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Abstract— Finding latent patterns in high dimensional data
is an important research problem with numerous applications.
Existing approaches can be summarized into 3 categories: feature
selection, feature transformation (or feature projection) and
projected clustering. Being widely used in many applications,
these methods aim to capture global patterns and are typically
performed in the full feature space. In many emerging bio-
medical applications, however, scientists are interested in the local
latent patterns held by feature subsets, which may be invisible
via any global transformation. In this paper, we investigate the
problem of finding local linear correlations in high dimensional
data. Our goal is to find the latent pattern structures that may
exist only in some subspaces. We formalize this problem as
finding strongly correlated feature subsets which are supported
by a large portion of the data points. Due to the combinatorial
nature of the problem and lack of monotonicity of the correlation
measurement, it is prohibitively expensive to exhaustively explore
the whole search space. In our algorithm, CARE, we utilize
spectrum properties and effective heuristic to prune the search
space. Extensive experimental results show that our approach
is effective in finding local linear correlations that may not be
identified by existing methods.

I. INTRODUCTION

Many real life applications involve the analysis of high
dimensional data. For example, in bio-medical domains, ad-
vanced microarray techniques [1], [2] allow to monitor the
expression levels of hundreds to thousands of genes simulta-
neously. By mapping each gene to a feature, gene expression
data can be represented by points in a high dimensional feature
space. To make sense of such high dimensional data, extensive
research has been done in finding the latent structure among
the large number of features. In general, existing approaches
in analyzing high dimensional data can be summarized into
3 categories [3]: feature selection, feature transformation (or
feature projection) and projected clustering.

The goal of feature selection methods [4], [5], [6], [7]
is to find a single representative subset of features that are
most relevant for the task at hand, such as classification. The
selected features generally have low correlation with each
other but have strong correlation with the target feature.

Feature transformation methods summarize the dataset by
creating linear combinations of features in order to uncover the
latent structure. The commonly used feature transformation
methods include principal component analysis (PCA) [8],

linear discriminant analysis (LDA), and their variants (see
[9] for an overview). PCA is one of the most widely used
feature transformation methods. It seeks an optimal linear
transformation of the original feature space such that most
variance in the data is represented by a small number of
orthogonal derived features in the transformed space. PCA
performs one and the same feature transformation on the entire
dataset. It aims to model the global latent structure of the data
and hence does not separate the impact of any original features
nor identify local latent patterns in some feature subspaces.

Recently proposed projected clustering methods, such as
[10], [11], [12], can be viewed as combinations of clustering
algorithms and PCA. These methods can be applied to find
clusters of data points that may not exist in the axis parallel
subspaces but only exist in the projected subspaces. The
projected subspaces are usually found by applying the standard
PCA in the full dimensional space. Like other clustering meth-
ods, projected clustering algorithms find the clusters of points
that are spatially close to each other in the projected space.
However, a subset of features can be strongly correlated even
though the data points do not form any clustering structure.

A. Motivation

PCA is an effective way to determine whether a set of
features, F = {xi1 , · · · , xin

}, show strong correlation [8].
The general idea is as follows. If the features in F are
indeed strongly correlated, then a few eigenvectors of the
covariance matrix with the largest variance will describe
most variance in the whole dataset. Only a small amount of
variance is represented by the remaining eigenvectors. The
variance on each eigenvector is its corresponding eigenvalue
of the covariance matrix CF of F . Therefore, if the sum of
the smallest eigenvalues (i.e., the variance on the last few
eigenvectors) is a small fraction of the sum of all eigenvalues
(i.e., the variance in the original data), then the features in F
are strongly correlated.

In many real life applications, however, it is desirable to
find the subsets of features having strong linear correlations.
For example, in gene expression data analysis, a group of
genes having strong linear correlation is of high interests to
biologists since it helps to infer unknown functions of genes
and gives rise to hypotheses regarding the mechanism of the



Fig. 1. An example dataset

Fig. 2. Eigenvalues of the example dataset

Fig. 3. Hyperplane determined by vector [1,−1, 1]T

transcriptional regulatory network [1], [2]. We refer to such
correlation among a subset of features in the dataset as a local
linear correlation in contrast to the global correlation found
by the full dimensional feature transformation methods.

For example, Figure 1 shows a dataset consisting of 9
features and 15 data points. Among the 9 features, {x2, x7, x9}
have local linear correlation 2x2 +6x7 +3x9 = 0 on point set
{p1, p2, · · · , p9}, and {x1, x5, x6, x8} have local linear corre-
lation x1 +3x5 +2x6 +5x8 = 0 on point set {p7, p8, · · · , p15}
with i.i.d. gaussian noise of mean 0 and variance 0.01. The
eigenvalues of the example dataset is shown in Figure 2.

Figure 2 tells us that the features in the example dataset are
somehow correlated, since the smallest eigenvalues are much
smaller than the largest ones.

Eigenvectors Linear correlations reestablished
v1 −0.4775x1 + 0.4311x2 + 0.1018x3 − 0.1516x4

−0.1185x5 + 0.1318x6 + 0.6215x7 − 0.3437x8

−0.1312x9 = 0
v2 −0.4503x1 − 0.3533x2 − 0.0432x3 + 0.1931x4

−0.0460x5 − 0.2823x6 − 0.1219x7 − 0.4577x8

−0.5703x9 = 0
v3 −0.2072x1 + 0.3259x2 − 0.0742x3 + 0.4307x4

−0.5181x5 − 0.2438x6 − 0.4166x7 − 0.0333x8

+0.3966x9 = 0

TABLE I
LINEAR CORRELATIONS REESTABLISHED BY FULL DIMENSIONAL PCA

To get the linear correlation identified by PCA, we can
apply the following approach. Note that this approach has
been adopted in [12] to derive the quantitative descriptions
for projected clusters. As a basic concept of linear algebra,
a hyperplane is a subspace of co-dimension 1 [8]. Each
vector a = [a1, a2, · · · , an]T in an n-dimensional linear space
uniquely determines a hyperplane a1x1+a2x2+· · ·+anxn = 0
through the origin and orthogonal to a. For example, Figure
3 shows the hyperplane x1 − x2 + x3 = 0 that is orthogonal
to vector [1,−1, 1]T . Therefore, a straightforward way to dis-
cover the correlations by full dimensional PCA is to compute
the hyperplanes that are orthogonal to the eigenvectors with
smallest eigenvalues (variances).

Using the example dataset, Table I shows the hyperplanes
(linear correlations) determined by the 3 eigenvectors with
the smallest eigenvalues. Clearly, none of them captures the
embedded correlations. This is because PCA does not separate
the impact of different feature subsets that are correlated on
different subsets of points.

Recently, many methods [1], [13] have been proposed for
finding clusters of features that are pair-wisely correlated.
However, a set of features may have strong correlation but
each pair of features only weakly correlated.

For example, Figure 4 shows 4 genes that are strongly
correlated in the mouse gene expression data collected by
the biologists in the School of Public Health at UNC. All of
these 4 genes have same Gene Ontology (GO) [14] annotation
cell part, and three of which, Myh7, Hist1h2bk, and Arntl,
share the same GO annotation intracelluar part. The linear
relationship identified by our algorithm is −0.4(Nrg4) +
0.1(Myh7) + 0.7(Hist1h2bk) − 0.5(Arntl) = 0. As we
can see from the figure, all data points almost perfectly lay
on the same hyperplane, which shows that the 4 genes are
strong correlated. (In order to visualize this 3-dimensional
hyperplane, we combine two features, Nrg4 and Myh7, into
a single axis as −0.4(Nrg4) + 0.1(Myh7) to reduce it to a
2-dimensional hyperplane.) If we project the hyperplane onto
2 dimensional spaces formed by each pair of genes, we find
none of them show strong correlation, as depicted in Figures
5(a) to 5(c).

Projected clustering algorithms [10], [11] have been pro-
posed to find the clusters of data points in projected feature
spaces. This is driven by the observation that clusters may



Fig. 4. A strongly correlated gene subset
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(a) (Hist1h2bk, Arntl)
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(b) (Arntl, Nrg4&Myh7)
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(c)
(Hist1h2bk,Nrg4&Myh7)

Fig. 5. Pair-wise correlations of a strongly correlated gene subset

exist in arbitrarily oriented subspaces. Like other clustering
methods, these methods tend to find the clusters of points that
are spatially close to each other in the feature space. However,
as shown in Figure 4, a subset of features (genes in this
example) can still be strongly correlated even if the data points
are far away from each other. This property makes such strong
correlations invisible to the projected clustering methods.
Moreover, to find the projections of original features, projected
clustering methods apply PCA in the full dimensional space.
Therefore they cannot decouple the local correlations hidden
in the high dimensional data.

B. Challenges and Contributions

In order to find the local linear correlations, a straightfor-
ward approach is to apply PCA to all possible subsets of
features to see if they are strongly correlated. This approach
is infeasible due to the large number of possible feature
combinations. For example, given a 100-dimensional dataset,
the number of feature subsets need to be checked is 2100.

Real life datasets often contain noises and outliers. There-
fore, a feature subset may be correlated only on a subset of the
data points. In order to handle this situation, it is reasonable
to allow the algorithm to find the local linear correlations on a
large portion of the data points. This makes the problem even
harder since for a fixed subset of features, adding (or deleting)
data points can either increase or decrease the correlation
among them. More details about the computational challenges
of finding local linear correlations can be found in Section III.

In this paper, we investigate the problem of finding local
linear correlations in high dimensional data. This problem
is formalized as finding strongly correlated feature subsets.
Such feature subsets show strong linear correlations on a large
portion of the data points. We examine the computational
challenges of the problem and develop an efficient algorithm,

CARE1, for finding local linear correlations. CARE utilizes
spectrum properties about the eigenvalues of the covariance
matrix, and incorporates effective heuristic to improve the
efficiency. Extensive experimental results show that CARE
can effectively identify local linear correlations in high di-
mensional data, which cannot be found by applying existing
methods.

II. RELATED WORK

The goal of feature transformation (or projection) methods,
such as PCA, is to find linear combinations of original
features in order to uncover the latent structures hidden in the
data. Feature transformation methods can be further divided
into supervised methods and unsupervised methods. Principal
component analysis (PCA) is a representative unsupervised
projection method. PCA finds the eigenvectors which represent
the directions with maximal variances of the data by perform-
ing singular value decomposition (SVD) to the data matrix [8].
Supervised methods take the target feature into consideration.
Existing supervised methods include linear regression analysis
(LRA) [15], linear discriminant analysis (LDA) [16], principal
component regression (PCR) [17], supervise probabilistic PCA
(SPPCA) [18] and many others [9]. LRA and LDA find the
linear combinations of the input (predictor) features which best
explain the target (dependent) feature. In these methods, the
input features are generally assumed to be non-redundant, i.e.,
they are linearly independent. If there are correlations in the
input features, PCR first applies PCA to the input features. The
principal components are then used as predictors in standard
LRA. SPPCA extends PCA to incorporate label information.
These feature transformation methods perform one and the
same feature transformation for the entire dataset. It does not
separate the impact of any original features nor identify local
correlations in feature subspaces.

Feature selection methods [4], [5], [6], [7] try to find a
subset of features that are most relevant for certain data mining
task, such as classification. The selected feature subset usually
contains the features that have low correlation with each other
but have strong correlation with the target feature. In order to
find the relevant feature subset, these methods search through
various subsets of features and evaluate these subsets accord-
ing to certain criteria. Feature selection methods can be further
divided into two groups based on their evaluation criteria:
wrapper and filter. Wrapper models evaluate feature subsets
by their predictive accuracy using statistical re-sampling or
cross-validation. In filter techniques, the feature subsets are
evaluated by their information content, typically statistical de-
pendence or information-theoretic measures. Similar to feature
transformation, feature selection finds one feature subset for
the entire dataset.

Subspace clustering is based on the observation that clusters
of points may exist in different subspaces. Many methods
[19], [20], [21] have been developed to find clusters in axes
paralleling subspaces. Recently, the projected clustering was

1CARE stands for finding loCAl lineaR corrElations.



studied in [10], [11], inspired by the observation that clusters
may exist in arbitrarily oriented subspaces. These methods
can be treated as combinations of clustering algorithms and
PCA. Similar to other clustering methods, these methods tend
to find the clusters of points that are close to each other in
the projected space. However, as shown in Figure 4, a subset
of features still can be strongly correlated even if the data
points are far away from each other. Pattern based bi-clustering
algorithms have been studied in [1], [13]. These algorithms
find the clusters in which the data points share pair-wise linear
correlations, which is only a special case of linear correlation.

III. STRONGLY CORRELATED FEATURE SUBSET

In this section, we formalize the problem and study its
computational challenges.

A. Problem Definition

Let D = A × B be a data matrix consisting of M N -
dimensional data points, where the feature set A = {x1, x2,
· · · , xN} and the point set B = {p1, p2, · · · , pM}. Figure 1
shows an example dataset with 15 points and 9 features.

A strongly correlated feature subset is a subset of features
that show strong linear correlation in a large portion of data
points.

Definition 1: Let F = {xi1 , · · · , xin
} × {pj1

, · · · , pjm

} be
a submatrix of D, where 1 ≤ i1 < i2 < · · · < in ≤ N and 1 ≤
j1 < j2 < · · · < jm ≤ M . CF is the covariance matrix of F .
Let {λl} (1 ≤ l ≤ n) be the eigenvalues of CF and arranged
in increasing order2, i.e., λ1 ≤ λ2, · · · ,≤ λn. The features
{xi1 , · · · , xin

} is a strongly correlated feature subset if the

value of the objective function f(F, k) =
Σk

t=1λt

Σn
t=1λt

≤ ε and

m/M ≥ δ, where k, ε and δ are user specified parameters.
Eigenvalue λl is the variance on eigenvector vl [8]. The set

of eigenvalues {λl} of matrix CF is also called the spectrum
of CF [22].

Geometrically, each m×n submatrix of D represents an n-
dimensional space with m points in it. This n-dimensional
space can be partitioned into two subspaces, S1 and S2,
which are orthogonal to each other. S1 is spanned by the k
eigenvectors with smallest eigenvalues and S2 is spanned by
the remaining n − k eigenvectors. Intuitively, if the variance
in subspace S1 is small (equivalently the variance in S2 is
large), then the feature subset is strongly correlated. The
input parameters k and threshold ε for the objective function

f(F, k) =
Σk

t=1λt

Σn
t=1λt

are used to control the strength of the

correlation among the feature subset. The default value of k is
1. The larger the value of k, the stronger the linear correlation.

The reason for requiring m/M ≥ δ is because a feature
subset can be strongly correlated only in a subset of data
points. In our definition, we allow the strongly correlated
feature subsets to exist in a large portion of the data points in
order to handle this situation. Note that it is possible that a

2In this paper, we assume that the eigenvalues are always arranged in
increasing order. Their corresponding eigenvectors are {v1, v2, · · · , vn}.

Feature subset {x2, x7, x9}
Eigenvalues of CF λ1 = 0.001, λ2 = 0.931, λ3 = 2.067
Input parameters k = 1, ε = 0.004 and δ = 60%
Objective function value f(F, k) = 0.0003

TABLE II
AN EXAMPLE OF STRONGLY CORRELATED FEATURE SUBSET

data point may participate in multiple local correlations held
by different feature subsets. This makes the local correlations
more difficult to detect. Please also note that for a given
strongly correlated feature subset, it is possible that there exist
multiple linear correlations on different subsets of points. In
this paper, we focus on the scenario where there exists only
one linear correlation for a strongly correlated feature subset.

For example, in the dataset shown in Figure 1, the features
in submatrix F = {x2, x7, x9}×{p1, p2, · · · , p9} is a strongly
correlated feature subset when k = 1, ε = 0.004 and δ =
60%. The eigenvalues of the covariance matrix, CF , the input
parameters and the value of the objective function are shown
in Table II.

In real world applications, it is typical that many local
correlations co-exist, each of which involves a small number
of features. Thus, it is reasonable to set the maximum size,
maxs, of the feature subsets to be considered for each local
correlation3. The co-occurrence of multiple local correlations
poses serious challenge, since neither the feature subsets nor
the supporting data points of these correlations are indepen-
dent. It is crucial to decouple the compound effects of different
local correlations.

Our goal is to find all strongly correlated feature subsets in
the database D. This problem is computationally challenging.
In the following subsection, we study the properties concern-
ing the monotonicity of the objective function with respect to
the feature subsets and point subsets separately.

B. Monotonicity of the Objective Function

1) Monotonicity with respect to feature subsets: The fol-
lowing theorem concerning the spectrum of covariance matrix
developed in the matrix theory community is often called the
interlacing eigenvalues theorem4 [22].

Theorem 3.1: Let F = {xi1 , · · · , xin
} × {pj1

, · · · , pjm

}

and F
′

= {xi1 , · · · , xin
, xi(n+1)

} × {pj1
, · · · , pjm

} be two
submatrices of D. CF and CF

′ are their covariance matrices
with eigenvalues {λl} and {λ

′

l}. We have

λ
′

1 ≤ λ1 ≤ λ
′

2 ≤ λ2 ≤ · · · ≤ λn−1 ≤ λ
′

n ≤ λn ≤ λ
′

n+1.
Theorem 3.1 tells us that the spectra of CF and CF

′

interleave each other, with the eigenvalues of the larger matrix
bracketing those of the smaller one.

By applying the interlacing eigenvalues theorem, we have
the following property for the strongly correlated feature
subsets.

3Setting the maximum size of the feature subsets is also used in many other
feature selection and feature transformation methods [5], [8].

4This theorem also applies to Hermitian matrix [22]. Here we focus on the
covariance matrix, which is semi-positive definite and symmetric.



Point subset P1 = {p
1
, · · · , p

15
}

Feature subset X1 f(F1, k) = 0.1698
Feature subset X1 ∪ {x9} f(F ′

1
, k) = 0.0707

Feature subset X1 ∪ {x4, x9} f(F ′′

1
, k) = 0.0463

TABLE III
MONOTONICITY WITH RESPECT TO FEATURE SUBSETS

Feature subset X2 = {x2, x7, x9}
Point subset P2 f(F2, k) = 0.0041
Point subset P2 ∪ {p

10
} f(F ′

2
, k) = 0.0111

Point subset P2 ∪ {p
14
} f(F ′′

2
, k) = 0.0038

TABLE IV
NO MONOTONICITY WITH RESPECT TO POINT SUBSETS

Property 3.2: (Upward closure property of strongly corre-
lated feature subsets) Let F = X × P and F ′ = X ′ × P
be two submatrices of D with X ⊆ X ′. If X is a strongly
correlated feature subset, then X ′ is also a strongly correlated
feature subset.

Proof: We show the proof for the case where |X ′| =
|X| + 1, i.e., X is a subset of X ′ by deleting one feature
from X ′. Let CF and CF

′ be the covariance matrices of F
and F ′ with eigenvalues {λl} and {λ

′

l}. Since X is a strongly

correlated feature subset, we have f(F, k) =
Σk

t=1λt

Σn
t=1λt

≤ ε.

By applying the interlacing eigenvalues theorem, we have
Σk

t=1λt ≥ Σk
t=1λ

′

t and Σn
t=1λt ≤ Σn+1

t=1 λ
′

t. Thus f(F ′, k) =
Σk

t=1λ
′

t

Σn+1
t=1 λ

′

t

≤ ε. Therefore, X ′ is also a strongly correlated

feature subset. By induction we can prove for the cases where
X is a subset of X ′ by deleting more than one feature.

The following example shows the monotonicity of the
objective function with respect to the feature subsets. Using
the dataset shown in Figure 1, let F1 = X1 × P1 =
{x2, x7} × {p1, · · · , p15}, F ′

1 = (X1 ∪ {x9}) × P1, and
F ′′

1 = (X1 ∪ {x4, x9}) × P1. The values of the objective
function, when k = 1, are shown in Table III. It can be
seen from the table that the value of the objective function
monotonically decreases when adding new features.

Property 3.2 shows that for a fixed set of points, if a subset
of features are strongly correlated, then all of its supersets are
also strongly correlated. Therefore, in our algorithm, we can
focus on finding the minimum strongly correlated feature
subsets, of which no subset is strongly correlated.

2) Lack of monotonicity with respect to point subsets: For a
fixed feature subset, adding (or deleting) data points may cause
the correlation of the features to either increase or decrease.
That is, the objective function is non-monotonic with respect
to the point subsets. The following property states this fact.

Property 3.3: Let F = {xi1 , · · · , xin
} × {pj1

, · · · , pjm

}

and F
′

= {xi1 , · · · , xin
} × {pj1

, · · · , pjm

, pj(m+1)
} be two

submatrices of D. f(F, k) can be equal to, or less than, or
greater than f(F ′, k).

We use the following example to show the non-monotonicity
of the objective function with respect to the point subsets.

Using the dataset shown in Figure 1, let F2 = X2 × P2 =
{x2, x7, x9} × {p1, · · · , p9, p11}, F ′

2 = X2 × (P2 ∪ {p10}),
and F ′′

2 = X2 × (P2 ∪ {p14}). The values of their objective
functions, when k = 1, are shown in Table IV. It can be seen
from the table that the value of the objective function f can
either increase or decrease when adding more points.

In summary, the value of the objective function will mono-
tonically decrease when adding new features. On the other
hand, adding new points can either increase or decrease the
value of the objective function.

IV. CARE

In this section, we present the algorithm CARE for finding
the minimum strongly correlated feature subsets. CARE enu-
merates the combinations of features to generate candidate
feature subsets. To examine if a candidate is a strongly
correlated feature subset, CARE adopts a 2-step approach. It
first checks if the feature subset is strongly correlated on all
data points. If not, CARE then apply point deletion heuristic
to find the appropriate subset of points on which the current
feature subset may become strongly correlated. In Section
IV-A, we first discuss the overall procedure of enumerating
candidate feature subsets. In Section IV-B, we present the
heuristics for choosing the point subsets for the candidates
that are not strongly correlated on all data points.

A. Feature Subsets Selection

For any submatrix F = X × {p1, · · · , pM} of D, in order
to check whether feature subset X is strongly correlated, we
can perform PCA on F to see if its objective function value

is lower than the threshold, i.e., if f(F, k) =
Σk

t=1λt

Σn
t=1λt

≤ ε.

Starting from feature subsets containing a single feature,
CARE adopts depth first search to enumerate combinations
of features to generate candidate feature subsets. In the enu-
meration process, if we find that a candidate feature subset is
strongly correlated by evaluating its objective function value,
then all its supersets can be pruned according to Property 3.2.

Next, we present an upper bound on the value of the
objective function, which can help to speed up the evalua-
tion process. The following theorem shows the relationship
between the diagonal entries of a covariance matrix and its
eigenvalues [22].

Property 4.1: Let F be a submatrix of D and CF be the n×
n covariance matrix of F . Let {ai} be the diagonal entries of
CF arranged in increasing order, and {λi} be the eigenvalues
of CF arranged in increasing order. Then Σs

t=1at ≥ Σs
t=1λt

for all s = 1, 2, · · · , n, with equality held for s = n.
Applying Property 4.1, we can get the following proposi-

tion.
Proposition 4.2: Let F be a submatrix of D and CF be the

n×n covariance matrix of F . Let {ai} be the diagonal entries

of CF and arranged in increasing order. If
Σk

t=1at

Σn
t=1at

≤ ε, then

we have f(F, k) ≤ ε, i.e., the feature subset of F is a strongly
correlated feature subset.



The proof of Proposition 4.2 is straightforward and omitted
here. This proposition gives us an upper bound of the objective
function value for a given submatrix of D. For any submatrix
F = X × {p1, · · · , pM} of D, we can examine the diagonal
entries of the covariance matrix CF of F to get the upper
bound of the objective function. The computational cost of
calculating of this upper bound is much less than that of eval-
uating the objective function value directly by PCA. Therefore,
before evaluating the objective function value of a candidate
feature subset, we can check the upper bound in Proposition
4.2. If the upper bound is no greater than the threshold ε, then
we know that the candidate is a strongly correlated feature
subset without performing PCA on its covariance matrix.

B. Choosing the Subsets of Points

In the previous subsection, we discussed the procedure of
generating candidate feature subsets. A feature subset may be
strongly correlated only on a subset of the data points. As
discussed in Section III-B.2, the monotonicity property does
not hold for the point subsets. Therefore, some heuristic must
be used in order to avoid performing PCA on all possible
subsets of points for each candidate feature subset. In this
subsection, we discuss the heuristics that can be used for
choosing the subset of points.

1) A successive point deletion heuristic: For a given candi-
date feature subset, if it is not strongly correlated on all data
points, we can delete the points successively in the following
way.

Suppose that F = {xi1 , · · · , xin
} × {p1, · · · , pM} is a

submatrix of D and f(F, k) > ε, i.e., the features of F is
not strongly correlated on all data points. Let F\p

a

be the
submatrix of F by deleting point pa (pa ∈ {p1, · · · , pM})
from F . This heuristic deletes the point pa from F such that
f(F\p

a

, k) has the smallest value comparing to deleting any
other point. We keep deleting points until the number of points
in the submatrix reaches the ratio m/M = δ or the feature
subset of F turns out to be strongly correlated on the current
point subset.

This is a successive greedy point deletion heuristic. In each
iteration, it deletes the point that leads to the most reduction in
the objective function value. This heuristic is time consuming,
since in order to delete one point from a submatrix containing
m points, we need to calculate the objective function value m
times in order to find the smallest value.

2) A distance-based point deletion heuristic: In this sub-
section, we discuss the heuristic used by CARE. It avoids
calculating objective function value m times for deleting a
single point from a submatrix containing m points.

Suppose that F = {xi1 , · · · , xin
} × {p1, · · · , pM} is a

submatrix of D and f(F, k) > ε, i.e., the features of F
is not strongly correlated on all data points. As discussed
in Section III-A, let S1 be the subspace spanned by the k
eigenvectors with the smallest eigenvalues and the S2 be
the subspace spanned by the remaining n − k eigenvectors.
For each point pa (pa ∈ {p1, · · · , pM}), we calculate two
distances: da1

and da2
. da1

is the distance between pa and the

(a) Successive point deletion

(b) Distance-based point deletion

Fig. 6. Points deleted using different heuristics

origin in sub-eigenspace S1 and da2
is the distance between

pa and the origin in sub-eigenspace S2. Let the distance ratio
rp

a

= da1
/da2

. We sort the points according to their distance
ratios and delete (1−δ)M points that have the largest distance
ratios.

The intuition behind this heuristic is that we try to reduce the
variance in subspace S1 as much as possible while retaining
the variance in S2.

Using the running dataset shown in Figure 1, for feature
subset {x2, x7, x9}, the deleted points are shown as red stars
in Figures 6(a) and 6(b) using the two different heuristics
described above. The reestablished linear correlations are
2x2+5.9x7+3.8x9 = 0 (successive), and 2x2+6.5x7+2.9x9 =
0 (distance-based). Note that the embedded linear correlation
is 2x2 + 6x7 + 3x9 = 0. As we can see from the figures, both
methods choose almost the same point subsets and correctly
reestablish the embedded linear correlation.

The distance-based heuristic is more efficient than the
successive approach since it does not have to evaluate the
value of the objective function many times for each deleted
point.

As a summary of Section IV, CARE adopts the depth-first
search strategy to enumerate the candidate feature subsets. If
a candidate feature subset is not strongly correlated on all data
points, then CARE applies the distance-based point deletion
heuristic to find the subset of points on which the candidate
feature subset may have stronger correlation. If a candidate
turns out to be a strongly correlated feature subset, then all its
supersets can be pruned.



Point subsets Local linear correlations
{p

1
, · · · , p

60
} x50 − x20 + 0.5x60 = 0

{p
30

, · · · , p
90
} x40 − x30 + 0.8x80 − 0.5x10 = 0

{p
50

, · · · , p
110

} x15 − x25 + 1.5x45 − 0.3x95 = 0

TABLE V
LOCAL LINEAR CORRELATIONS EMBEDDED IN THE DATASET

Eigenvectors Linear correlations reestablished
v1 (λ1 = 0.0077) 0.23x22 − 0.25x32 − 0.26x59 ≈ 0
v2 (λ2 = 0.0116) 0.21x34 − 0.26x52 ≈ 0
v3 (λ3 = 0.0174) −0.22x6 − 0.29x8 + 0.22x39

−0.23x72 + 0.26x93 ≈ 0

TABLE VI
LINEAR CORRELATIONS IDENTIFIED BY FULL DIMENSIONAL PCA

x50 − 0.99x20 + 0.42x60 = 0
x40 − 0.97x30 + 0.83x80 − 0.47x10 = 0
x15 − 0.9x25 + 1.49x45 − 0.33x95 = 0

TABLE VII
LOCAL LINEAR CORRELATIONS IDENTIFIED BY CARE

V. EXPERIMENTS

To evaluate CARE, we apply it on both synthetic datasets
and real life datasets. CARE is implemented using Matlab
7.0.4. The experiments are performed on a 2.4 GHz PC with
1G memory running WindowsXP system.

A. Synthetic Datasets

1) Effectiveness evaluation: To evaluate the effectiveness
of the CARE, we generate a synthetic dataset of 100 features
and 120 points in the following way. The dataset is first
populated with randomly generated points for each one of the
100 features. Then we embedded three local linear correlations
into the dataset as described in Table V. For example, on points
{p1, · · · , p60} we create local linear correlation x50 − x20 +
0.5x60 = 0. Gaussian noise with mean 0 and variance 0.01 is
added into the dataset.

a) Comparison with full dimensional PCA: We first show
the comparison of CARE and full dimensional PCA. We
perform PCA on the synthetic dataset described above. To
present the linear correlation discovered by PCA, we show
the resulting hyperplanes determined by the three eigenvectors
with the smallest eigenvalues. Each such hyperplane represents
a linear correlation of all the features in the dataset. Due to
the large number of features, we only show the features with
coefficients with absolute values greater than 0.2. The linear
correlations reestablished by full dimensional PCA are shown
in Table VI. Clearly, these are not the local linear correlations
embedded in the dataset.

Table VII shows the local linear correlations reestablished
by CARE, with k = 1, ε = 0.006, δ = 50%, and maxs = 4.
As can be seen from the table, CARE correctly identifies the
correlations embedded in the dataset.

Fig. 7. The hyperplane representation of a local linear correlation reestab-
lished by CARE
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(c)

Fig. 8. Pair-wise correlations of a local linear correlation

b) Comparison with projected clustering methods: Fig-
ure 7 shows the hyperplane representation of the local linear
correlation, x40 − 0.97x30 + 0.83x80 − 0.47x10 = 0, reestab-
lished by CARE. Since this is a 3-dimensional hyperplane
in 4-dimensional space, we visualize it as a 2-dimensional
hyperplane in 3-dimensional space by creating a new feature
(−0.83x80 +0.47x10). As we can see from the figure, the data
points are not clustered on the hyperplane even though the
feature subsets are strongly correlated. The existing projected
clustering algorithms [10], [11], [12] try to find the points that
are close to each other in the projected space. Therefore, they
can not find the strongly correlated feature subset as shown in
this figure. In Section V-B.3, we further compare CARE with
projected clustering method on real dataset.

c) Pair-wise correlations of strongly correlated feature
subsets : In Figures 8(a) to 8(c), we show the pair-wise
correlations between the features of the local linear correlation
x40 − 0.97x30 +0.83x80 − 0.47x10 = 0. These figures demon-
strate that although the feature subset is strongly correlated,
the pair-wise correlations of the features may still be very
weak. The clustering methods [1], [13] focusing on pair-wise
correlations cannot find such local linear correlations.

d) Sensitivity with respect to parameters: We run CARE
under different parameter settings. Table VIII shows the local
linear correlations reestablished by CARE for the embedded
correlation x40 − x30 + 0.8x80 − 0.5x10 = 0. As we can see
from the table, CARE is not very sensitive to the parameters.
Similar results have also been observed for other embedded
correlations.

2) Efficiency evaluation: To evaluate the efficiency of
CARE, we generate synthetic datasets as follows. Each syn-
thetic dataset has up to 500K points and 60 features, in which



k ε δ Linear correlations reestablished
1 0.006 50% x40 − 0.97x30 + 0.83x80 − 0.47x10 = 0
1 0.006 40% x40 − 0.98x30 + 0.78x80 − 0.47x10 = 0
1 0.006 30% x40 − 0.98x30 + 0.78x80 − 0.48x10 = 0
1 0.009 50% x40 − 0.96x30 + 0.82x80 − 0.53x10 = 0
1 0.012 50% x40 − 1.06x30 + 0.85x80 − 0.47x10 = 0
1 0.03 55% x40 − 0.79x30 + 1.05x80 − 0.33x10 = 0
2 0.006 50% x40 − 0.97x30 + 0.85x80 − 0.47x10 = 0
3 0.02 50% x40 − 0.95x30 + 0.86x80 − 0.55x10 = 0

TABLE VIII
LOCAL LINEAR CORRELATIONS REESTABLISHED UNDER DIFFERENT

PARAMETER SETTINGS

40 linear correlations are embedded. Gaussian noise with mean
0 and variance 0.01 is added into the dataset. The default
dataset for efficiency evaluation contains 5000 points and 60
features if not specified otherwise. The default values for the
parameters are: k = 1, ε = 0.006, δ = 50%, and maxs = 4.

Figures 9(a) to 9(f) show the efficiency evaluation results.
Figure 9(a) shows that the running time of CARE is roughly
quadratic to the number of features in the dataset. Note that
the theoretical worst case should be exponential when the
algorithm has to check every subset of the features and data
points. Figure 9(b) shows the scalability of CARE with respect
to the number of points when the dataset contains 30 features.
The running time of CARE is linear to the number of data
points in the dataset as shown in the figure. This is due to
the distance-based point deletion heuristic. As we can see
from the figure, CARE finishes within reasonable amount of
time for large datasets. However, since CARE scales roughly
quadratically to the number of features, the actual runtime
of CARE mostly depends on the number of features in the
dataset.

Figure 9(c) shows that the runtime of CARE increases
steadily until ε reaches certain threshold. This is because the
higher the value of ε, the weaker the correlations identified.
After certain point, too many weak correlations meet the cri-
teria will be identified. Figure 9(d) demonstrates that CARE’s
runtime when varying δ. Figure 9(e) shows CARE’s runtime
with respect to different maxs when the datasets contain 20
features.

Figure 9(f) shows the number of patterns evaluated by
CARE before and after applying the upper bound of the
objective function value discussed in Section IV-A.

B. Real Life Datasets

1) Gene expression data: We apply CARE on the mouse
gene expression data provided by the School of Public Health
at UNC. The dataset contains the expression values of 220
genes in 42 mouse strains. CARE find 8 strongly correlated
gene subsets with parameter setting: k = 1, ε = 0.002, δ =
50%, and maxs = 4. Due to the space limit, we show 4 of
these 8 gene subsets in Table IX with their symbols and the
corresponding GO annotations. As shown in the table, genes
in each gene subset have consistent annotations. We also plot
the hyperplanes of these strongly correlated gene subsets in
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(a) Gene subset 1 (b) Gene subset 2 (c) Gene subset 3 (d) Gene subset 4

Fig. 10. Hyperplane representations of strongly correlated gene subsets

Subsets Gene IDs GO annotations
1 Nrg4 cell part

Myh7 cell part; intracelluar part
Hist1h2bk cell part; intracelluar part
Arntl cell part; intracelluar part

2 Nrg4 integral to membrane
Olfr281 integral to membrane
Slco1a1 integral to membrane
P196867 N/A

3 Oazin catalytic activity
Ctse catalytic activity
Mgst3 catalytic activity

4 Hspb2 cellular physiological process
2810453L12Rik cellular physiological process
1010001D01Rik cellular physiological process
P213651 N/A

TABLE IX
STRONGLY CORRELATED GENE SUBSETS

Local linear correlations
1 TOT = 0.99OFF + DEF
2 GP = 0.21(2P%) + 0.86(FT%)
3 3PM = 0.99(3P%)
4 FGM = 0.17(2P%) + 0.89(3PA)
5 GS= 0.38OFF+0.74FTM

TABLE X
LOCAL LINEAR CORRELATIONS IDENTIFIED BY CARE IN THE NBA

DATASET

3-dimensional space in Figures 10(a) to 10(d). As we can see
from the figures, the data points are sparsely distributed in the
hyperplanes, which again demonstrates CARE can find the
groups of highly similar genes which cannot be identified by
the existing projected clustering algorithms.

2) NBA dataset: We apply CARE on the NBA statistics
dataset5. This dataset contains the statistics of 28 features for
200 players of season 2006-2007. Since the features have
different value scales, we normalized each feature by its
variance before applying CARE. The parameter setting is:
k = 2, ε = 0.003, δ = 50% and maxs = 4. We report
some interesting local linear correlations found by CARE in
Table X.

5http://sports.espn.go.com/nba/teams/stats?team=Bos&year=2007&season=2

Fig. 11. A local linear correlation in NBA dataset

• Correlation 1 says that the total number of rebounds is
equal to the sum of defensive and offensive rebounds.
This is an obvious correlation that one would expect.

• The meaning of correlation 2 is that the number of games
played is highly correlated with the 2-point shooting
percentage and free throw percentage of the player.

• Correlation 3 says that players having high 3-point shoot-
ing percentage tend to get more 3-point field goals in the
game.

• Correlation 4 tells us that the total number of field goals
made by a player is correlated with his 2-point shooting
percentage and the number of times he attempted to shoot
3-point.

• Correlation 5 shows the number of games started depends
on how good the player is at offensive rebounds and free
throws.

We plot Correlation 5 in Figure 11. This correlation holds
on 3 different groups of players. The points in circle 1 show
that the players not good at both offensive rebound and free
throw get low game start. Circle 2 shows that players good at
free throw get high game start and circle 3 show players good
at offensive rebound get high game start. The points in circle
1 are close to each other but other points are far away from
each other. Therefore this local linear correlation is invisible
to the existing projected clustering algorithms.

3) Wage dataset: We further compare CARE with the
projected clustering method COPAC [12], which has been
demonstrated to be more effective than ORCLUS [10] and 4C
[11]. We apply CARE on the wage dataset6, which also has

6http://lib.stat.cmu.edu/datasets/CPS 85 Wages



(a) Y E+Y W −A = −6 (identified by both COPAC
and CARE)

(b) 4.25Y W + W − 4.5A = −80 (identified by
CARE only)

Fig. 12. The hyperplane representations of local linear correlations in the
wage dataset

been used in [12]. CARE successfully identifies both linear
correlations reported in [12], i.e., Y E + Y W − A = −6 and
Y W − 1.03A = −17.4. Further more, CARE identifies two
new linear correlations, which are 4.25Y W+W−4.5A = −80
and 2.4Y E +0.34Y W −W = 28.4. These two linear correla-
tions show the relationship among wage, working experience,
age, and education, which are not discovered by COPAC.
Figure 12(a) shows the hyperplane of linear correlation Y E +
Y W − A = −6, which is found by both methods. In this
figure, the points in the red circle form a density connected
cluster. Therefore, the projected clustering method can find
the correlation by first identifying this cluster. However, as
shown in the figure, this correlation is also supported by other
points outside the cluster. We also plot, in Figure 12(b), the
hyperplane of correlation 4.25Y W +W −4.5A = −80, which
is only found by CARE. Clearly, such correlation cannot be
found by projected clustering methods because the points are
sparsely distributed on the plane.

VI. CONCLUSION

In this paper, we investigate the problem of finding local
linear correlations in high dimensional datasets. The local
linear correlations may be invisible to the global feature trans-
formation methods, such as PCA. We formalize this problem
as finding the feature subsets that are strongly correlated on
a large number of data points. We use spectrum theory to
study the monotonicity properties of the problem. An efficient
and effective algorithm, CARE, for finding such strongly cor-
related feature subsets is presented. The experimental results

show that CARE can find these interesting local linear correla-
tions that cannot be identified by the existing algorithms, such
as full dimensional PCA, and projected clustering methods.
The experimental results also demonstrate that CARE scales
well to large datasets.

Our work reported in this paper focuses on the case where
there is one linear correlation for a strongly correlated feature
subset. For future work, one interesting direction is to extend
current work to find multiple linear correlations in a feature
subset. This is more challenging, since to find such correlations
we have to decouple both features and points.
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