
herency constraint ε. Assume diY and djY are two per-
fect shifting-and-scaling co-regulation patterns of gi

and gj on condition set Y , then we there should ex-
ists s1 and s2 such that,

diY = s1 ∗ djY + s2, (5)

where s1 and s2 are the scaling and shifting fac-
tors respectively. The value of s1 can be either positive
(s1 > 0), indicating diY and djY are positively cor-
related on Y , or negative (s1 < 0), indicating diY and
djY are negatively correlated on Y . Note that any
subsequent shifting or scaling transformations on diY

will not affect the general form given in Equation 5.
Only the scaling and shifting factors may change val-
ues. As we can observe, the shifting patterns and scal-
ing patterns addressed in [24, 25, 26] correspond to the
two special cases of diY = djY + s2 and diY = s1 ∗ djY

respectively.

Based on Equation 5, we can further infer the nec-
essary and sufficient condition for the existence of
shifting-and-scaling pattern.

Lemma 3.2 Suppose diY and djY are the expression
profiles of genes gi and gj on subspace Y , Y = {c1, c2,
......, cn}, dic1 < dic2 < ...... < dicn

, and assume we
choose c1 and c2 as the baseline condition-pair, then diY

and djY are shifting-and-scaling patterns, either shifting-
and-positive scaling or shifting-and-negative scaling, in
subspace Y if and only if ∀ck, c(k+1), 1 ≤ k < n,

dick+1 − dick

dic2 − dic1

=
djck+1 − djck

djc2 − djc1

. (6)

Proof:
(1) If diY and djY are two shifting-and-scaling pat-
terns, then ∃s1 and s2, diY = s1 ∗ djY + s2. Fur-
thermore, ∀c(k+1) and ck, 1 ≤ k < n, we have
dick+1 = s1 ∗ djck+1 + s2 and dick

= s1 ∗ djck
+ s2, so

dick+1−dick

dic2−dic1
=

djck+1−djck

djc2−djc1
.

(2) On the other hand, if ∀ck, c(k+1), 1 ≤ k < n

such that
dick+1−dick

dic2−dic1
=

djck+1−djck

djc2−djc1
, then

∀cp, cq ∈ Y , p 6= q, we have dicp−dicq

dic2−dic1
=

(dicp−dicp−1 )+(dicp−1−dicp−2 )+...+(dicq+1−dicq )

dic2−dic1
=

(djcp−djcp−1 )+(djcp−1−djcp−2 )+...+(djcq+1−djcq )

djc2−djc1
=

djcp−djcq

djc2−djc1
. Therefore, dicp−dicq

djcp−djcq
is a constant for

gi and gj, say s1. Then ∀cp, cq ∈ Y , p 6= q, we
have dicp = s1 ∗ djcp − s1 ∗ djcq + dicq , suggest-
ing dicp − s1 ∗ djcp being a constant as well, say s2. So
we can conclude that diY = djY ∗ s1 + s2. ¤

Given Lemma 3.2, we need not check the coherence
of reg-cluster on all combinations of pair-wise condi-
tions, which was necessary in previous work. Instead,
we simply check all adjacent condition-pairs ck and
ck+1 with regard to the baseline condition-pair, c1 and
c2, according to a coherence threshold ε.

H(i, c1, c2, ck, ck+1) =
dick+1 − dick

dic2 − dic1

. (7)

We can conclude that the expression profiles of the
three genes in Figure 2 are shifting-and-scaling pat-
terns on conditions c7, c9, c5, c1 and c3 with each other
because these three genes share exactly the same coher-
ence scores: ∀gi ∈ {g1, g2, g3}, H(i, c7, c9, c7, c9) = 1.0,
H(i, c7, c9, c9, c5) = 0.5, H(i, c7, c9, c5, c1) = 1.0 and
H(i, c7, c9, c1, c3) = 0.5, with an order of either c7 ≺
c9 ≺ c5 ≺ c1 ≺ c3 (g1 and g3) or c7 Â c9 Â c5 Â c1 Â c3

(g2).
We impose the coherence threshold ε to flexibly

control the coherence of the clusters. In this way, we
can ensure the variations in coherence scores, given in



Equation 7, are within ε for genes in the same cluster.
Perfect shifting-and-scaling patterns correspond to the
case where ε = 0.

3.3. Model Definition and Comparison

By combining both the regulation constraint and the
shifting-and-scaling coherence constraint, we now pro-
pose the definition of a reg-cluster.

Definition 3.2 Reg-Cluster
Given the regulation threshold γ and coherence thresh-
old ε, a bicluster CX×Y , where X is a subset of genes
and Y = {c1, c2, ..., cn} is the subset of correlated con-
ditions such that ∀gi ∈ X, either dic1 < dic2 < ... <
dicn

or dic1 > dic2 > ... > dicn
, is a reg-cluster if and

only if:
(1) ∀gi ∈ X, based on its RWaveγ model, we have ei-
ther c1 x c2 x ...... x cn, or c1 y c2 y ...... y cn,
and (2) ∀gi, gj ∈ X, ∀k, 1 ≤ k < n, we have
|H(i, c1, c2, ck, ck+1)−H(j, c1, c2, ck, ck+1)| ≤ ε. ¤

In this way, with the reg-cluster model, we are
able to identify all the significant shifting-and-scaling
co-regulation patterns with regard to γ and ε. Two
genes of a reg-cluster can be positively co-regulated
if complying with the same regulation chain and neg-
atively co-regulated if complying with inverted regula-
tion chains.
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Figure 4. An Outlier

For a brief comparison between our reg-cluster
model and previous models, consider the projec-
tion of the three genes in the running example on
conditions c2, c4, c8 and c10 in Figure 4, where
d3,{2,4,8,10} = 0.4 ∗ d1,{2,4,8,10} + 2 and there is no
shifting-and-scaling relationship between g2 and
the other two genes. Given the regulation thresh-
old γ = 0.15 and coherence threshold ε = 0.1,
our reg-cluster model can easily identify the out-
lier gene g2 because (1) the RWave0.15 model of g2 in-
dicates there are no regulation between c4 and c8;

and (2) g1 and g3 have exactly the same coherence
score along the four conditions while g2 does not, i.e.,
H(1, c2, c10, c10, c8) = H(3, c2, c10, c10, c8) = 0.5263
but H(2, c2, c10, c10, c8) = 4.6, far beyond the al-
lowed variation ε. In contrast, the pattern-based mod-
els discover no patterns, as there are no pure shifting
or pure scaling relationships while the tendency-based
models always cluster the three genes together be-
cause the three genes have exactly the same subse-
quence and tendency on the four conditions.

4. Algorithm

Input: D = G × C: 2D dataset, MinG: minimum number of
genes, MinC: minimum number of conditions, γ: regulation thresh-
old and ε: coherence threshold.
Output: all validated reg-clusters w.r.t. γ, ε, MinG and MinC:
{C|C = X × Y } such that C.X is the maximal gene set for the repre-
sentative regulation chain C.Y .

\ ∗ RWaveγ model construction ∗\
for each gene gi ∈ G do

sort the conditions cj ∈ C in non-descending order of dij .
for each cj in sorted order do

find cj ’s closest regulation predecessor ck w.r.t. γ.
if no regulation pointer exists between cj and ck then

insert a new pointer ck x cj in gi’s RWaveγ model.

\∗ reg-cluster mining ∗\
C.pX = C.nX = G.
C.Y = ∅.
C2Set = ∅.
MineC2(C, C2Set).

Subroutine: MineC2(C, C2Set).
Parameters:

C.Y : the current representative regulation chain;

C.X: the corresponding genes for C.Y ;

C2Set: the set of discovered validated reg-clusters.

Method:

1. apply pruning (1): if |C.X| < MinG, then return.

2. apply pruning (3).(a): if |C.pX| < MinG/2, then return.

3. assume C.Y = ck1 x ck2... x ckm, if |C.Y | ≥ MinC and
|C.X| ≥ MinG and (|C.pX| > |C.nX| or (|C.pX| == |C.nX|
and k1 < k2)) then

apply pruning (3).(b):
if C is already in C2Set then return
else output C to C2Set.

4. Scan the RWaveγ models of C.pX whenapplying pruning (2)
and store the condition candidates to CandiSet.

5. for each candidate condition ci ∈ CandiSet do
find the subset of genes Xci ⊆ C.X which match
either C.Y +“x ci” or invert(C.Y +“x ci”)
when applying pruning (2);
sort Xci on coherence score discrepancy
H(j, ck1, ck2, ckm, ci) where gj ∈ Xci ;
apply sliding window with minimum length
MinG and threshold ε on sorted Xci ;
apply pruning (4):
if no validated gene interval X′′ then continue;
for each validated X′′ after sliding do

C′.Y = C.Y +“x ci”; C′.X = X′′;
MineC2(C′, C2Set)

Figure 5. reg-cluster Mining Algorithm



Figure 6. Enumeration Tree of Representative Regu-
lation Chains w.r.t. γ = 0.15, ε = 0.1, MinG = 3 and
MinC = 5

The essential idea of our algorithm is to systemat-
ically identify the representative regulation chain for
each validated reg-cluster. A representative regula-
tion chain C.Y = ck1 x ck2 x ... x ckm (a se-
ries of conditions connected by regulation pointers) in-
cludes genes that are correlated or anti-correlated with
the chain. We refer to them as the p-members C.pX
(gene complying with C.Y ) and n-members C.nX of
the reg-cluster, respectively. We can conveniently ob-
tain C.pX by searching along the RWaveγ model and
C.nX by searching in the opposite direction. Note
that there are two regulation chains that a reg-cluster
may satisfy: C.Y and invert(C.Y ) = {ck1 y ck2 y
...y ckm}.

To avoid redundancy and overlap of the output clus-
ters, we assume that the representative regulation chain
always captures the pattern of the majority of genes in
a reg-cluster: the number of p-members is greater than
or equal to the number of n-members. If the number of
p-members is equal to that of the n-members, we as-
sume the regulation chain starting with a predecessor
of larger condition ID as the “representative”. For in-
stance, the representative regulation chain for the reg-
cluster in Figure 2 is c7 x c9 x c5 x c1 x c3 with
its p-members {g1, g3} and n-members {g2}. The in-
verted c7 y c9 y c5 y c1 y c3 is not a representative
regulation chain.

In summary, our reg-cluster algorithm illustrated in
Figure 5 performs a bi-directional depth-first search
on the RWaveγ models for representative regulation
chains (C.Y ) satisfying the user specified minimum
number of genes MinG, minimum number of condi-
tions MinC, regulation threshold γ, and coherence
threshold ε. At any step, the candidate regulation suc-
cessors for the partially enumerated representative reg-
ulation chain C.Y are held in CandiSet. For each can-

didate ci ∈ CandiSet, we locate the subset of genes
Xci ⊆ C.X which satisfy C.Y x ci and sort them
in non-descending order of the coherence score (H(j,
ck1, ck2, ckm, ci), gj ∈ Xci). Then we use a sliding
window of the minimum length MinG and coherence
threshold ε to partition Xci into a set of validated
maximal subset of genes X ′′, which may overlap. The
same process MineC2() is applied to each partition C ′

(C ′.Y = C.Y x ci and C ′.X = X ′′) recursively.
Figure 6 shows an example of representative regula-

tion chain enumeration process. We apply the follow-
ing pruning strategies:

(1) MinG pruning: Whenever the total number of
p-members and n-members of the current enumerated
representative regulation chain is below MinG, we
prune the search after this node, as further extension
of the representative regulation chain will only reduce
the number of genes.

(2) MinC pruning: Whenever the estimated max-
imal length of the current enumerated representative
regulation chain of a gene falls below MinC, we re-
move the gene from further consideration.

(3) Redundant pruning: (a) Whenever the number
of p-members is below MinG/2 (|C.pX| < MinG/2),
we prune the candidate reg-cluster because the num-
ber of p-members would be smaller than the number
of n-members. (Any validated reg-cluster contains at
least MinG members.) (b) Whenever a validated reg-
cluster is found to be repetitive (as a result of overlap-
ping gene sets after applying the sliding window tech-
niques), we prune the search because the search space
rooted at this node is redundant.

(4) Coherence pruning: Whenever less than MinG
genes are coherent (defined by ε) at a node, we prune
the search.

Note that with pruning strategies (2) and (3).(a), we
only need to look at p-members of the current enumer-
ated representative regulation chain C.Y when search-
ing for extending condition candidates.

Figure 6 is the representative regulation chain enu-
meration tree for the running example (Table 1) when
γ = 0.15, ε = 0.1, MinG = 3 and MinC = 5, which
consists of six levels, 0, 1, ..., 5. The number on the
tree edge indicates the pruning strategies applied. At
the ith level, the bicluster subroutine tests all possi-
ble representative regulation chains of length i. The
depth-first search starts from the root node initial-
ized with an empty chain. At level 1, the only pos-
sible candidate conditions are c2, c3 and c7. The rest
conditions cannot grow any regulation chain of length
5 along the RWave0.15 models (Figure 3). So we can
prune the search on c1, c4, c5, c6, c8, c9 and c10 ac-
cording to pruning strategies (2) and (3).(a). Moreover,
we can prune the search following node c3 using prun-



ing strategy (3).(a), because the number of p-members
of the regulation chain c3 is 1, which is smaller than
MinG/2. Then, we grow the subtree of node c2 with
candidates c1, c9 and c10, which are all possible con-
ditions for extending a regulation chain of minimum
length 5. With pruning strategy (1), we can prune the
search after nodes c2c1 and c2c9. The only extensible
child of node c2 is c2c10, whose candidates are c5 and c8

with pruning strategy (3).(a). Node c2c10c5 is pruned
during coherence test with pruning strategy (4), since
H(1, c2, c10, c10, c5) = H(3, c2, c10, c10, c5) = 0.5263
while H(2, c2, c10, c10, c5) = 2 and, therefore, no val-
idated gene subset is discovered when sliding the win-
dow of minimum length 3 and ε = 0.1. Node c2c10c8 is
pruned with pruning strategy (1). Again, we examine
the p-members of node c7 and find the candidates for
further extension are c9 and c10. c7c10 is pruned with
strategy (1) and the only validated representative reg-
ulation chain discovered is c7 x c9 x c5 x c1 x c3.

5. EXPERIMENTS

To evaluate the performance of our reg-cluster al-
gorithm, we performed experiments on a series of syn-
thetic datasets and real-life gene expression dataset on
a 3.0-GHz Dell PC with 1G memory running Window
XP.

As the running time of reg-cluster on real datasets
are too short for in-depth analysis, we evaluate the ef-
ficiency of our algorithm on synthetic datasets, which
are obtained with a data generator with three input pa-
rameters: number of genes (#g), number of conditions
(#cond), and number of embedded clusters (#clus).
We set the default parameters of the data generator al-
gorithm as #g = 3000, #cond = 30 and #clus = 30.
The synthetic dataset is initialized with random val-
ues ranging from 0 to 10. Then a number of #clus per-
fect shifting-and-scaling clusters of average dimension-
ality 6 and average number of genes (including both p-
member genes and n-member genes) equal to 0.01∗#g
are embedded into the data, which are reg-clusters with
parameter settings ε = 0 and γ = 0.15.

We evaluate the effectiveness of our reg-
cluster algorithm on a benchmark 2D yeast
gene expression data [23], available at http:
//arep.med.harvard.edu/biclustering/. The
2D dataset contains the expression levels of 2884 genes
under 17 conditions.

5.1. Efficiency

Given the default parameter setting of the data gen-
erator algorithm above, we test the scalability of reg-
cluster by varying only one input parameter while keep-

ing the other two as default. The average runtime of
reg-cluster when we vary the parameters invoked with
MinG = 0.01∗#g, MinC = 6, γ = 0.1 and ε = 0.01 is
illustrated in Figure 7. As we can observe, the runtime
of the reg-cluster algorithm is slightly more than linear
in terms of the number of genes (#g). It shows worse
scalability with respect to the number of conditions
(#cond). This is because the reg-cluster algorithm may
examine all possible permutations of conditions when
looking for the representative regulation chains, but it
only searches for the maximal sets of genes that are
projected onto the enumerated (inverted) representa-
tive regulation chains. Typically, the number of condi-
tions is much smaller than the number of genes. Figure
7 shows an approximately linear relationship between
the runtime of the reg-cluster algorithm and the num-
ber of clusters (#cluster).

5.2. Effectiveness

We ran the reg-cluster algorithm on the 2D 2884×17
yeast dataset with MinG = 20, MinC = 6, γ = 0.05
and ε = 1.0; 21 bi-reg-clusters are output in 2.5 sec-
onds, where the percentage of overlapping cells of a
bi-reg-cluster with another one generally ranges from
0% to 85%. Note that we did not perform any splitting
and merging of clusters. Due to space limit, we only re-
port the details of three non-overlapping bi-reg-clusters
with 21 genes and six conditions each.
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Figure 8. Three biclusters

Figure 8 illustrates the gene expression profiles for
each of the three bi-reg-clusters. Our reg-cluster al-
gorithm can successfully identify shifting-and-scaling
patterns satisfying the regulation and coherence
thresholds, where the scaling factor can be either pos-
itive or negative. For each bi-reg-cluster, we rep-
resent its p-members with black solid lines and its
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Figure 7. Evaluation of Efficiency on Synthetic Datasets

Cluster Process Function Cellular Component

c2
1 DNA replication DNA-directed DNA polymerase activity replication fork

(p=3.64e-07) (p=0.01586) (p=0.00019)

c2
3 protein biosynthesis structural constituent of ribosome cytosolic ribosome

(p=0.00016) (p=1.45e-07) (p=1.44e-08)

c2
13 cytoplasm organization and biogenesis helicase activity ribonucleoprotein complex

(p=5.72e-05) (p=0.00175) (p=0.0002)

Table 2. Top GO Terms of the Discovered Biclusters

n-members with red dashed lines. Obviously, the re-
lationship between any two p-member genes or
between any two n-member genes of the same clus-
ter is shifting-and-positive-scaling while that be-
tween a p-member gene and a n-member gene is
shifting-and-negative-scaling. As a remarkable charac-
teristic of reg-clusters, crossovers can be observed fre-
quently in the gene expression profiles of a pair of
genes, resulting from the combination effects of shift-
ing and scaling. In contrast, previous pattern-based bi-
clustering algorithms [24, 25, 26] only allow pure shift-
ing or pure positive-scaling patterns (but not a mix-
ture of both) and hence fail to identify the three
bi-reg-clusters.

We apply the yeast genome gene ontology term
finder (http://db.yeastgenome.org/cgi-bin/GO/
goTermFinder) on each discovered clusters to evaluate
their biological significance in terms of associated bio-
logical processes, cellular components and gene func-
tion respectively. Table 2 shows the top GO terms of
the three categories and the GO terms with the low-
est p-values for the 3 bi-reg-clusters in Figure 8, which
have been overlooked by previous work. Despite the rel-
atively smaller number of genes with our regulation
threshold γ = 0.05, the extremely low p-values sug-
gest that the three bi-reg-clusters are of significant
biological meaning in terms of biological process, cel-
lular component and gene function.

Further experimental results show that our reg-
cluster algorithm can identify a much broader range

of biologically significant gene clusters. Each group of
genes in these clusters show strikingly similar regula-
tion under a subset of conditions.

6. Conclusion

In this work, we have overcome the problem of pre-
vious pattern-based biclustering algorithms which can
only find either pure shifting or pure positive scal-
ing patterns. We have proposed a general reg-cluster
model for identifying arbitrary shifting-and-scaling
co-regulation patterns, where the scaling can be ei-
ther positive or negative. Unlike previous work, our al-
gorithm also allows a flexible regulation threshold to
quantify up or down regulation. The shifting-and-
scaling patterns manifest a synchronous and propor-
tional change of expression values in a subspace, and
are able to capture both positive correlations and neg-
ative correlations among the genes in the subspace.
We have developed a bi-directional depth-first al-
gorithm which effectively and efficiently mine the
reg-clusters using a novel RWaveγ model. Our exper-
imental results prove that our reg-cluster algorithm
is able to discover a significantly number of biolog-
ically meaningful reg-clusters missed by previous work.
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